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The accumulation rate and equilibrium partitioning behavior of the pesticide atrazine between water 

and two solid phase microextraction (SPME) fibers, polydimethylsiloxane (PDMS) and polyacrylate 

(PA), are presented. The more polar PA is found to accumulate atrazine to a greater extent than does 

PDMS. The solid phase-water partition coefficient, Ksw, for atrazine is 210 for PA and 55 for PDMS. 

The accumulation rate constant increases as the rate of solution stirring is increased. This result 

confirms that the rate of accumulation of atrazine in both PDMS and PA is limited by diffusion in the 

aqueous medium. Accordingly, these solid phases are useful for studying the speciation dynamics of 

atrazine in aqueous media. 

1. Introduction 

Solid phase microextraction (SPME) has found wide application in extraction of organic target 

compounds from diverse matrices, including environmental compartments e.g. water (Yang et al., 

2007), soil (Gomez-Eyles et al., 2012), sediment (Harwood et al., 2012), air (Toscano et al., 2011), 

biological samples (Vuckovic et al., 2010) such as blood, urine, whole organisms, as well as many 

foods (Abdulra’uf et al., 2012). SPME provides selective preconcentration of compounds, which are 

generally subsequently identified and quantified by chromatography.  

SPME fibers comprise an inert core (typically silica, ca. 55 m diameter) coated with a thin film of a 

solid phase polymer (film thickness ca. 10 – 100 m). SPME is based on partitioning of the target 

compounds between the aqueous sample and a solid polymeric phase. A range of parameters may 

affect the rate of extraction and the eventual equilibrium partitioning, e.g. the nature of the solid phase 

and the target compound, the thickness of the solid phase film, temperature, solution convection, ionic 

strength, pH, presence of complex species, etc. (Valor et al., 1996; Heringa and Hermens, 2003).  

Furthermore, depending on the type of solid phase, the solution convection conditions, and the nature 

of the target compound, the accumulation rate may be limited by (i) diffusion in the solid phase or (ii) 

diffusion in the aqueous medium (Heringa and Hermens, 2003). In case (i), only the free non-

complexed target contributes to the rate of accumulation, whilst in case (ii) complexed target species 

may enhance the rate of accumulation to an extent determined by their lability (Kramer et al., 2007; 

Benhabib et al., 2009). 

Several solid phases with different sorbent properties are available, and the partition mechanisms may 

involve both absorption and adsorption (Pawliszyn, 1997; Dugay et al., 1998; Górecki, 1997). In this 

work we use two solid phases that accumulate organic targets via absorption, namely 
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polydimethylsiloxane (PDMS) and polyacrylate (PA). PDMS is relatively nonpolar, whilst PA is relatively 

polar; both polymers have been applied to extraction of s-triazine herbicides from water (Barnabas et 

al., 1995; Eisert et al., 1996).  

The present work describes the dynamics of accumulation of atrazine at PDMS and PA coated SPME 

fibers. The extraction-time profiles for the two solid phases are presented, and the rate limiting step for 

accumulation in the solid phase is identified. 

2. Experimental 

2.1 Reagents 
The herbicide atrazine was obtained from Sigma-Aldrich. The SPME fibers were obtained from Poly 

Micro Industries (Phoenix, AZ), and comprised a silica core of radius 55 μm coated with PDMS 

(polymer thickness 28.5 μm) or PA (polymer thickness 30 μm). Analytical grade acetone was from Lab-

Scan. The fibers were cleaned before use by successive washing with acetone and ultrapure water. 

2.2 Instrumentation 
Analyses were carried out with a Carbo Erba gas chromatograph (GC), model HRGC 5300, equipped 

with a 1078 split/splitless injector and flame ionization detector (FID). The injector and detector 

temperature were set at 190 
o
C and 325 

o
C respectively. Helium was used as the carrier gas at 5 cm

3
 

min
-1

. The column was a VF-5m 0.25mm x 0.25μm x30m capillary (Lake forst, CA, USA). The 

temperature program was: initial temperature 175 
o
C (hold 2 min), then increase by 10 

o
C min

-1
 to 

235 
o
C (hold 3 min). 

