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Handling and storing chemicals in the industrial world require a conscientious hazards assessment and the 
implementation of appropriate measures to ensure safety for the workers, the company, the environment 
and the society. Reliable evaluations and predictions based solely on the molecular structure would 
represent a valuable tool in the preliminary hazard assessment process as it would reduce the necessary 
time and resources for extensive testing. This work presents how Quantitative Structure-Property 
Relationships (QSPR) of various hazardous chemical properties (i.e. thermal decomposition enthalpy or 
Minimal Ignition Energy) can be built to meet these needs. Results are to be illustrated with some 
examples. Two sets of chemicals were studied and the corresponding experimental results were 
correlated to 90 molecular descriptors. The models were built following a regression analysis. The best 
multi-linear regressions presenting 6 parameters or less with high determination and cross-validation 
coefficients are withheld as predictive models. 

1. Introduction 
Most of the chemicals encountered in the industry are in a metastable state and might decompose, 
releasing significant amounts of energy and byproducts. Thus, a very particular attention is required in 
order to properly tackle the incurred hazards and implement the appropriate safety measures. Therefore, a 
deep knowledge and understanding of the chemical reactions’ characteristics and the involved compounds 
are crucial to properly assess the related risks and hazards to design a safe process.  
Thermal stability can be defined by the energy and the kinetics of the decomposition reaction compounds 
can undergo. This can be determined experimentally by various thermal analysis methods. Using an 
adequate analysis, one can estimate the risks faced by integrating these reactions into a process and thus 
begin at an early process development stage, to think about the measures to implement in order to make it 
safer. Besides ensuring process safety through protective and preventive measures, these considerations 
can have deeper implications: if the incurred risks are too important, one could imagine a different design 
or process that would be inherently safer. It should be designed to avoid facing the threats rather than 
protect from their consequences. For this to be possible, process engineers need reactions and 
compounds characteristics at a very early development stage. 
In this work two hazardous behaviours of chemicals will be considered: thermal decompositions and 
explosions. Thermal decompositions occur above their triggering temperature. As they are often 
exothermic, they induce a consequent temperature rise accelerating the reaction, leading to a possible 
thermal runaway. Heat accumulation could result in high temperature and pressure rises which may 
generate explosions.  Some key characteristics of these reactions, if known, would help avoiding these 
hazardous situations. For instance, the process temperature should be lower than the temperature at 
which the reaction is triggered (onset temperature To) or the heat exchange system designed to manage 
the released reaction heat ( Hr) and heat flux.  
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In this paper chemical explosions resulting from rapid and violent oxidation reactions are considered, not 
the physical explosions due to overpressures within confined environments. Chemical explosions can be 
triggered by any ignition source. 
This work aims at predicting results from Differential Scanning Calorimetry (DSC), which reveals the onset 
temperature To, the enthalpy change Hr related to the decomposition reaction and gives strong indication 
on the decomposition kinetics. Minimal Ignition Energy (MIE) corresponds to the energy of an electric 
spark sufficient to induce a dust explosion and is determined by explosion tube tests. 
The predictive models are produced as Quantitative Structure-Property Relationships (QSPR), linking up 
the experimental values to numerical molecular descriptors of the examined compounds. The employed 
molecular descriptors encode for several aspects of the compound’s structure such as constitution, shape 
or electronic properties. Correlations can be found by multi-linear regressions or non-linear approaches. 

