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Neural Network (NN) can be used successfully in modelling, simulation and
optimisation of desalination processes. In this paper, three NN based correlations are
developed for predicting the first dissociation constant (K,) and the second dissociation
constant (K;) of carbonic acid in seawater as function of temperature and salinity. These
correlations are developed from different sources of the experimental data from the
literature. It is found that the NN based correlation can predict K; and K, very close to
the experimental data. These correlations are currently being implemented in the full
MSF (Multi-Stage Flash) desalination process model for performance evaluation of the
process which will be reported elsewhere.

1. Introduction

The main technologies used for desalination are thermal processes and reverse osmosis.
Both suffer from scale formation and fouling problems. The major problems
encountered with scale formation in desalination plants include significant reduction in
the thermal performance of the plant (Al-Ahmad, 2008). Main types of scales in thermal
desalination plants are CaCO;, Mg (OH), and CaSO, (Al-Ahmad and Aleem, 1993).
Although there is some work which has been done on the development and testing anti-
scale agents in thermal desalination plants, very little work has been devoted to the
understanding of the mechanism of scale formation. The formation of CaCOj; in thermal
desalination plants strongly depends on the concentrations of HCO™; temperature, pH,
and the rate of CO, release rate. The HCO’; concentration in seawater is the key factor
in the process of CaCOj scale formation (El-Din and Mohammed, 1989).

Better knowledge of K; and K, in scawater water is needed to describe the carbonate
system of seawater, CO, release process, and of scaling tendency of CaCOj;in MSF and
MEE distillers. Calculation of K; and K, depend on the temperature and salinity of the
seawater. Several correlations listed in Table 1 have been developed in the past to
calculate K and K,. Small error in calculating K; and K, can lead to considerable errors
in describing the carbonate system in seawater and calculation of calcium carbonate
scaling tendency. Neural networks have been used in all sectors of process engineering
such as process modelling, optimisation, design and control (Tanvir and Mujtaba,
2006). In this work, three NN correlations based on three sources of experimental data
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(Millero et al., 1997; Mehrbach et al., 1973; Millero et al., 2006) have developed for
estimating K; and K, in seawater for different salinity and temperature. The ultimate
objective is to implement these correlations in the full MSF (Multi-Stage Flash)
desalination process model for the performance evaluation of the process.

Table 1. Different correlations for estimating K; and K in seawater

Correlation 1: Mehrbach et al. (1973), Data source: Mehrbach et al

pK, =—13.721+0.031334x T+3335-7%+1.3x 10° x§xT-0.1032x 8%
PK,=5371.96 +1.671221 x T + 022913 x 5 +18 3802 x log( §) - 128375 28/ _ 2104 30
x log(T) — 8.0944 x10™* x § x T — 5617 .11 x log( §)/ T + 2.136 x 5/ T .Tin"K, Spp1000
Correlation 2: Millero (1995), Data source: Millero (1995)

DK™ = 2.18867 - 2275.036/ T — 1.468In(T) + (~0.138681—9.33291/T)s"*
+0.07264835 — 0.00574938 x §*° K3" = —0.84226 —3741.1288/T 1 437In(T)
+(~0.128417 - 24 41239/T)x §% +0.11953085 — 0.00912840 x S*° T m°K , S gkg.
Correlation 3 : Mojica et al ( 2002), Data source: Mojica et al 2002)

pK) =—43.6977—0.012903x S +1.364x107* 5% + 2885378 /T +
7.045159 In(T).. pK, = —452.0940—13.1421625 —8.101x10"*5% +
21263.61/T +68.483143 In(T) + (—581.44285 + 0.2596015 2) / T —
1.9670355 In(T) where, Tm°C. S m g'kg.

Note: In all correlations, K; and K are on the basis of mol/kg seawater

2. Neural Network Based Correlation for K; And K,

2.1 NN architecture and training

As shown in Figure 1, the neural network architecture can be described by how many
layers the network has, the number of neurons in each layer, and how the layers are
connected to each other. In this work a multi-layered feed forward network is used and
the Levenberg-Marquardt back propagation algorithm is chosen to train the network
(Mathlab Toolbox, Hagan et al., 1996).