2.3 GC calibration 
The linear concentration range of the GC-FID measurement of atrazine was tested by duplicate SPME 

measurements of aqueous standards, with concentrations in the range 0.05 – 50 mg L
-1

 (Figure 1). The 

detection limit for the detector was 50 pg L
-1

 and the relative standard deviation (%RSD) was 4.2 %, 

where the detection limit is defined as the concentration of atrazine in the sample which gives rise to a 

peak with a signal-to-noise ratio (S/N) of 3. 
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Figure 1: Chromatographic peak area as a function of atrazine concentration in acetone 
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2.4  Temporal accumulation of atrazine in PDMS and PA solid phases 
The solid phase (4 cm length of fiber) was exposed to an aqueous solution (10 mL) of atrazine,            

10 mg L
-1

, at room temperature (19 
°
C) for a range of accumulation times. Accumulation took place 

under non-depletive conditions with various rates of magnetic stirring (20, 40, and 60 rpm). The amount 

of atrazine accumulated in the solid phase was quantified by extraction with 200 µL of acetone, and the 

extract was injected into the GC. This procedure was repeated twice to ensure complete extraction of 

the accumulated atrazine. The linear purge was closed during the injection of the extracted analytes in 

split/splitless injector (2 min delay time).  

The solid/water partition coefficients were determined from measurements at partition equilibrium (2 h 

accumulation time). 

3. Results and discussion 

3.1 Solid phase/water partition coefficient, Ksw 
The average values (from 10 measurements) of the solid phase-water partition coefficient measured 

for atrazine in PDMS and PA are given in Table 1. The higher Ksw found for PA as compared to PDMS 

reflects the greater extent of partitioning of the polar atrazine into the more polar PA polymer phase. 

Similar values have been reported by others (Valor et al., 2001). 

Table 1: Solid-phase/water partition coefficients, Ksw, for atrazine at PDMS and PA solid phases 

 PDMS PA 

Ksw  55 210 

SD 3 4 

%SD 5.10 1.80 

 

3.2 Temporal accumulation of atrazine in PDMS and PA solid phases 
For a non-depletive extraction process, the steady-state accumulation of a single-species target 

molecule, X, in the solid phase as a function of time can be described by an exponential expression 

(Ai, 1997; Pawliszyn, 1997; Heringa and Hermens, 2003; Benhabib et al., 2008):  

 

   X

X Xs, w, sw
* 1 exp k tc c K          (1)  

 

where 
Xs,c  is the mean concentration of X in the solid polymer phase, 

Xw,
*c  is the concentration of the 

free X species which accumulates in the solid phase, and kX is the accumulation rate constant. When 

the rate of accumulation is limited by mass transfer in the aqueous phase, kX is given by: 

 




X

X

s w,

s sw

A D
k

V K
          (2) 

 

where As and Vs are the surface area and volume of the solid phase, Dw,X is the aqueous diffusion 

coefficient of X, and  is the diffusion layer thickness. The magnitude of  is determined by the 

hydrodynamic conditions and Dw,X. 

The temporal profiles for accumulation of atrazine at the PDMS and PA solid phases for a range of 

solution convection conditions are shown in Figures 2 and 3, respectively. The Figures include the 

curves computed via Eqs. 1 and 2. The kX values (derived from plots of 
X Xs, w, sw

*ln(1 / )c c K  versus 

time), and the corresponding  values, determined via Eq. 2, are given in Table 2. 
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Figure 2: Concentration of atrazine in PDMS solid phase as a function of extraction time, for several 

rates of solution convection. Points are experimental data; curves are computed from Eqs. 1 and 2 
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Figure 3: Concentration of atrazine in PA solid phase as a function of extraction time, for several rates 

of solution convection. Points are experimental data; curves are computed from Eqs. 1 and 2 
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Table 2: Accumulation rate constant, kX, and diffusion layer thickness, , for atrazine at PDMS and PA 

solid phases 

Rate of stirring / 

rpm 

PDMS PA 

 kX / s
-1

  / m kX / s
-1

  / m 

20 2.3 x 10
-3 

167 7.5 x 10
-4 

134 

40 5.2 x 10
-3 

74 1.51 x 10
-3 

67 

60 1.26 x 10
-2 

31 3.0 x 10
-3 

34 

 

As expected, for a given solid phase the eventual equilibrium concentration of atrazine is independent 

of the solution convection conditions (Figures 2 and 3). The rate constant for accumulation of atrazine 

at the PA solid phase is somewhat lower than that at PDMS due to the greater Ksw for PA (Eq. 2).  

The results in Table 2 show that the partition equilibrium will be attained more rapidly as  decreases, 

consistent with the increased diffusive supply flux, 
dif
*J , of atrazine: 


X Xdif w, w,

* * /J D c          (3) 

4. Conclusion 

This result confirms that the rate limiting step for accumulation of atrazine in both PDMS and PA is 

diffusion in the aqueous phase. This feature means that both these solid phases will be useful for 

studying the speciation dynamics of atrazine in complexing media, i.e. the rate of accumulation will be 

determined by the lability of the complex species. 
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