2. Methods 
2.1 Quantitative Structure-Property Relationships (QSPR)  
Several methods of predicting chemicals properties have been recorded in literature. Some rely on 
associating chemical property value to other physical properties of the compounds (Valenzuela et al., 
2011) and some other to their molecular structure.  
When basing predictive models on molecular structure, the historical strategy is derived from Benson’s 
group contribution. The American Society for Testing and Materials (ASTM) launched in 1974 a software 
tool to predict thermochemical properties and evaluate hazards related to substances from their structure 
based on Benson’s method (Shanley and Melhem, 1995). This technique has been applied until the mid-
2000’s (Albahri, 2003; Nomen, 2005). Even though it performs well, this technique is limited to molecules 
that can be described by the group-additivity system and is unable to distinguish isomers. 
Nowadays, QSPR are more often encountered since their efficiency has been proven in several 
publications. The QSPR methodology was first developed for biochemical studies as Quantitative 
Structure Activity Relationships (QSAR) enabling researchers to match the complex molecules structure 
and their biochemical activity (e.g. toxicities (Harder et al., 2003). Since then, QSPR have been applied for 
predicting several properties related to chemical’s reactivity or hazards: auto-ignition temperatures AIT 
(Pan et al., 2009), maximum overpressure Pmax and explosion constants Kst for explosive dusts (Reyes et 
al., 2011), impact sensitivity (Xu et al., 2012) among others. Saraf (2003) and Fayet (2009) proposed 
models to predict onset temperature To or reaction enthalpy Hr by QSPR models. Later, Fayet (2011) 
also applied these techniques to explosibility properties of chemicals. 
The first step in QSPR routine is to gather the experimental values of the property to be modelled. The 
second step consists into producing a numerous molecular descriptors for each of the studied compounds. 
The molecular descriptors can be of various kinds: constitutional (e.g. numbers of atoms and bonds), 
geometric (e.g. volume, solvent-accessible surface areas), topological (that depend on atoms 
connectivity), electrostatic (e.g. partial charges) or “quantum-chemistry derived” (e.g. molecular orbitals 
energies, dipole moments components, etc.) (Karelson, 2000). To generate these descriptors, variable 
software packages are available. They derive a three dimensional molecular structure and calculate the 
descriptors based on the Density Functional Theory (DFT). With Karelson’s molecular descriptor handbook 
(Karelson, 2000), a generator software was made available and was used for this project. 
Finally, multi-linear correlations between those descriptors and the values of the chemical property 
considered are to be found. For that purpose, one usually applies classical linear algebra combined with 
statistical principles. The sample set is to be divided between a training and validation set. The training set 
is used to find the individual molecular descriptors coefficients to fit the property are. The validation set 
serves to assess whether or not the models perform successfully in predicting values. This random 
splitting process was repeated before each modelling, thus there are several training and validations sets 
comprising different samples. 
Stepwise regressions are recommended as they allow selecting descriptors successively while verifying 
which contribute the most to improving the model. The models are here produced using MATLAB’s 
(Mathworks, 2010) stepwise function that allows building multi-variate predictive models. 
Another approach is to develop an artificial neural network considering the molecular descriptors as inputs 
and the property values as targets. Even though this is a very efficient strategy to achieve high 
correlations, it should be combined to a selection process in order to screen among the numerous 
descriptors. Indeed, non-linear methods can adjust coefficients for all parameters however they do not 
eliminate the less relevant ones (Pan et al., 2009). 
In both cases, the models are then evaluated on the precision of fitting the training data with determination 
coefficient (R2) and the precision of predicting the validation data with cross-validation coefficient (Rcv

2).  
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2.2 Experiments and data extraction 
Differential Scanning Calorimetry (DSC) is a widely used thermoanalytical technique. A sample and a 
reference are placed in a furnace and submitted to a temperature profile. The difference in heat flows from 
the sample and the reference are recorded against the temperature and are graphically represented as 
thermograms. 
The interpretation of a DSC curve is a key step of the analysis as it allows correlating the observed 
features of the thermogram to the thermal events. Within the scope of this work, the most interesting 
events to study are chemical reactions, especially decompositions. They are characterized by important 
heat releases revealed with significant deviations of the curve from the baseline forming notable peaks. 
The temperature for which this deviation starts corresponds to the onset temperature To and the area 
under the curve is directly proportional to the reaction enthalpy Hr.  
These two key parameters have been modelled by the previously mentioned studies (Saraf et al., 2003; 
Fayet et al., 2009). However, the overall shape of the peak also reveals the kinetics of the reaction, 
indicating if the decomposition occurs slowly after the onset (broad peak) or rather violently (narrow peak). 
Thus, in this study, in addition to the onset temperature and reaction enthalpy corresponding to the main 
peak, the curve is entirely described with an ensemble of properties: each one of the three main peaks 
observed on every thermogram is assimilated to a Gaussian peak and characterized by its position, height 
and width.  
In order to reconstitute the thermograms, the estimated values are subjected to the reverse processing 
and the thermograms represented as a sum of Gaussian-like curves. 
The Minimal Ignition Energy (MIE) is a measure revealing how sensitive an explosive dust is to an 
electrical spark ignition and is key data for explosion risk assessment (Lerena and Suter, 2010). The MIE 
values are obtained from tube explosion tests conducted in modified Hartmann tubes. A dust sample is 
dispersed within an explosion vessel with pressurized air, and two electrodes connected to a circuit 
produce an electrical spark of known energy. If the spark induces observable flame propagation, the 
spark’s energy is reduced until no flame propagation is observed for ten consecutive tests. The highest 
energy for which no flame propagation occurs is recorded. However, the sample weight is known to 
influence the ignition energy. Therefore, a range of dust sample weights are tested and the lowest energy 
is considered as the MIE.  
For modelling the explosive dusts sensitivity, only the MIE value will be considered in this paper, thus no 
particular processing is required on experimental data before moving on to the modelling phase. 

