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Semiautogenous (SAG) mills for ore grinding are large energy consumption
equipments. The SAG energy consumption is strongly related to the fill level of the
mill. Hence, on-line information of the mill fill level is a relevant state variable to
monitor and drive in SAG operations. Unfortunately, due to the prevailing conditions in
a SAG mill, it is difficult to measure and represent from first principle model the state
of the mill fill level.

Alternative approaches to tackle this problem consist in designing appropriate data-
driven models, such as Neural Networks (NN) and Support Vector Machine (SVM). In
this paper, NN and a SVM (specifically a Least Square-SVM) are used as Nonlinear
autoregressive with exogenous inputs (NARX) and Nonlinear autoregressive moving
average with exogenous inputs (NARMAX) models for on-line estimation of the filling
level of a SAG mill. Good performances of the developed models could allow
implementation in SAG operation/control hence optimizing its energy consumption.

1. Introduction

Mineral processing and metal production is under increased pressure to reduce its
energy consumption and greenhouse gases emition. Studies performed in different metal
processes have shown that the crushing and grinding processes make the larger
contribution to these negatives effects (Norgate and Haque, 2010; Wei and Craig,
2009). Semiautogeneous grinding (SAG) mill, due to different processing and designing
variables, is one of the principal alternatives used for mineral size reduction (Salazar et
al, 2009).

Given the previous statement, modeling and control of the grinding process is of
considerable interest for the industry. Regretfully, the representation of interaction
between grinding media and feedstock is complex, becoming very difficult to build
adequate first principle models in order to perform forecasting, optimization or control.
To elaborate good dynamic models it is usually necessary a deep knowledge of the
process. The representations obtained from first principle models are often too complex.
Additionally, in the SAG mill process different variables, needed by the models, can be
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difficult to measure on-line therefore, assumptions or indirect variables are used to
represent and control the grinding process, reducing model performance.

An alternative and fruitful approach to tackle these problems consists in designing
appropriate data-driven models. In this sense, neural networks (NN) and support vector
machines (SVM) have been proven in the last decade to be powerful tools for system
modeling. Despite the successful results achieved with neural networks, there still
remain unsolved a number of key issues such as: difficulty of choosing the number of
hidden nodes, the overfitting problem, the existence of local minima solution, and poor
generalization capabilities, among others. Alternatively, SVM has many advantages
such as good generalization performance, fewer free parameters to be adjusted, and a
convex optimization problem to be solved (Schélkopf, 2000).

SVM has been developed mainly for solving classification and static function
approximation problems. Indeed, in the case of dynamic systems almost all the work
that has been done concerning Support Vector Regression (SVR) is focused in series-
parallel identification methods for NARX (Nonlinear autoregressive with exogenous
inputs) modeling (Suykens, 2001). A more flexible tool for performing this support
vector machine regression task is the least square support vector machine (LS-SVM)
proposed by Suykens (2002). Indeed, neither SVR nor LS-SVM can easily be trained
when coping with parallel identification methods for NARMAX type models. In this
case NN still remain as the preferred tool.

In a recent work (Acufia and Curilem, 2009), a comparison between NARX SVR and
NN models for the SAG process has been performed. In this paper, the performance of
three dynamic models, built up with the use of a NARMAX-type NN, NARX-type NN
and NARX-type LS-SVM are compared when acting as estimators of the SAG filling
level, one of the most important state variables for SAG grinding operation.

2. Description of the Semiautogeneous Grinding Process

In SAG mills the grinding occurs by the falling action of the ore from a height close to
the diameter of the mill. The SAG involves the addition of metallic grinding media to
the mill, whose volumetric filling level varies from 4% to 15% of the mill's volume.

The aim during SAG operation is to work under conditions that imply the maximum
installed power consumption; this means working under unstable operating conditions.
SAG operational control has shown to be complex. The experience gathered so far has
allowed identifying the variables that affect, at a considerable level, the sag mill
performance. Some of these variables are the primary crushers operational results (e.g.
fragmentation degree, tonnage and particle size distribution), the feed water flow rate
(which affects mill pulp viscosity, density, and transport), the design variables (e.g.
lifter design, size), the grinding media, the processing speed, and total internal load.
Among the most commonly controlled variables it is worth mentioning the product
particle size, slurry level in the sump, discharge density, mill load, and mill power. The
mill load and sump level are controlled to ensure stability whereas the particle size is
controlled to maintain small variations in the set-point (Wei and Craig, 2009).

The mill load estimation is of considerable interest as controlled parameter since, in
addition to the stability benefits obtained in its control, the mill load is also related to
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mill energy consumption and energy efficiencies. A low filling level is related to
unproductive grinding media interactions and harmful impacts in the mill shell. A high
filling level beyond the point of maximum consumption leads to an overfilling
condition and poor performance (Lameck et al., 2006).

Considering the previous information the SAG circuit operators must try to conjugate
these factors in order to achieve first the stabilization of the operation, and then try to
improve it (Magne et al., 1997). That is why it is important for them to have reliable and
real-time information on the mill filling level.