Neural network based techniques usually requires a large number of data sets. The
network calculates the error between the output and the target. This error is fed back to
the network and weights and biases are adjusted according to Least Mean Square (LMS)
error criteria. The process is continued until the network output is close to the target.
This is known as training by back propagation method (as shown in figure 2). Testing
the network is a way of checking the performance of a trained network. In the proposed
NN based correlations, an optimum number of hidden layers and neurons in each layer
is determined by trial and error for each network and the network is fed with the input
data (salinity, temperature) to predict the output (K; and K;). A training graph (LMS
error vs. time) is used to find how long it takes to get a good NN architecture and how
many times the network needs to re-initialize the weights and biases.
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All the input data has been scaled, so that they will have zero mean and standard
deviation equal to 1, to find the most accurate neural network relationship for
input/output relationship. The NN predicted output value is rescaled to its original units.
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2.2 NN based correlations for different data set
In this work, we developed 3 different NN based correlations to estimate the first

dissociation constant K; and the second dissociation K,. Theses correlations (NN1_K1
and NN1_K2) are based on the data source from Millero (1997), (NN2_K1 and
NN2_K?2) are based on the data source from Mehrbach et al. (1973) and (NN3_K1 and
NN3_K2) are based on the data source from Millero et al. (2006). In these NN based
correlations, the number of neurons in the first layer, hidden layer and third layer were
found 2, 4, and 1 respectively (Figure 1). Between the input and first layer, the transfer
function was tangent function and between the first and second layer was purline. In
addition, the transfer function between the second and third function was purline. For
each of the NN based correlations, first 2 input data points are selected for training, the
next input data point for validation and the fourth one is selected for testing the
correlations. This selection process continues sequentially until all the data points are
exhausted. Thus, the total input data are divided into three sets: training (50%),
validation (25%), and testing (25%) datasets. Please refer to original references for the
data used and also Said (2010).

3. Results And Discussions

Sample experimental data from different sources and predictions by different NN based
correlations are shown in Figures 3-8. For each data source, the corresponding NN
based correlation predicted the K1 and K2 values close to the experiment data. Each
correlation was also used to predict K; and K, values based on (salinity, temperature)
which were never used for training, validation or testing the correlation. For example,
NNI1_K1 and NN1_K2 is used to Predict K; and K, at T40°C= at different salinity
values (Figures 3 and 4); NN2_K1 and NN2_K2 is used to predict K; and K, at T35°C
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= at different salinity values (figures 5 and 6); and NN3_K1 and NN3_K3 is used to
predict K; and K, at T= 50°C at different salinity values (Figure 7 and 8). The results
clearly show that the predictions by the correlations follow the expected trends.

It would be interesting at this point to investigate how different NN based correlations
predict K, and K, values using the (temperature, salinity) data from sources other than
the sources used to develop the correlation using the same range. For example NN1_K1
and NN1_K2 correlations were developed using the temperature range 1°C <T <40 °C,
and salinity 5<S<35. NN1_K1 and NN1_K2 are now used to predict K; and K, values
using Mehrbach data within the range of 0°C < T <30°C, and salinity 19 < S <43.
Similarly prediction of K; and K, by (NN1_K1, NN1_K2) using Millero (2006) data
within the range of 0 °C < T < 50 °C, and salinity 1< S <50. Note that the predictions of
K; and K; by NN1_K1 and NN1_K2 were found to be close to Millero (2006) data.
Also the predictions of K; and K, by NN2_K1 and NN2_K2 were found to be close to
Millero (2006) data (Said, 2010). However, the predictions of K; by NN1_K1 were not
as close as expected to the experimental data by Mehrbach data. Also predictions of K;
and K, by NN3_K1 and NN3_K2 were not close to experimental K; and K, by
Mehrbach data.

4. Conclusions

Three NN based correlations for predicting the first and second dissociation constants
(K;, Ky) of carbonic acid in seawater have been developed. For each correlation, a
multi-layered feed forward network trained with back propagation method is used. It is
found that the NN based correlations can predict the experimental K; and K, very
closely to the values of K; and K, obtained by using correlations from literature. It is
found that, the NN1_K1 and NN1_K2 developed based on experimental data of Millero
(1997) can predicted the values of K; and K, when compared with NN2_K1, NN2_K2,
NN3_K1 and NN3_K2 correlations. The neural network based correlations developed
in this work can predict the values of K; and K, for temperature less than or equal 50 °C
based on the experimental data available. Multistage flash (MSF) plants usually operate
at temperature as high as 90 °C. Therefore, the extrapolation of the NN correlations will
be used to adequate the MSF temperature conditions and its usefulness in evaluating the
performance of MSF process will be assessed.
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Figure 3 Experimental K; by Millero et al. (1997) and Prediction by NN1_K1
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Figure 4 Experimental K, by Millero et al. (1997) and Prediction by NN1_K2
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Figure 5 Experimental K; by Mehrbach et al. (1973) and Prediction by NN2_K1
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Figure 6 Experimental K, by Mehrbach et al. (1973) and Prediction by NN2_K2
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Figure 7 Experimental K; by Millero et al. (2006) and Prediction by NN3_K1
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Figure 8 Experimental K, by Millero et al. (1997) and Prediction by NN3_K2
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