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When the question is asked, whether the operation is safe, several sources of information can be tapped 
to provide information for a reply. But do we really know? Risk assessment is a possibility to obtain a 
general picture, but it focuses much on stored quantities and technical aspects and is basically static. 
Management quality, organizational aspects, and human reliability remain out-of-sight as well as temporal 
risk effects. In this paper, the notion of ‘risk factor’ will be introduced with effects on the short, middle, and 
long term. Short term risk factors may be monitored physically by means of the digital control system using 
fault diagnosis, and if required, additional special purpose sensors. For fault diagnosis, several methods 
are available, but the method making use of the Blended Hazid approach followed by a reasoning routine 
looks attractive. For middle and long-term risk factors, it is proposed to use the values of process safety 
performance indicators as exponents of the safety level. To keep it practical, aggregation of the indicator 
data may have to be applied first. Because it is expected to have synergy from a holistic approach 
combining technical and organizational safety information, a universal cause-effect logic infrastructure was 
sought. Bayesian networks seem to fulfill this demand; they can be instrumental for performance 
monitoring and therefore can greatly help to improve situational awareness. 

1. Introduction and problem analysis 
When in the 1960s Loss Prevention as a focus area of the process technology community started, many 
activities were concerned with looking back, trying to analyze what went wrong, reconstruct causes by 
clearing up physico-chemical mechanisms that led to unstable process behaviour and loss of control. In 
the decades following, the reactive way of looking at process safety slowly changed into proactive. From a 
control point of view one can say, to be reactive is observing signals and correcting process parameters by 
feed-back. Proactive is then control by feed-forward. The latter is far more difficult; it requires a predictive 
process model. Hence, although prevention was the ultimate goal, we were often satisfied by installing 
adequate protective measures. In the 1990s protection obtained a systematic analytical approach named 
Layers Of Protection Analysis (LOPA) followed by the standard IEC 61511. The latter provided a strong 
basis for the reliability of the measures as long as the right conditions of testing and maintenance are kept. 
This has been a major step forward in Loss Prevention, in the sense of avoiding or at least decreasing the 
frequency of catastrophic consequences when an irreversible process deviation occurs. It is however only 
partly taking away underlying disruptive causes. Also, as appears in daily, operational life, LOPA and the 
standard do not avoid mishaps caused by maintenance defects, and in particular, it does not avoid 
mishaps in abnormal situations such as, e.g., turnarounds and start-ups.  
With LOPA and the IEC standard, the probabilistic approach has become more common and risk as the 
combination of consequence and likelihood of an event accepted as the basis for decision making. In fact, 
assessment of a safety level of an operation initially, when incidents are abundant, is by learning the hard 
way, correcting by taking measures and thereby lowering incident frequency. But once matters are 
relatively under control, the only way to find out about the safety level is to imagine which possible 
scenarios can develop, hence what risks are looming. So, process safety must become risk-based.  
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Even more than from improvements in technology, safety of process operations has benefitted from 
increased management commitment. It has been shown over and over again that when leadership gives 
safety the right priority, it strongly reduces the frequency of incidents. After the Piper-Alpha disaster in the 
early 1990s, safety management systems (SMS) have been installed in many companies. This was a first 
step; caring about the safety culture is another. An SMS requires an extensive set of measures according 
to the Center for Chemical Process Safety, CCPS (2007) clustered in four areas: commit to process 
safety, understand hazards and risk, manage risk, and learn from experience. An intrinsic part of the last 
cluster is audit policy, procedures and operations, and corrective actions.  
Over the years it became clear that despite the prescribed feedback through auditing and corrective 
action, the effectiveness of an SMS must be monitored continually. The mechanism of the Deming cycle 
for effective management is obvious. To this end from various sides, lagging and leading indicators have 
been proposed and because safety is in the details, at base level this set of indicators becomes rather 
extensive. On the other hand, a good overview puts a limit to the number of indicators. Hence, aggregation 
as, e.g., proposed by Hassan and Khan (2012) will be a prerequisite. Given indicators are established, the 
question will arise about how we shall assess the situation. As long as there is steady improvement and 
progress, this question will not be acute, but as soon as the indicator values become stagnant or worse, 
management will be confronted with the issue of how to interpret the values and to answer the question 
how safe is safe enough. Once again, this question can be solved only by considering the risks associated 
with what the indicators are measuring; in other words what does an indicator value mean in terms of risk. 
Ultimately, to control safety one would wish the availability of a ‘dashboard’, which will blink when a flaw 
arises, and with the ability to quickly and reliably locate and diagnose the problem and to correct in time. 
The latter may sometimes be a matter of seconds but sometimes even months. From the foregoing, we 
can conclude that making corrections in time implies full control of risks caused by flaws in the technical as 
well as the organizational system. These flaws can in turn be caused by changes in conditions that can 
arise suddenly or gradually and that can be of physical nature either internal or external to the process, or, 
and that may be the largest part, to human work activity. Faulty human action can take many forms: action 
can be required but not realized, it can be too weak, too strong, too early, or too late, and there can be 
action not required to damage the operation.  
Traditionally, propagation of possible failures of equipment components together forming a system can be 
schematized in a fault tree and, given the critical release of hazardous material event, the possible 
sequences of follow-on events causing damage to people, assets and environment in an event tree. The 
combination is known as a bowtie. Scenarios shown in a bowtie can be quantified both in event probability 
and consequence, albeit with limited accuracy while they remain static, i.e., input parameters are not a 
function of time. However, the risk level will be fluctuating and it will be necessary to consider the risk 
dynamics. Fluctuation can be at the side of the threat level but also at the exposed ‘target’ side if we think 
of, e.g., the temporary presence of office trailers next to the ISOM unit at BP Texas City. A start in dynamic 
operational risk analysis has been made by Kalantarnia et al., 2009 (updating frequency using near-miss 
data) and by Yang and Mannan, 2011 (wear, repairs) but both have been limited in scope. 
Knegtering and Pasman (2012) introduced the concept of risk factor to capture temporal effects affecting 
failure rates. Examples of short term risk factors are welding activity, pipe burst, upcoming stormy weather 
conditions, alarm over-rides or incidental time pressure. These risk factors can vary from day to day, either 
in being present or absent, or continually present but fluctuating in strength. Midterm factors to be 
considered are, e.g., seasonal influences, delayed inspections, maintenance not on schedule, postponed 
shut-down, or changes in process material composition. These mid-term factors can vary on a weekly or 
monthly basis. Long term negative factors are corrosion problems, aging of plant, wear-out, degradation of 
the quality of the SMS such as bad management of change, decrease in competency of people, or 
deterioration of safety culture, which can vary over years. Full decomposition in all confounding causes of 
risk will however be ‘nightmarish’ and therefore, to get grip on risk factors, the formation of clusters with 
averaged properties but preferably keeping track of spread, will be necessary.  
In principle, many malfunctions/deviations/disturbances/abnormalities/faults in the process itself with effect 
on the short term are handled by the Basic Process Control System (BPCS), often named Distributed 
Control System (DCS), which measures process parameters and through the DCS identifies deviations 
and corrects. The present-day large variety of available sensors and further development of data 
processing in the DCS may enable detecting weaker signals, hence making corrections in an earlier stage 
and taking care of chemical and physical risk factors such as sudden vibrations, larger energy use, smells, 
and leaky valves. There are, though, numerous problems and limitations specific to process control and 
automation influencing safety level, and these will be analyzed in more detail in section 2. The 
complexities of human reliability will be touched upon in section 3. In section 4 Bayesian networks will be 
proposed as a possible integrating probabilistic infrastructure to describe cause-consequence chains that 
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can fit indicator results in a plant model. The use of Bayesian networks may lead to the development of a 
safety level monitor to enable improved situational awareness and plant resilience. 