3. Least Square Support Vector Machine

Support vector machines tackle classification and regression problems by nonlinearly
mapping input data into high-dimensional feature spaces, wherein a linear decision
surface is designed. SVR algorithms are based on the results of the statistical theory of
learning given by Vapnik (1995), which introduces regression as the fitting of a tube of
radius v to the data. The decision boundary for determining the radius of the tube is
given by a small subset of training examples called Support Vectors (SV). Vapnik’s
SVM Regression estimates the values of the support vector, W, to obtain the function of
equation 1:

Fx)=(w-x)+b with w,xeRN,beR )

by introducing the so called e-insensitive loss function shown in equation 2:

= £ (), =max0.|y - f(x)- 4] @

which does not penalize errors smaller than e>0 (where € corresponds to a value chosen
a priori). The algorithm used for implementation and solution of the nonlinear
regression problem in a space of higher dimensions are extensively covered somewhere
else (Vapnik, 1995; Suykens 2001, 2002) and will not be covered in the present work.
In the case of LS-SVM the problem is transformed in order to solve a linear Karush-
Kuhn-Tucker system derived from the dual formulation of the non-linear regression
problem (Suykens, 2002). The problem is simpler because there are no inequalities and
a global and unique solution can be found when the matrix is full rank. The major
drawback in this case is the lack of sparseness that results from the fact that all data
points are taken as support vectors.

4. Identification of NARX LS-SVM and NN models
NARX model is the non-linear extension of the lineal ARX model given by equation 5:
y(k) = fk=1D),...y(k—n),.utk=1),...u(k—m),..)+ w(k) 6))

with {w(k)} an independent, zero-mean, random variable sequence that represents the
random error and uncertainty of the model. The associated predictor is given by
equation 6:
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To identify this predictor a series-parallel method for identifying the parameters of a
LS-SVM or a NN can be used. To implement the NN-NARMAX models the ideas that
are introduced in the work of Nerrand et al. (1993) were used (i.e. static neural network
with external recurrences is equivalent to the neural networks with internal recurrences).
Parallel identification methods using neural networks can be performed using a gradient
descent algorithm. Better results can be obtained with a modified version using a 2™
order optimization method like Levenberg-Marquardt. The identification methods for
neural networks correspond to the back-propagation-through-time algorithm proposed
by Werbos (1990).

5. Results

5.1 Data selection, identification, and prediction
A set of 1000 examples was used for all the SVR and NN models training. Each

example has the filling level and the bearing pressure at time t as inputs and the filling
level at time t+1 as the output. Depending on the series-parallel or parallel identification
structure used the identified model acts as an associated predictor of a NARX type
model (case of LS-SVM) or as a NARMAX type model (case of NN). Once identified,
each model (SVR and NN) was used for forecasting the SAG mill level (1000 new data-
points) in a one-step-ahead (OSA prediction) and multiple-steps-ahead (MPO
prediction) manner. The MPO predictions are much difficult than OSA predictions
therefore the model that performed better as an MPO predictor was consider to be better
(Leontaritis and Billings, 1985). The estimation error is quantified using the Matlab 7.1
MSE index.

5.2 LS-SVM training
The LS-SVM Matlab Toolbox developed by Suykens (2010) was used in this work. The

LS-SVM model was implemented with a “RBF” kernel. Parameter C was increased by
powers of two. The powers took values from -5 to 15. A 0.01 step was used. The best
results were obtained for C=2""%, what means that the solution requires a low
complexity for the model to achieve a good generalization for MPO prediction. The
parameter of the kernel function, called here sigma, also varied by powers of two, with
the powers ranging from -5 to 10 with a 0.1 step. The best result was obtained for
sigma= 274,

5.3 NN training
The NN based System Identification Matlab Toolbox developed by M. Norgaard

(2003) was used for training purposes with the Levenberg Marquardt optimization
algorithm. One hidden layer architecture with two neurons in the input layer and one
neuron in the output layer was chosen. Several output, input and error delays were
tested. Finally, 1 output delay, 1 input delay, 2 error delays and 1 time delay were used.

Three hidden neurons were used regarding a criterion of equivalent complexity with the
6 hidden neurons of the NN-NARX model (similar number of weights). NN-NARX
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models were identified with a series-parallel method and used as MPO predictors just in
the way as LS-SVM was used.

5.4 SVR and NN results

Figure 1 shows the results obtained when using LS-SVM and NN models as MPO
NARX or NARMAX predictors. The mean square error (MSE) obtained for the MPO
predictions were 3.5889, 1.0773, and 1.9201 for the NN-NARX, NN-NARMAX, and
LS-SVM-NARX models, respectively. From these results it is seen that the NARMAX
dynamic model performs better than both NARX models when acting as an MPO
predictor, which is a rather difficult test to any dynamic model. It implies predicting the
output variable (filling level) only from its initial value together with experimental input
values of the other variable (bearing pressure).
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Figure 1. Estimations (dashed lines) and real data (continuous lines) for SAG filling
level estimation (NN NARX (a); NN NARMAX (b); LS-SVM NARX (c)).

These results are coherent with the fact that NARMAX type models, even if their
identification procedure is more complex, take into account more information about the
process included in the delayed input errors. Concerning NARX models, LS-SVM
performs better than NN thus confirming its good capacities including better
generalization.

6. Conclusions

This paper presents LS-SVM and NN dynamic models acting as state estimators of the
filling level variable of a semiautogenous grinding process.

For modeling the process LS-SVM NARX and NN acting as NARX or NARMAX
associated predictors were used (i.e. identified with a series-parallel or parallel method).
All models were used as MPO predictors. In this case the results show that the
performance of the LS-SVM is better than the performance of the NN when acting as
NARX models. However, the NN NARMAX dynamic model clearly outperforms both
NARX models. This leads to the need to test the performance of SVR in a NARMAX
configuration, which is the focus of the ongoing research.

Black box dynamic models for complex industrial processes like the SAG process
shown in this work could be of great relevance to design good predictive control and
estimate important process variables. Consequently, processes with better performance,
lower undesirable operational conditions, and higher energy efficiencies can be obtained
by using knowledge based estimation algorithms that have proven to be of great
relevance for improving complex plant operation.
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