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This paper deals with the development and presentation of the use of computational optimization tool 
for the conceptual planning of facilities in the field of waste-to-energy (WTE). 
Decision about individual facility parameters includes in particular the determination of suitable capacity 

and selection of appropriate heat recovery system according to heat released utilization strategy (i.e. 

either only electricity production or combined heat and power if feasible). The main goal is to ensure 

the economic feasibility of the project. An optimization tool that was created in the system GAMS 

(General Algebraic Modelling System) was developed for this purpose and is introduced in this paper. 

Realization of a new plant from the initial considerations to its full operation is a long-term process with 

duration at minimum 5 to 7 years. The erection is then followed by operational phase exceeding 20 

years. At the beginning of the project (preparation of implementation phase) when important decisions 

related to the technology selection are made, the future development of many parameters affecting 

project sustainability are not clear. The developed tool takes these aspects into account by 

implementing elements of stochastic programming that allow this uncertainty and randomness to be 

reflected in optimization problems and, hence, proposed solution. 

In the article, a brief theory related to uncertainties (approach wait and see and/or here and now, 

definitions and use of scenarios), is given by first, followed by a description of a mathematical problem 

and demonstration of using tools through the case study. 

1. Advanced computational approaches – basic theory 

The paper follows Šomplák et al. (2012), in which the motivation for the development of a tool for 
design and operation planning of WTE plant was described. Necessary mathematical methods, which 
are used for the evaluation of strategic investments in erection of a new WTE plant, are described in 
this part. The real-world optimization problem to be solved also involves uncertain parameters (e.g. low 
heating value of waste, trend of energy prices, heating demand, lifetime of a plant, etc.). Therefore, 
stochastic programming seems to be a suitable tool to deal with the uncertainty in the considered 
problem. As the research result, the proper approach to tackle the problem has been identified as two-
stage stochastic programming and the original scenario-based two-stage stochastic programming 
model has been built. 
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1.1 Two stage stochastic programming 

This approach deals with problems which are time-discrete and in which the decisions are made in 

different time points. From the decision maker point of view, the decisions may be classified as follows: 

1. Decisions which are made at the beginning when no information on realization of uncertain 
parameters are available. In other words, the decisions have to be made before values of 
uncertain parameters are known. Such decisions are called first-stage decisions.   

2. Decisions which are made after values of uncertain parameters are known. These decisions 
are called second-stage decisions. 

An uncertain parameter is further denoted as  , the first-stage decision as x and the second-stage 

decision as y( ). In the case of discrete probability distribution, a lower index is used to make a 

difference among the individual decisions made for individual realizations of   (see Figure 1). 

 

 
 
Figure 1: Decisions in two-stage stochastic programming. 
 
IN our case study we can be more specific about the interpretation of random elements and variables. 
Thus, x is related to decisions on waste treatment capacity, steam turbine choice (backpressure or 
extraction condensing turbine) and y( ) is related to decisions on operation of a plant (heat-oriented 

operation or power-oriented operation) according to the trend of the key uncertain parameters 
influencing plant economics (e.g., prices of heat and power). 
Next, it is necessary to decide how to model possible realizations of uncertain parameters. Instead of 

statistical inference and identification of parameters of some multivariate continuous probability 

distribution we prefer to use empirical data and related discrete probability distributions. This directly 

leads to so called scenario-based approach that is frequently used in industrial applications of 

stochastic programming, see, e.g. Birge and Louveaux (1997). 

1.2 Scenario-based approach 

Scenarios create a set of realizations of uncertain parameter  , which can be enumerated by index s, 

and denoted as  s. In literature, the realizations or often called scenarios, some authors identify 

scenarios with indices. We will use the common sense reasoning and will unify both ideas using the 

concept scenarios for indices and realizations as well. Therefore, a set of indices is denoted as S = {si, 

i = 1, 2,…, L}, where L is a number of different indices and so scenarios. So, realization of scenario s 

has the probability ps ≥ 0,   s ϵ S and         . If the set S is a set with large number of elements 

then the optimization problem can be difficult to solve as its number of variables and constraints 

exponentially grows with the increase of cardinality of the scenario set. Therefore, it is recommended to 

initially include only those scenarios, which are mostly relevant. Advanced computational studies may 

follow for the large problem instances and will be realized in the future. Following the previous study 

(Šomplák, 2012), we prefer that the selection of scenarios is based on experts’ opinions. In fact, this 

approach leads to the case of the set S with small number of elements and so all developed scenarios 

are included in the model. We further assume that we want to minimize total expected costs involving 

chosen scenarios. Then, the nonlinear program can be at the general level defined as follows:  

project operation

First-stage 

Second-stage 
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minimize f( ) +              ,  subject to  g1 ( ) ≤ 0, h1 ( ) = 0, where Q( ,   ) =                        

subject to g2 (x, y(  ),   ) ≤ 0,  h2 (x,y(  ),   ) = 0,      . 

