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The upscaling process of mass transport with chemical reaction in porous media is
carried out using the method of volume averaging under diffusive and dispersive
conditions. We study cases in which the (first-order) reaction takes place in the fluid
phase that saturates the porous medium or when the reaction occurs at the solid-fluid
interface. The upscaling effort leads to average transport equations, which are expressed
in terms of effective medium coefficients for (diffusive or dispersive) mass transport
and reaction that are computed by solving the associated closure problems in
representative unit cells. Our derivations show that mass transport effective coefficients
depend, in general, of the nature and magnitude of the microscopic reaction rate
coefficient as well as of the essential geometrical structure of the solid matrix and the
flow rate. Furthermore, if the chemical reaction is homogeneous, the effective reaction
rate coefficient is found to be simply the multiplication of its microscopic counterpart
with the porosity; whereas, if the reaction is heterogeneous, the effective reaction
coefficient is determined from a closure problem solution.

1. Introduction

Modeling of mass transport taking place across several levels of scales is, generally,
carried out using upscaled models. Such models are expressed in terms of effective
transport coefficients which contain information from the phenomenon in lower levels

of scales. In cases involving diffusive or dispersive mass transport in absence of

reaction, the effective coefficients have been obtained from well-established
experimental and theoretical procedures (e.g. Baiker et al., 1982; Eidsath et al., 1983).
Nevertheless, there is an open problem for transport under reactive conditions related to
the dependence of the effective coefficients with the nature and magnitude of the
reaction rate. This issue has been widely addressed in the literature with opposite
conclusions. Supported in different theoretical or experimental evidences, on the one
hand, there are works affirming that the effective transport coefficients are independent
of the reaction rate (e.g. Garcia-Ochoa and Santos, 1994; Zhang and Seaton, 1994);
whereas on the other hand, some works state the opposite idea (e.g., Edwards et al.,
1993; Valdés-Parada and Alvarez-Ramirez, 2010). In fact, even the magnitude of the
dependency with the reaction rate is unclear. Motivated from these confusing results, in
this work we extend the previous works by Valdés-Parada and Alvarez-Ramirez (2010)
and by Ryan (1983) dealing with homogenous and heterogeneous reaction in porous

Please cite this article as: Valdes-Parada F.J. and Aguilar-Madera C.G., 2011, Upscaling mass transport with homogeneous and
heterogeneous reaction in porous media, Chemical Engineering Transactions, 24, 1453-1458
DOI: 10.3303/CET1124243

1453



1454

media, respectively. Particularly, we study a reactive porous system experiencing bulk
or surface first-order reaction under diffusive and dispersive regimes. By using the
method of volume averaging (MVA) (Whitaker, 1999), the upscaled equations are
derived, and their corresponding effective transport coefficients are defined and
predicted from the associated closure problem solution.

2. Diffusion with heterogeneous reaction

We commence by setting the microscopic description. It is considered a rigid
homogeneous porous medium composed by a solid matrix (x -phase) which is
completely saturated with a fluid phase ( y -phase), such as the one sketched in Fig. 1. In

this case, the microscale governing equations for mass transport of species A are

ac
%:V-(Dyv%), in the y-phase (M

-n,-DVe, =kc,, atthe y—x interface (2)

where ¢, is the concentration of species 4, D, is the molecular diffusivity, & is the
heterogeneous reaction rate coefficient and n , is the unit normal vector directed from

¥ - to x -phase. The statement of the microscopic problem is completed with the initial

condition and the boundary conditions applying at the macroscopic boundaries of the
system in Fig. 1, which are not provided here for brevity.

Averaging domain, V

Figure 1: Characteristic lengths of the system and sketch of the averaging domain.

It is clear that in solving the microscopic problem in the entire macroscopic domain
represents a challenging task, and, commonly, it is enough to describe the transport in
terms of average quantities. In this case it is convenient to use an upscaling process as



the MVA. In this way, after applying the MVA to the microscopic equations, we obtain
(see details in Chap. 1 of Whitaker, 1999)

8<CA7>V g ’
&T:V’(%Dcﬂ 'V<CA7> )_avkv// <CAV> .

