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The main feature of the polymerization reaction is its complex nonlinear behaviour,
which poses a challenging control system design for the batch reactor. The present work
is concerned with the development of intelligent mathematical models to predict the
styrene polymerization temperature. In order to improve the final product quality, these
models will be used in predictive control schemes. Two techniques from the artificial
intelligence field were used: Neuro-fuzzy and artificial neural networks. The pilot plant
of styrene production consisted of: a stainless steel jacketed stirred reactor, a storage
tank and a variable speed pump for the thermal fluid, temperature sensors (inside
reactor, inlet and outlet of the jacket), a densimeter, and a PLC (Programmable Logic
Controller). The temperature of the reactor is the process variable to be predicted using
the historical data acquired from the pilot plant. Software MatLab 6.0 was used to
implement neural and neuro-fuzzy models. The results showed that both models were
able to predict online the reactor temperature profile successfully and that they were fast
enough to be used in nonlinear predictive control strategies as well.

1. Introduction

The use of polymers has been growing gradually in many industrial products, such as:
automobile, electronic devices, food packaging, and building and medicine materials.
Among these products stands the polystyrene, usually produced in batch or semi-batch
reactors. From the technical and scientific point of view, polymerization processes are
quite challenging, because they involve complex temperature-dependent chain reactions
and heat transfers, described by sets of highly nonlinear algebraic and differential
equations (Lepore et al., 2007). Temperature variation in polymerization reactor
systems greatly affects the kinetics of polymerization and consequently changes the
physical properties and quality characteristics of the produced polymer (Ghasem et al.,
2007). In order to ensure the maintenance of the final product quality is crucial to keep
suitable operating conditions during the polymerization reaction process. In digitally
controlled systems, the use of artificial intelligence (Al) based software allows to
simulate and quickly predict online the behavior of process variables based on input-
output data, rendering a good alternative to this problem. Both artificial neural networks
(ANN) and neuro-fuzzy systems are Al ‘black-box’ estimators presenting no attempt to
interpret the model structure. They can be viewed as multivariate nonlinear
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nonparametric estimation methods as they are typically used to approximate a function
y=f(x), where the function form of f is unknown. They have been used in various
models for polymerization systems (Buragohain and Mahantan, 2008).

From the above, the present paper is concerned about the development of ANN and
neuro-fuzzy models to predict the reaction temperature during the styrene
polymerization. The developed models were online implemented to a pilot plant.

2. Polystyrene Process Description

A pilot plant was built specifically to evaluate
Fots Patrator ot T Tnermocoupte (TIN) rory  the polymerization reaction performance. This
T Storan Tanke T Thermosouple (104D plant, schematically shown in Figure 1, was
— used to generate the input-output experimental
data. It consists essentially of a 1.2-liter-
stainless-steel-stirred batch reactor (R-1), an oil
storage tank (TK-1), a positive displacement
pump (P-1) and temperature sensors (TT).
Thermal oil was used as heat transfer medium
in the jacket. An electrical heater, which was
connected to a thyristor, provides heating to
the thermal fluid inside the storage tank.
The dissolved oxygen was purged by bubbling
pure nitrogen gas through the reaction mixture.
The monomer was obtained with 99% purity
from Sigma Aldrich. Toluene was used as
solvent and it was purchased from Ecibra with
a purity of 99%. No further purification was
needed. Benzoyl peroxide (BPO) from Sigma
Figure 1: Schematic diagram of the  Aldrich, presenting 70% purity, was used as

experimental system. the initiator agent of the reaction.

Table 1. Experimental Conditions of the Styrene Solution Polymerization Reactor

V=800 mL V=T7L F=300 L/h I=BPO
Mgr=200 rpm M:=200 rpm W=3000 W [1]=0.0185 mol/L

Vg — reactor volume; Mg — reactor stirring speed; Vr - tank volume; Mt — tank stirring speed; F; — jacket flow
rate; Wr— heating power; [ - initiator; [I] - initiator concentration.

After loading the monomer and the solvent into the reactor, it was heated to reach the
desired operating temperature, 90 °C (Ghasem et al., 2007). As soon as achieving this
target, the initiator BPO was added to start the polymerization reaction. Typical
experimental operating conditions are shown in Table 1. Experimental runs were
conducted using several monomer/solvent ratios: 30, 50 and 70 V/V %.
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3. Neural Network Modeling

An Artificial Neural Network (ANN) is composed of simple calculation elements,
called neurons or nodes, operating in parallel and fully connected. Each neuron presents
an activation function to determine its output (Vasickaninova et al., 2010). The ANN
architecture used in this work is the feedforward with three layers. The number of
operational variables needed to represent the process dynamics determines the number
of input neurons. In the hidden layer, the number of neurons was defined by the smallest
error criterion and the constant effective number of parameters as well. The nodes in the
output layer represent the variables to be predicted. In order to modeling the
polymerization process dynamics, a historical data of reactor temperature (current time
and four-steps-back measurements) and also the monomer/solvent ratio were used as
input signals. The output was the one-step-ahead reactor temperature.

Training of a neural network is basically the process to find a set of optimum weights of
the network. In this work, the training of the neural model was carried out by using the
“trainbr” function of the Neural Network Toolbox (MATLAB R2006a), which consists
of the Levenberg-Marquardt Bayesian Regularization algorithm.