2. Contribution of Basic Process Control System and Safety Instrumented Systems 
As Venkatasubramanian and co-workers (2003) noted in various papers, in the 1980s and 1990s, 
automation of process control brought impressive improvement in achieving high production quality and 
efficiency in process safety. As a consequence, the operator is now more managing and supervising 
control of the process rather than directly controlling on a basic level. In addition, in case the BPCS fails, 
automated Safety Instrumented Systems (SIS) with high safety integrity levels may bring the process back 
to a safe state (often trip the process) as mentioned before. However, process trips are costly and one 
would like to correct in advance and keep the process running. For this, there are various factors which 
demand further insight in order to take the right measures. Processes have become complex, faults are 
not always easy to trace: so, where is the root cause, in which loop? Is it the sensor (e.g., noise, bias, or 
other defect), the processor or the actuator (e.g., valve stiction)? Is it only a single fault or are there 
multiple faults and problems? Faults may propagate: an abnormal signal measured at some location of the 
installation, may have its cause in a totally different part. The process may also come in a situation that 
during process design was not foreseen, or it is beyond the competence level of the team to make the right 
choices or do the right maintenance? This conclusion certainly applies to the life cycle of the SIS 
components. Just procuring an advanced system does not include a safety guarantee (Knegtering, 2002). 
So, next is expanding the development of diagnostics to provide the operator the right (leading) indicators 
to perform the ‘managing’ task. In case of a developing (oscillatory) disturbance, the operator needs to 
detect a fault timely, to classify the fault, and to identify root causes in order to take the right measures. 
This turns out not to be solved easily, and not only because noise blurs the signal picture. 
Venkatasubramanian et al., 2003 gave an overview of requirements for a diagnostic system and various 
possibilities. Detection should be quick (depending on the process safety time), it should discriminate 
among different types of failures, the system should be robust, it should be able to tell whether a fault is 
new or already seen before, while preferably the system should make its own error estimate about its 
identification. It should adapt to process modifications, give sufficient explanation about the root cause, 
and all that with a minimal effort of modeling and computing. A priori knowledge of possible deviations and 
their causes and consequences appears to be more important than search strategy. The main categories 
are model based and process history based control; both can be qualitative and quantitative. All have their 
positive and negative sides, so hybrids may be the way to go. 
Quick to understand are qualitative causal models such as the fault tree and signed directed graphs, both 
members of the same family of cause-effect chain representations, and in addition ‘common sense’ 
physics and decomposition techniques such as HazOp. Quantitative multivariable model based methods 
try to find causes by determining the difference from normal output and then locate the cause through 
examining faults. Qualitative process history analysis methods are based on expert system or trend 
analysis, while quantitative methods make use of neural nets or statistical data processing, which with 
present day computer power still can be accomplished relatively easy as long as parameter interactions 
can be assumed linear. However, various cases such as valve stiction behave non-linearly as Shoukat 
Choudhury et al. (2008) have analyzed in detail and for the solution of which they provided higher-order 
statistics (bi-spectrum and bi-coherence). 
Models are always incomplete, certainly when it comes to details of interest to safety. Resolution in many 
cases is not sufficient to pick up, e.g., that components generally do not completely fail but keep 
functioning in a degraded state. So, important safety details may be missed. Jiang et al. (2012) analyzed 
root causes of two cases of industrial multivariate predictive model control of which performance 
deteriorated over time, also showing that such analysis is not trivial. 
An interesting approach to at least partly automated fault diagnosis is making use of information generated 
by applying the Blended Hazid (or BLHAZID) method as presented at the 2010 Loss Prevention 
symposium by Cameron, as described by Seligmann et al. (2010, 2012). Blended Hazid is a combination 
of HazOp (systematic team exercise to identify effects of process deviations) and FMEA (finding out what 
effect component and subsystem failures will have). The information gathered is stored in a formal 
computerized logic structure allowing generation of causal knowledge for a fault finding reasoning 
procedure on the basis of symptoms by applying the Stanford Protégé Ontology Editor and Knowledge 
Acquisition System: http://protege.stanford.edu (2008), described in Nemeth et al., 2009. Whether this will 
also provide an opening to reduce time to event information has yet to be seen. 