Here ¢, is the porosity, <cA7>7 is the intrinsic average concentration, «, is the
interfacial per unit volume, and D, and £, are the effective diffusivity tensor and

reaction rate coefficient respectively, which are defined as

1
D«.’/f‘ =D, [I+7 ,[ nrk‘brd/l] 4)
7 Ay
1
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where V, and A4, are the volume of the fluid phase and the interfacial area contained in
the averaging domain J/ (see Fig. 1). In addition, b, and s, are the so-called closure

variables, which arise from the solution of the associated closure problems (given in the
Appendix) in unit cells representative of the microstructure. The dependency of the
effective diffusivity and reaction rate coefficients with the cell Thiele modulus,

@=,/kl/ D, , and four types of unit cells is shown in Fig. 2. Note that D, depends
moderately of the microstructure for ¢ <1, and eventually equals to D, for ¢>>1. In
addition, our results show that &, /k is a decreasing function of the Thiele modulus

and has a weak dependency with the microstructure and a moderate dependency with
the porosity (not presented here).

3. Dispersion and reaction

3.1 Homogenous reaction
In this case, the microscopic governing equations are given by

e, .
7;+V-(V7CA7)=V-(D7Vc47)—k,,cAy, in the y-phase (6)
-n,-DVc, =0, at the ¥ —x interface 7)

Here v, represents the velocity field. Application of the MVA to the microscopic

equations leads to the upscaled equation
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Figure 2: a) effective diffusivity and b) reaction rate coefficients as functions of the
Thiele modulus @ using 2D and 3D unit cells and taking ¢,=0.8 .

where the dispersion tensor D’; is defined by

D, =D, [I +Vi A'!: nﬁfyth] _<€]rfyh>y ”
v

with v, being the spatial deviation of the velocity field and f, the associated closure

variable. Notice that, on the case at hand, the effective reaction rate coefficient is simply
k,&, . In Fig. 3 we present the longitudinal and transverse components of the dispersion

<vy >7 a’pgy /[Dy (1 - 57)] , the

Thiele modulus for this case is ¢ =/k,I* / D, . As shown, the microstructure has a

significant relevance, and increasing the reaction rate yields lower values of the
effective dispersion coefficient.

tensor as functions of the particle Péclet number, Pe, =

3.2 Heterogeneous reaction

In this case the microscopic equation for mass transport is similar to Eq. (6), but without
the reactive term whose effect is represented in the interfacial condition, Eq. (2). The
use of the MVA leads to an upscaled equation similar to Eq. (8) with the reactive term

in the form a,k,

effective transport coefficients for the case on hand, because they have a similar
definition as Eqs. (5) and (9), but with closure variables arising from different closure

<c ” >7 . For the sake of brevity we do not present the definition of the

problems. In fact, it is enough to replace f, by f, in Eq. (9), and &, by k:ff and g,

by s, in Eq. (5). Our results show that the Péclet number has a weak influence over the



effective reaction rate and the results are similar to those presented in Fig. 2b). In the
same way, the functionality of Df/ with the Péclet number, the Thiele modulus and the

microstructure can be accurately represented by the results in Fig. 3.
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Figure 3: longitudinal and transverse components of the total dispersion tensor as a
Junction of the Thiele modulus and the particle Péclet number. Taking ¢, =0.37 and

using squared and cubic obstacles in the unit cells.

4. Conclusions

In this work, we have carried out the upscaling of mass transport coupled with a (first
order) chemical reaction, involving diffusion and convection in porous media. Under
the MVA framework, we have derived the upscaled equations expressed in terms of an
effective (diffusive or dispersive) transport coefficient and an effective reaction rate
coefficient, which are predicted by solving the associated closure problems in
representative unit cells. In the basis of our results, the effective transport coefficients
depend of the reaction rate, independently of the nature of the reaction, as well as of the
microstructure. Moreover, for a homogeneous reaction the effective reaction rate
coefficient is simply &k, , whereas for the heterogeneous case, the effective reaction is

determined from the solution of the associated closure problem.

Appendix

In a compact formulation, the closure variables solve the following boundary-value
problems which are solved in unit cells as those shown in Fig. 2a):

V:DVy, =1, inthe y-phase (A-1)
-, -DVy =g, at the y —« interface (A-2)

v, (r) =y, (r+1, ), i=123,  periodicity (A-3)
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(w,) =0,  restriction (A-4)
where v,=b.s.f,.f.g, and
k .
N I w,dA, if w, =b,
7 Ay
—k iJ.(//afﬁHi ity =s
V, i 7 g, r %y
J=4V,+v, -Vy, +hy,, ify, =f, (A-5)

- k .
v, +v,-Vy, 7 j v, dA, ify, =1,
7 A/A.

1 a, | ..
v, -Vy, —k[— j l//yd4+g—} ify,=g,

kx//7 +n,.D,, if v, :by,fy

g=1k(y,+1). ify,=s.g (A-6)
n D, ify, =1,
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