The first stage strategic decision x about the WTE plant capacity is related to the direct investment 

costs included in the first stage objective function f(x). The constraints applied to the first stage decision 

are in the form of inequality and equality constraints as it is common in nonlinear programming and can 

be defined by multivariate vector functions g1 and h1. The weighted average in the objective function 

represents the expected future operational costs. The particular cost Q(x,  s) for the given first stage 

decision x and scenario s is obtained as the optimal result of the future operational control i.e. by the 

optimal second stage decision that is wait-see-decision with respect to scenario s. The second stage 

objective function q is a cost of the operational action y(ξ) in the second stage. It can be also seen as a 

reduction of negative effects caused by the first-stage decision, which arise due to difference between 

assumed and observed realization of uncertain parameters. Functions g2 and h2 are dependent on 

first-stage and second-stage decisions and realizations. They specify the feasible region for the second 

stage variables under the restrictions given by the first stage decision and realization. The subject of 

the first-stage model is to optimally decide about the waste treatment capacity of the WTE plant and 

individual apparatus (their designed throughputs) with respect to maximum operating profit. The 

approach “Here and now” (Birge and Louveaux, 1997) is used to make an optimal decision. The 

second-stage problem deals with an optimal response to the realizations of uncertain parameters (i.e. 

scenarios) with respect to decisions made in first-stage problem. This approach is called “Wait and 

see” (Birge and Louveaux, 1997). 
Both problems can be put together by the substitution of the second stage objective function into the 

first stage objective. The new composed objective function is minimized subject to constraints for both 

stages.  

2. WTE plant model 

The analyses described in Pavlas et al. (2011) is used to build a mathematical model of the WTE plant. 
The flow sheet of the considered technology with the key components is presented in Figure 2.   

   
Figure 2: The flowsheet of technology  
 

The WTE plant model considers steam production with parameters of 400 °C and 4 MPa. The further 

general model of an extraction condensing turbine with one extraction is considered. It is possible to 

replace it with a backpressure turbine model alternatively. The extraction pressure (or pressure at the 

output of a backpressure turbine) is 0.8 MPa (subsequent hot water heating for a district heating 

system).  

The steam turbine represents a key part of the heat recovery system. An operating mode has a 

significant effect on environmental benefits of the technology (discussed in Pavlas et al. (2010)). The 

turbine model consists of two stages divided by steam extraction for heating purposes – the 

backpressure stage and condensing stage. About 10 % of steam produced is used in the condensing 

Waste treatment
capacity

Steam production Turbine type and 
capacity

Condenser capacity

Heat and power
export
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stage in the case of a high heat demand (technology constraints). When there is no heat demand, all 

the steam produced is used in the condensing stage. The turbine electrical efficiency is dependent on 

the operating mode since the steam flow rate through a condensing stage influences its isentropic 

efficiency. The complex models for turbine modelling including its part-load operation can be found in 

Varbanov et al. (2005). In this paper, a simple model addressing constant isentropic efficiency for a 

specific turbine capacity (in correlation with waste throughput) was used for simplicity. The linear 

dependence of isentropic efficiency on turbine (WTE plant) size was obtained consulting the turbine 

manufacturer. The isentropic efficiency in ranges from 75 to 80 % and from 80 to 85 % can be 

expected for throughputs 100 kt/a and 300 kt/a, respectively. The relation between electricity 

production and heat production for heat recovery system in Figure 2 was considered (Pavlas et al., 

2011). A mathematical model was implemented in GAMS (General Algebraic Modelling System) and 

used in the following case study. 