3. Results and discussion 
3.1 Thermal stability 
DSC experiments have been conducted on 19 nitroaromatic compounds, 16 and 3 samples respectively in 
training and validation sets (in order to respect the 80/20 proportion). The experimental conditions have 
been standardized to avoid any perturbing effects on the measures and the investigated temperature 
range is between 30°C and 500°C.  
All the studied samples showed reactivity on this temperature range with important main exothermic 
peaks. Out of the 19 samples 16 were initially on a solid state and presented an endothermic peak caused 
by the substance fusion during the experiments. Besides, some thermograms showed another exothermic 
peak directly preceding the main peak, revealing complex reactive mechanisms (i.e. consecutive 
decomposition reactions). 
All the graphical data have been then processed as explained previously in order to extract the data of 
interest, namely the three main peaks’ position, height and width. For that purpose each peak is fitted by a 
Gaussian curve and its characteristics are withheld to describe the peak’s shape. These properties are 
then correlated to the molecular descriptors and a multi-linear equation is to be determined for each 
modelled property.  
Different models have been produced and selecting the best models was realized not only according to the 
determination and cross-validation coefficients but also on the number of parameters included. Indeed, the 
more parameters are integrated to the model, the higher the determination coefficient is. However, the 
models are then more complex and their physical significance is decreased. Mathematically, with a high 
dimension system, it would be possible to fit any sort of data with very fine adjustments; as the goal here is 
to achieve the best predictive, yet comprehensible, models rather than the highest possible fitting to the 
training data. The models were only retained if they achieve accurate fittings with a limited number of 
parameters.   
For instance, Eq. 1 and 2 correspond to the models produced respectively for predicting the thermograms 
main peak height in terms of heat flow (qmax,1 [W/g]) and position in terms of temperature (Tmax,1 [°C]).  
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qmax,1= - 9.7 NH + 302.1 RNSB - 0.1 DPSA - 119.6 Vmid - 62.9  (1)  
 
Tmax,1 = - 27.5 SIC0 – 1.4 SM + 2.3 PPSA1 – 1167.3 FPSA1 – 547.4 HNC + 1151.3  (2) 
 
Table 1 presents an explanation for the parameters symbols. The estimated values for the various 
properties are calculated from these models and the included descriptors and compared to the 
experimental values for evaluating the determination (R2) and cross-validation (Rcv

2) coefficients. Figures 1 
and 2 show the graphical representations of the previous examples. 
 

Figure 1: Graphical view of calculated values 
qmax,1 vs experimental values – line shows perfect 
match of simulations and experiments-circles 
represent validation set-  both axes are in [W/g] 

Figure 2: Graphical view of calculated values Tmax,1 

vs experimental values – line shows perfect match 
of simulations and experiments- circles represent 
validation set-both axes are in [°C] 

For these two examples, the evaluation results were rather satisfactory as the qmax,1 model showed a 
R2=0.96 and Rcv

2=0.83 and the Tmax,1 model showed R2=0.93 and Rcv
2= 0.84. All the properties of interest 

mentioned previously have been processed similarly and the results ranged between 0.71 R2 0.98 and 
0.67<Rcv

2<0.96 with a maximum of 6 descriptors integrated in a model. 
When reconstructing the thermograms from the calculated values, the applied procedure achieved very 
interesting results with correlations up to R2=0.96. For instance, the graphical comparison between 
measured and simulated thermograms of 4-nitroaniline is presented in Figure 3.  
Overall, this technique proved to be efficient for predicting DSC results by rendering entire thermograms. 
The basic QSPR principles are applied, only the required data pre-processing is slightly more fastidious. 
Nevertheless, this enhancement on the current technique allows a complete estimation of the chemicals’ 
thermal behavior instead of a characterization based on two values only. 