4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS is a hybrid model in which the nodes in the different layers of the network
handle fuzzy parameters, representing an useful neural network approach for the
solution of function approximation problems. Data driven procedures for the synthesis
of ANFIS networks are typically based on clustering a training set of numerical samples
of the unknown function to be approximated. Each layer in the network corresponds to a
part of the fuzzy inference system (FIS) called: input fuzzification, rule inference and
fire strength computation, and output defuzzification. The main advantage of this kind
of representation is that the FIS parameters are encoded as weights in the neural
network and, thus, can be optimized via powerful well known neural net learning
methods. This model is mostly suited to the modeling of nonlinear systems (Buragohain
and Mahantan, 2008; Cosenza and Galluzzo, 2009). In this work, the training of the
neuro-fuzzy estimator was performed using the ANFIS toolbox of MATLAB R2006a.

5. Results and Discussion

In order to demonstrate the effectiveness of the proposed approaches, the reactor
temperature prediction from ANN model were compared to that obtained from ANFIS
model, under offline and online modes.

5.1 Development of ANN model
The experimental data, obtained from three runs, were normalized in the range [-1,1].

Each run set, containing about 2000 arrays, was randomly split into sets of training data
(75%) and testing data (25%). A sampling time of 1 second was used. Initially, for the
prediction of the one-step-ahead temperature (Tk+1), it was proposed a network
structure with two input neurons - the ratio monomer/solvent (%M) and the current
reactor temperature (Tk). However, this network did not reach an acceptable value of
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the summation of squared error (SSE), even adding more neurons in the hidden layer.
Thus, it was necessary to add dynamic information to the training: four-steps-back
temperature measurements were added as inputs (Tk-1, Tk-2 Tk-3 and Tk-4).

A hidden layer containing twenty-two neurons was determined by observing the MSE
value (SSE/number of vectors). The minimum SSE obtained for the training set was
0.2011. Extracting the square root of MSE value (4.36 x10-5) and denormalizing it, the
deviation of temperature was found to be 0.1°C, very close to the precision of
temperature measurement. Hyperbolic tangent and linear functions were used. Using the
test set to evaluate the generalization capacity of the model, a good agreement (slope=1
and linear coefficient = 0.12) was observed between predictions and unseen points in
the dispersion plot (Figure 3). The developed neural model provides temperature
predictions with 99.99% certainty.

An experimental run using 50% of monomer ratio was carried out, in which online
predictions of temperature were performed by the digital control system. A
Programmable Logic Controller communicated to the electronic devices in the
polymerization plant and the acquired data were real time provided to the MATLAB
software containing the neural model. Figure 4 shows that prediction curve are very
close to the temperature measurements.
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Figure 3: Neural model predictions vs.  Figure 4: Online neural predictions and
test set. experimental data.

5.2 Development of ANFIS model

The same training and test sets containing six inputs were used for the ANFIS model:
%M, Tk, Tk-1, Tk-2, Tk-3, Tk-4. In this paper, the fuzzy clustering algorithm was used
to make a neural network system more effective. The fuzzy stage is responsible for the
analysis of the distribution of data and grouping them into clusters with different
membership values. The training set is reduced using ANFIS clustering, therefore,
training period of the neural network decreased because of the low computational effort.
In this method, parameters are tuned automatically during the learning procedure so the
membership functions can suitably represent the non-linear system being studied with
an optimal performance (Pan and Yang, 2007). The maximum error tolerance and
epochs were set to 0.5 and 100, respectively. Test set data were fitted to the ANFIS
model output, with a satisfactory error of 0.2 °C. After training, the membership
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function assumes a different form. Figure 5 illustrates the membership function adjusted
for T;.,. For all the variables of the polymerization system, the ANFIS methodology
optimizes both the number of membership functions (4 MF) of the corresponding fuzzy
sets and the number of rules, providing an accurate and simple model. The FIS file was
make up of four membership functions (Z-zero, PS-positive small, PM-positive medium
and PL-positive large). The total number fuzzy rules was four and the membership
function was of Gaussian shape, defined in Equation 1, where ¢ and o are parameters of
the Gaussian membership function.
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Figure 5: Initial membership function (5a) and final membership function (5b) for Tk-4
input for the prediction model using ANFIS clustering.

The ANFIS model was considered acceptable because the dispersion plot in Figure 6

presented a slope equal to the unity and the linear coefficient vanished.
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Figure 6: ANFIS predictions vs. test set. Figure 7: Online ANFIS predictions and
experimental data.

Another experimental run using 50% of monomer ratio was carried out, in which online
predictions of temperature were performed by the ANFIS model. Figure 7 shows that
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prediction curve are very close to the temperature measurements. A commercial
SCADA system was used for the management and data acquisition monitoring.

6. Conclusions

In the present work, two techniques from artificial intelligence field were applied for the
prediction of the styrene polymerization temperature: artificial neural network and
neuro-fuzzy system. The main feature of this polymerization reaction is its complex
nonlinear behaviour, which poses a challenging control system design for the batch
reactor. Some solution properties change drastically during the batch reaction (density,
viscosity and heat capacity) turning the linear control strategies unsuitable for this
process. In this context, the main goal of the present work is to provide precise and fast
models for subsequent application in control strategies.

Based on several experimental runs - under different operating conditions - the models
were built in order to predict the one-step-ahead reactor temperature. Implementing of
such modeling strategies in this system is very promising because, based on the
prediction model, optimal and/or predictive control schemes can be developed so that
the end-of-batch product quality is optimised.

The neural network and the neuro-fuzzy model showed to be very effective in the
dynamic modeling of this nonlinear batch process, offering accurate long-range
predictions as well. The difference between the results vanished and it was proved that
ANN and ANFIS are powerful tools for online predicting the temperature in styrene
polymerization reaction. Both models did not demanded high computational costs, so
that they can be used as internal models in advanced control strategies.
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