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In this study, a new stochastic global optimization method based on Ant Colony
Optimization (ACO) has been developed and used to solve the parameter estimation
problem in vapor-liquid equilibrium data modeling. ACO is a relatively novel stochastic
optimization method that mimics foraging behavior of ant colonies. We have developed
a new version of ACO, which employs feasible region selection, for performing global
optimization in problems with continuous decision variables. The performance of this
new ACO has been tested in the modeling of vapor-liquid equilibrium data using both
the classical least squares and error-in-variable formulations. Our results show that this
new ACO is a suitable optimization method for parameter estimation problems with
several decision variables. In addition, the proposed ACO is more reliable than other
meta-heuristics used for the modeling of phase equilibrium data.

1. Introduction

The modeling of phase equilibrium plays an important role in the design, development,
operation, optimization and control of separation processes for the chemical and
petrochemical industries. In particular, the correct thermodynamic processing of
experimental data using reliable numerical strategies and thermodynamic models is
crucial for process system engineering (Graczova et al., 2009). A common problem in
the modeling phase equilibrium is to determine the parameters of a thermodynamic
model used to represent a specific set of experimental information such as vapor-liquid
or liquid-liquid equilibrium data. Specifically, the task is to establish the values of
model parameters that provide the best fit to measured data using a proper objective
function, which can be formulated using either the least squares or maximum likelihood
criterion (Englezos and Kalogerakis, 2001). For the case of vapor-liquid equilibrium
(VLE) data, the parameter estimation problems usually have non-linear and non-convex
spaces even using simple thermodynamic models (Gau et al., 2000; Bonilla-Petriciolet
et al., 2010). This optimization problem is complex in nature and difficult to solve
employing traditional local optimization methods due to: a) the presence of several local
minima for the objective function used as the optimization criterion, b) several models
may be used to represent phase properties causing discontinuities in the objective
function in some regions of solution domain, and c¢) the model parameters may vary
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over a wide range of the solution domain. Therefore, the development of reliable
methods for the modeling of phase equilibrium is still a challenge.

In the literature, several studies have shown the potential of stochastic optimization
methods to solve parameter estimation problems for the VLE modeling (Bonilla-
Petriciolet et al., 2010). Specifically, stochastic global optimization methods offer
several advantages for solving global optimization problems such as generality,
reliability and robust performance, little information requirement for the optimization
problem to be solved, easy implementation, and reasonable computational requirements.
To date, different stochastic methods have been studied and tested for parameter
estimation using VLE data, and they include simulated annealing, genetic algorithms,
differential evolution, harmony search and particle swarm optimization. These strategies
usually show a suitable performance but, in some challenging problems, they fail to
locate the global optimum (Bonilla-Petriciolet et al., 2010). It is important to remark
that the failure to find the globally optimal parameters for a thermodynamic model may
cause errors and uncertainties in process system design (Gau et al., 2000). Therefore,
alternative optimization strategies should be studied to identify a better approach for
parameter estimation in VLE modeling.

In particular, Ant Colony Optimization (ACO) is a promising solver for phase
equilibrium modeling and, to the best of our knowledge; there are no studies in the
literature on the phase equilibrium modeling using this stochastic method. ACO is a
relatively novel meta-heuristic that mimics foraging behavior of ant colonies (Blum,
2005). These ants deposit pheromone on the ground for making some favorable paths
that should be followed by other members of the colony. ACO algorithm exploits this
mechanism for solving global optimization problems. In this study, a new version of
ACO with feasible region selection, namely ACO-FRS, has been developed for
performing global optimization in problems with continuous decision variables. The
performance of ACO-FRS has been tested using several parameter estimation problems
that include binary VLE data and local composition models. In summary, our results are
useful to identify the capabilities and limitations of this new ACO method for this
thermodynamic application.

2. Description of Ant Colony Optimization with feasible region
selection

As stated, ACO is inspired by the foraging behavior of ants. At the core of this behavior
is the indirect communication between the ants by means of chemical pheromone trails,
which enables them to find short paths between their nest and food sources. This
characteristic of real ant colonies is exploited in ACO algorithms in order to solve
global optimization problems (Blum, 2005). The meta-heuristic of ACO consists of
three algorithmic components: ant-based solution construction, pheromone update and
daemon actions. The first ant algorithm was developed by Dorigo and since then several
improvements of the ant system have been proposed (Blum, 2005). Until now, this
stochastic optimization method has been successfully applied in several engineering and
real world problems including some chemical engineering applications.
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In this paper, we introduce a new ACO algorithm for solving global optimization
problems with continuous decision variables. Specifically, our algorithm, namely ACO-
FRS, creates a set of search regions, where each region represents a solution of the
optimization problem. An initial pheromone amount is deposited in every dimensional
component of all the regions. Note that a key component of ACO method is the ant
based solution construction activity. In simple ACO, the pheromone information is read
by the ant and used in a stochastic way to decide its movements. In our algorithm, this
step is performed for each dimension of solution vector and the transition rule
represents the selection probability that a region component has when any ant explores
it at any time. In this stage, a selection of feasible regions is performed and this process
is different for each ant. Using this approach, the ACO algorithm is able to perform a
global search due to the use of regions with low pheromone concentrations, thus
diversifying the solution vectors obtained. This path search process allows the ant
moves from the selected component to a nearby location. A solution is constructed only
after finishing the selection of all region components and the path search process. The
fitness is evaluated and the new solution will replace an existing region based on the
comparison of function values. Pheromone is updated by intensification, where a
discrete amount of pheromone is added. Thus, the algorithm carry outs an implicit
evaluation because the pheromone intensification is not proportional to the quality of
the solution and all ants deposit the same amount of pheromone. Finally, after all ants
have performed region exploration, the pheromone of all regions is evaporated by
subtracting a fixed value. This iterative process is repeated until the given termination
criterion is satisfied. Figure 1 provides the corresponding flowchart of our ACO-FRS.