3.2 Explosive sensitivity 
Considering the successful application of QSPR methodology to predicting DSC experiments, it has been 
decided to apply it to MIE, addressing in the meanwhile the lack in predictive models for that property, 
which is, as previously mentioned crucial for explosion risk assessment. 50 chemicals have been tested on 
Hartmann modified test tubes. Their MIE were recorded and an ensemble of 80 descriptors was calculated 
for each compound. As the selected compounds were from various chemical classes, their MIE values 
were rather heterogeneous ranging from 0.015 mJ to 10 J. This very broad values span and unevenly 
dispersed data biased the modelling process. Therefore, the selected data set have been divided into 
three different sub-sets according to their MIE values, and different models were produced for each sub-
set.  
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Figure 4: Graphical view of calculated vs experimental MIE values – line 
shows perfect match of simulations and experiments- circles represent 
validation set- both axes are in [mJ] 

 

 
To illustrate these results, Figure 4 below represents the comparison of experimental and calculated value 
of MIE between MIE = 30 mJ and MIE = 1000 mJ, which corresponds to a sub-set of 15 samples. These 
values were estimated with the following model and it presented R2=0.98 and Rcv

2=0.97.   
 
MIE = 114.1 NH + 1772.8 RNSB + 164.7 3  – 142.6 3 – 6.6 PPSA2 – 25702 FNSA3 – 2171 (3) 
 
This model is a very interesting preliminary result. Indeed, the obtained correlation coefficients are high 
and the number of parameters low as desired. Nevertheless, only a restrained amount of data (15 
samples) is taken into account here and this leads to questioning the reliability of the model. Even though 
the samples are separated into a training and a validation sets in order to increase the generalization 
abilities of the model, it is recommended that statistical models like these are derived from larger datasets 
to ensure higher robustness and better performances; otherwise it is not guaranteed that when applied to 
chemicals external to the studied set the model’s predictive power would be as high as noted here.

Figure 3: Graphical comparison of 4-nitroaniline experimental (Exp) and predicted (Pre) thermograms 
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4. Conclusions 
For this work, QSPR models for characteristic properties of thermal stability and explosive sensitivity were 
developed. The properties were measured experimentally and the data of interest were extracted to be 
correlated to molecular descriptors. The relationships were built as multi-linear regressions that properly fit 
the experimental results. The technique was not solely applied to decomposition reactions onset 
temperature and enthalpy but also to the entire DSC thermograms in order to preserve the graphical 
information concerning the reaction kinetics. MIE values were also estimated with highly predictive model. 
Nevertheless, this investigation reveals some challenges to face. Indeed, for predictive models to be as 
helpful as possible their reliability is crucial. Therefore, the training and validation sets should enclose 
more experimental data representing more diverse chemical classes and broader spans of measures.  
 
Table 1:  Explanation of descriptors involved in Equations 1 to 3.  
Symbol   Name Explanation 
NH Number of H atoms  
RNSB Relative Number of Single Bonds 
3  Kier and Hall Index 3 

3 3D Kier shape Index 3 
Topological descriptors extracted from molecular graph,
intended to encode for different aspect of the molecule’s shape

SIC0 Structural Information Content   
SM Molecular Surface area  
HNC Highest Partial Negative Charge  
Vmid Mid-point potential Electrostatic potential at mid-point of C-NO2 bonds 
PPSA1 Partial Positive Surface Area 1 Sum of partial positively charged solvent accessible areas 
PPSA2 Partial Positive Surface Area 2 Product of Total charge and  PPSA1 
FPSA1 Fractional PPSA1  Sum of partial positively charged solvent accessible areas

relatively to total molecular solvent accessible area 
FNSA3 Fractional atomic charge 

weighted partial negative area 
Product of Total charge and  PNSA1 relatively to total 
molecular solvent accessible area 

DPSA1 Difference between partial positively and negatively charged surface areas 
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