279



3. Management, organization and human factor 
Inspired by the way in which aviation safety developed, Vinnem et al. (2012), in performing risk analysis of 
offshore maintenance, distinguished in various work activities the work and the control of it and in both 
failure of omission and of execution. The latter failure was composed of Reason’s main categories of 
human failure (mistake, slips and lapses, violation) and the whole was modeled as a fault tree with 
occurrence of a leak as the top event. Failure probabilities are influenced by an underlying layer of risk 
influencing factors concerning the worker’s abilities such as competence, communication, and work load, 
and in turn, below that a layer of management qualities that influence worker performance. Quantification 
is through data on incidents occurring in offshore maintenance work collected over the years and 
weighting of risk influencing factors by expert opinion. Accomplishing this is rather laborious, also because 
the factors are influencing each other as well. 
A possible alternative way proposed in this paper is making use of process safety performance indicator 
values, both lagging and leading, aggregated to an appropriate level. Indicators contain intrinsically the 
information mentioned above on human performance and management quality in relation to operational 
conditions. For aggregation of a large number of indicators to a more manageable set, the importance of 
each indicator for various groups of activities such as operation, maintenance, and organization 
(personnel) shall be weighted by experts. Also, the effect an indicator value will have on the overall risk of 
the operation shall be determined.  
Indicators can be considered as exponents of middle and long-term risk factors reflecting reliability of 
human activity in its many aspects without decomposing it to individual action. If combined with signals 
from sensors warning for risks on the short term, their influence can be included in bowtie type of cause-
consequence scenarios by making use of the Bayesian network infrastructure allowing inclusion of 
information on aleatory uncertainty of data. 