3. Case study 

A new WTE facility providing its service for a region of 98 thousands inhabitants is designed. Its full 

operation is planned in 2020. The objective is to find the optimal values of key parameters  

(Figure 1): 

 waste treatment capacity of WTE plant 

 turbine type (backpressure, extraction condensing, condensing) and its capacity 

 capacity of condenser for heat rejection after condensing stage.  

To perform optimization, it was necessary to determine real input parameters and their future trends as 

well as to describe uncertainties and their future trends. 

Only a few of the parameters are discussed in more details and only one (heat demand) is included in 
this study to demonstrate the approach based on stochastic programming (SP). The role of capital cost 
in WTE is discussed in Šomplák et al. (2012). Operational costs were determined as a result of 
complex balance calculation, price forecasting, and comparison with real operation experience. Details 
are not provided in this paper because of the restricted number of pages. The energy prices (heat and 
power) and the gate fee (so called initial prices in the following text) are estimated by using real prices 
in the Czech Republic in 2011. Following prices are the most important for the project feasibility: 

 initial selling price of heat: 6.8 €/GJ (based on historical data in considered region, district 

heating available)  

 initial redemption price of power: 45.6 €/MW (experts’ opinion). 

 

Figure 3: The gate fee curve used in the model 

Future trend of energy prices (their growth) is taken into account. The gate fee is determined with 
respect to competitive strength of the WTE plant regarding landfills, other potential WTE plants and 
facilities producing refuse-derived fuel. The gate fee depends on the annual throughput. An example of 
its evaluation based on competition modelling in waste management using sophisticated tool is in 

Curve of gate fee
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Figure 3. A trend of increasing of the gate fee for a lifetime period of the WTE plant is taken into 
account. 
In addition to the heat price, a possibility of the heat supply to district heating system is important from 
the plant economics point of view. The initial distribution of heat demand over a year for the case study 
is depicted in Table 1.  

Table 1:  Initial heat demand over a year 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

Demand 

[TJ] 
322 252 250 123 16 81 79 73 43 153 248 319 

 
The heat demand is the only uncertain parameter, which is modelled by using a larger number of 

scenarios. This parameter has a crucial effect on the decision about initial investments since it 

determines the amount of heat supplies. Moreover, it influences the choice of a turbine type 

(backpressure or more often extraction condensing turbine). Especially, the utilization of condensing 

stage depends on the heat demand. The high demand for heat means a large amount of steam to 

extraction and a small amount of steam to condensing stage. Three scenarios for the heat demand for 

lifetime period of WTE plant were chosen in the case study. The initial values of a heat demand in 

every single month are determined by using real operation data (Table 1). Individual scenarios are 

depicted in Table 2. 

Table 2:  Scenarios for trend of heat demand. 

Scenario  1 2 3 

Decrease of heat demand per year  0 % 1 % 5 % 

 

It is assumed that all scenarios can occur with equal probability                . 

Different methods for economic evaluation can be implemented (Brown, 2007). Our objective was to 

optimize crucial parameters of key components providing maximum internal rate of return (IRR) of the 

project (erection and operation of the WTE plant).  

Table 3:  Optimization results. 

IRR [%]  8.98 

Payback period [years]  13 

Net present value (NPV) [M€]   243 

Waste treatment capacity [kt/year]  239 

Extraction condensing turbine capacity [MW]  24.3 

Backpressure stage capacity [MW]  10.3 

Condensing stage capacity [MW]  14 

Condenser capacity [MW]  37.7 

 

IRR is very sensitive to the first-stage decisions. To have an idea, IRR sensitivity to waste treatment 
capacity is shown in Figure 4. IRR is above 8.5 % for capacities from 150 to 350 kt/y. It indicates 
considerable stability of the solution.  
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Figure 4: Sensitivity of IRR to waste treatment capacity 

4. Conclusion 

The presented tool enables the evaluation of optimum values of the key parameters of WTE plant with 
respect to maximum IRR. The technology model used in this case study represents one of available 
lay-out of an up-to-date plant. It has to be modified if different technology is considered (e.g. flue gas 
cleaning system). The evaluation of annual financial balance and information on allocation of costs and 
incomes are included. The presented model is able to help us to evaluate optimal plant operations with 
respect to uncertain input parameters (energy prices, heat demand, steam parameters, etc.). In 
addition, it is possible to react with optimal reinvestments (e.g. in steam turbine) when input parameters 
are significantly changed.       
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