3. Nonlinear parameter estimation problem for modeling vapor-
liquid equilibrium data

The objective functions commonly used for parameter estimation problem in VLE data
modeling can be obtained from either the least squares principle or the maximum
likelihood criterion (Gau et al., 2000; Englezos and Kalogerakis, 2001). In the first
approach, the model parameters are determined whereas, in the second formulation,
both the true values of state variables and model parameters are obtained. In this paper,
we have considered both approaches to illustrate the performance of ACO-FRS in the
modeling of VLE data. For the case of VLE data (i.e., x-y-P at constant 7, or x-y-T at
constant P), local composition models such as Wilson, UNIQUAC and NRTL are
widely used for phase equilibrium modeling and data correlation. So, under these
conditions, the least square formulation (LS) for VLE data correlation can be defined
using activity coefficients

2
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where y*? and y“ is the experimental and calculated values for the activity coefficients,

ndat is the number of experimental data, and ¢ is the number of components in the
mixture, respectively. At low pressure, y; can be calculated from VLE data and,
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assuming an ideal gas behavior, the experimental activity coefficients can be determined
from VLE measurements using the following expression
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are respectively the experimental mole fractions in liquid and vapor
phases at equilibrium, and P is the vapor pressure at the system temperature 7.
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On the other hand, if we assume that there are measurement errors in the state variables
x, y, P and T with standard deviations (o, o;, op and oy), the optimization problem that
must be solved is the error-in-variable (EIV) formulation, which is defined as
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where x', ', T' and P are the unknown “true” values of state variables. Note that this
optimization problem can be formulated as an unconstrained using the VLE equations
to eliminate y' and P’ in the objective function. Usually, Equations (2) and (3) are
strongly non-linear, potentially non-convex with several local minima within the
specified bounds (Bonilla-Petriciolet et al., 2010). Therefore, the VLE modeling
involves solution of a global optimization problem. In this study, we have used the
Wilson, NRTL and UNIQUAC models to calculate the liquid phase activity coefficients
in the modeling of VLE data. The objective functions are optimized with respect to the
energy parameters (npar) of these models for the case of LS formulation, while the EIV
formulation is optimized with respect to npar + ¢-ndat decision variables. Note that the
energy parameters of these thermodynamic models are defined as in the DECHEMA.

4. Results

We have tested and compared the performance of ACO-FRS using a number of binary
VLE data and different local composition models. Details of all VLE examples are
reported by Bonilla-Petriciolet et al. (2010). All selected examples have been used for
testing other deterministic and stochastic optimization strategies (e.g., Gau et al., 2000;
Bonilla-Petriciolet et al., 2010). All VLE examples are solved 100 times each, starting
from a different, random point inside specified bounds on decision variables, and the
performance of ACO-FRS is tested using the global success rate for finding the global
optimum (SR, %), the mean number of function evaluations (NFE) and CPU time for
different stopping criteria. With illustrative purposes, the results of solving the VLE
parameter estimation problems for different iterations of ACO-FRS and using both LS
and EIV are shown in Figure 2. In general, ACO-FRS may offer a better performance
than those reported for other stochastic methods (e.g. particle swarm optimization or
genetic algorithms) especially for optimization problems with several decision
variables. However, ACO-FRS may fail in the global minimization of the objective
functions involved in some challenging problems. In summary, our numerical
experience indicates that ACO-FRS can be considered an alternative method for
parameter estimation in VLE modeling.

5. Conclusions

The present study introduces the application of a new ACO with feasible selection
region for solving the parameter estimation problem for modeling vapor-liquid
equilibrium data with local composition models and both the classical least squares and
error-in-variables approaches. Our results suggest that ACO-FRS is a promising direct-
search method for solving global optimization problems in phase equilibrium modeling.
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Figure 2: Global success rate of Ant Colony Optimization with feasible region selection
for the modeling of binary VLE data using (a) LS and (b) EIV approaches.
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