4. Bayesian networks 
Members of the Loss Prevention community are familiar with modeling cause-consequence chains using 
tools such as fault and event tree. Mathematically these are called ‘directed acyclic graphs’, which consist 
of nodes representing a stochastic variable and arcs or arrows representing the dependency between the 
nodes they connect. Base or parent nodes are independent; they can connect to one or more dependent 
follow-on nodes. In the fault and event trees we are familiar with, the node variable represents a binary 
change of state (functioning to faulty/failing) due to a change earlier in the chain or an event caused with 
some probability by a previous event. The acyclic property appears as a dependent node never arcing 
back (pointing the arrow) to a predecessor, but only to nodes further down the chain. In fact, what is 
described here is the archetype of a Bayesian network or BN. It is only that the mathematical statistics 
developed for BNs and the associated software allows much larger flexibility. 
BN’s usefulness appears by being able to describe discrete multi-mode states, hence various degrees of 
remaining functionality of a component; it is even possible to handle continuous probability density 
functions, which allows input of uncertainty estimates of data. By taking triangular distributions (min, mode, 
max) the same can be done as in a fuzzy set. Some software, e.g., GeNIe of Decision Systems 
Laboratory, University of Pittsburgh (http://genie.sis.pitt.edu/) also allows for IF..THEN  ELSE rules. Cross-
connections between branches of a tree can easily be made. The software allows quick insight how the 
node is defined and modification of it, and its resulting value after a calculation that can be an entire 
distribution of values complete with mean and standard deviation, which makes it highly transparent. 
Dynamic BNs allow time functions, in the sense that wear, test intervals, repairs etc. can be modeled in a 
discrete time slice fashion. The Bayesian character of the networks shows up as the ability to absorb 
newly observed evidence and updating the net. When the new evidence is in a node near the bottom, the 
effect it would have on probabilities higher up in the chain is shown allowing easy diagnosis or adapting a 
model to new observations. This explains BNs current application in medical and psycho-sociological 
sciences, in economics, and in other fields. BNs are sometimes called Bayesian Belief Nets because 
nodes can contain subjective information, hence opinions. The non-parametric continuous version of BNs 
of Cooke and his team, e.g., Morales (2008), is ideally suited to contain expert opinion expressed as the 
influence of one node variable on the other.  
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5. Example case 

 

Fig.1. Left: BN describing reactor upset with end states continued operation, safe shutdown, explosion, or 
fire. Occurrence of upset is once per year expressed in a triangular distribution, because of uncertainty. 
Applied BN software is GeNIe of DSL, University of Pittsburgh (http://genie.sis.pitt.edu/).

Table 1. Input values to the variables of the nodes shown in the Bayesian network of Figure 1 

Node Variable Min Mode Max Node Mean  

Reactor Upset, /yr Triangular distribution 0.23 0.70 2.10 Alarm 0.90 

T outside constraint Triangular distribution 0.07 0.20 0.35 Operator reads T 0.1 

Operator notices Triangular distribution 0.70 0.85 0.95 Emergency Cooling 0.9 

Operator acts Opr_notices  OR  Opr_reads T    Operations continue 0.85 

Fire 0.1*Emer_Cool + 0.2*Shtng_Dwn  Shutting Down 0.15 

Explosion T outside constraint  -  Op_acts   Safe Shutdown 0.8

Table 2. Results of BN calculations of three levels of integrity indicators 

Integrity Reactor T outside  Operations Safe Explosion Fire 

O,P or M Upset  constraint Continue Shutdown 

  /yr /yr /yr /yr /yr /yr 

1 1 0.21 0.13 0.02 0.04 0.02 

0.9 1.13 0.23 0.09 0.01 0.10 0.01 

0.75 1.34 0.28 0.06 0.01 0.18 0.01 
 
In Figure 1 a very simple example of a BN of a continuous reactor system is shown of which temperature, 
T, is controlled. In case of upset, the operator is primarily notified by an alarm. If alarm fails or the operator 
does not notice it, he may be alerted by routinely reading the temperature indicator. Once notified, the 
operator can start an emergency cooling, which with some probability restarts the system or brings it into a 
safe state. Alternatively, if the cooling does not lead to success, the reactor will burst into fire. In case the 
operator does not act, the likelihood will be high that explosion will occur. Three aggregated top indicators 
(personnel, operational, and maintenance integrity) as in the study of Hassan and Khan, 2012, influence 
the success of preventing a mishap. Each indicator influences nodes with which it has a functional 
relationship. The personnel integrity indicator is assumed to be the determining one, although the weights 
of all three have been taken equal. In Table 1, inputs to the node variables are shown and in Table 2, the 
results of calculation of the respective end states, given an average reactor upset frequency triangularly 
distributed of once per year. If integrity is smaller than unity, explosion probability increases quickly. 
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6. Conclusions 
The way forward in obtaining real-time information on safety level of a process operation will be only by 
taking into account the effect of risk factors and their time dependence on possible component failures 
leading to hazardous material release. Technical factors and the effects of management and organization 
reflecting human reliability in performing tasks correctly shall be merged. Process safety performance 
indicator values can be instrumental to account for management quality and human performance. Causal 
chains leading up to release events and their consequences can be modeled by applying Bayesian 
networks. The method proposed has, however, to prove its usefulness in actual case studies for which the 
authors invite companies willing to cooperate and to make some investment in time and effort. In case of 
success, the approach could also serve as a means to make better use of collected indicator values and to 
facilitate decision making on whether the present state of safety is acceptable or shall be further improved. 
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