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In data driven process monitoring, soft-sensor, or virtual metrology (VM) model is
often employed to predict product’s quality variables using sensor variables of the
manufacturing process. Partial least squares (PLS) is commonly used to achieve this
purpose. However PLS seeks the direction of maximum co-variation between process
variables and quality variables. Hence, a PLS model may include the directions
represent variations in the process sensor variables that are irrelevant to predicting
quality variables. In the case, when direction of sensor variables’ variations that are
most influential to quality variables is near orthogonal to direction of largest process
variations, a PLS model will lack generalization capability. In contrast to PLS,
canonical variate analysis (CVA) identifies a set of basis vector pairs which would
maximize the correlation between input and output. Thus, it may uncover complex
relationships that reflect the structure between quality variables and process sensor
variables. In this work, an adaptive VM based on recursive CVA (RCVA) is proposed.
Case study on an industrial sputtering process demonstrates the capability of CVA-
based VM model compared to PLS-based VM model.

1. Introduction

Modern industrial processes, continuous or batch, are usually equipped with a large
number of sensors that provide process variables data such as pressure, temperature,
spectroscopic signals, heat or power supplied, etc. Such process variables data can be
used for process monitoring and fault diagnosis using multivariate statistical analysis
methods such as principle component regression (PCR), partial least squares (PLS) and
canonical variate analysis (CVA). However, such process variables data are not direct
indicator of final product quality. Examples of quality variables in continuous chemical
process include molecular weight and distribution of polymers, purity of distillates, etc.
In multi-step batch-based processes, such as semiconductor or thin-film-transistor
liquid-crystal-display (TFT-LCD) manufacturing, intermediate product qualities include
product state variables such as film thickness, critical dimension etc., and final quality
indicators include electrical characteristics such as sheet resistance, threshold voltage,
etc. (Mays and Spanos 2003). Since product quality measurements may be time-
consuming and expensive, they can only be sampled and provided in a less frequent,
time-delayed manner. For both monitoring and controlled purposes, it is therefore
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desirable that such quality data can be predicted using process variables data. Such an
approach is well known as soft-senor or VM. Examples of VM applications can be
found in both continuous chemical processing industry (Kano and Nakagawa,2008) as
well as multi-step batch-wise assembly line processes (Zeng and Spanos , 2009).

One approach to development of VM models is to use non-parametric models such as
neural networks (Radhakrishnan and Mohamed, 2004). Neural network models are
capable of representing complex non-linear functions, but they usually lack
generalization ability unless special attentions were paid to variable selection,
architecture determination and data screening and compression (Lin et al, 2009).
Alternatively, linear model, such as PLS is also commonly used to construct VM
models (Sharmin ,2006). Such models are capable of overcoming the problem of high
dimensionality and collinearity in the process variables data. However PLS seeks the
direction of maximum co-variation between process variables and quality variables.
Hence, a PLS model may include the directions represent variations in the process
sensor variables that are irrelevant to predicting quality variables. In the case, when
direction of sensor variables’ variations that are most influential to quality variables is
near orthogonal to direction of largest process variations, a PLS model will lack
generalization capability. In contrast to PLS, CVA identifies a set of basis vector pairs
which would maximize the correlation between input and output. Thus, it may uncover
complex relationships that reflect the structure between quality variables and process
sensor variables. In this work, an adaptive VM based on RCVA is proposed. Case study
on a industrial example demonstrates the capability of CV A-based VM model.

2. Methods

2.1 Standard CVA
Let us define a normalized (zero mean and unit variance) set of observed input process

variable data X =[x(1),x(2)---,x(K )T, and the corresponding normalized observed
output quality data Y = [y(l),y(Z)---,y(K)JT , where k =1---K is the sampling index.
Assume that there are p =1---P input process variables: x (k)= [xl (k) x, (k)] , and
that there are ¢ =1---Q output quality variables: y (k)= [yl (k). v (k)] .

CVA aims to find a set of canonical vectors W, = [wi,-u,wa :| e R™" and
W, = [wl —ew? :|e RV that maximizes the correlation between the output quality

y y? y

variables and input process variables that are orthogonal to each other.
- (w) =, (w)
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This can be done by solving the eigenvalue problem:

el VI
o x| [z, olw]|"w,

where P is canonical correlation coefficients, i,/ is the index of canonical vectors,
L., X, are the covariance matrices of input and output, respectively. X = (): . )T is
the cross covariance matrix between input and output.

2.2 VM model based on CVA

After finding the canonical vectors, a model prediction of the quality variables at the

time point k" can be written as:

(k)=(W,)" (Bex(£)W,)

X

yl 2 N (3)
B = diag (b',b%,---,b" )
The coefficients of this model ',b%,---,b" can be obtained by standard least square
estimation

b =(X"w, )T YTw;pinv[(XTw; )T (X"w, )} 4)

2.3 Recursive form of the CVA based VM model

In on-line applications, it is desirable that the VM model or monitoring model will be
implemented in a recursive manner with forgetting factors, but without the need of
recalling past training data (Li et al., 2000). Using equations (2) to (4), we can see that
estimation of the loading factors and the regression coefficients can be recursively
estimated by the procedure of normalizing data and calculation of covariance matrix can
be carried out recursively without recalling past training data.

Let us denote that observed, i.e. un-normalized, response and regressor variables at

time point k" by y(k) and X(k) respectively. A recursive form of the mean vectors

and standard deviation vectors are given as following (Lee and Lee, 2008):
k-1

-, . -,
(k)= (k) o 2, (k1) )

6 (k)= M[diag(ﬁ(k)—ux (k) (X(k)—m, (k))T]+,Bx =" )cj (k=1)(6)

(l_ﬁxk) (l_ﬂxk)
where ¢, and f, are the forgetting factors, p, (k) and ¢ (k) are the mean vectors

and standard deviation vectors of X(k). When the k becomes large, the above

equations can be simplified to the following forms
m, (k)= (1-0, )X (k) +aop, (k-1) (7

0. (k)= (1=, diag (%(k) -, () (x(k) -w, ()) |+ Bo’ (k=1)  (®
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Similarly, the mean p, (k) and variance 6),2 (k) vectors can also be deduced as the

recursive forms:
n,(k)=(1-a,)y(k)+a,n, (k-1) ©9)
o, (k)= (1-,)] diag (3/(k)=n, (1)(3 (K)-w, () |+ B0, (k=1) (10)
where ¢, and B, are the forgetting factors.

The normalized response and regressor variables thus can be computed as:

x(k)=(0,)" [(k)-n, (k)] (11)

y(k)=(s,) [3(k)-n,(¥)] (12)
Similarly, the covariance matrices can also be recursively calculated as:

L, (k)= (1= B)x(k)(x(k)) + B, (k-1) (13)

E, (k)=(1=8)y(K)(y (k) +B X, (k=1) (14)

E, (k)=(1-8,)x(k)(y(k)) +B,Z, (k1) (15)

where [ is the forgetting factors,
Given these covariance vectors, the canonical correlation loading vectors W, (k) and
W, (k) can be obtained by the optimization procedure described in equation (2) and the

correlation coefficients p' and the model coefficients b’ can be obtained by equations
(1) and (4).

3. Application to a Sputtering Process

3.1 Process and data description
In this section, VM models were developed for a sputtering process in a local TFT-LCD

manufacturing facility. In this process, ions in the plasma are accelerated towards a
target. Atoms of the target are sputtered and ejected into the plasma and eventually
deposited on the surface of a glass substrate (Pai et al, 2009). There are two sputtering
steps in which different atoms are sputtered and deposited. The process operation is
monitored by six kinds of equipment sensors which recorded the supplied power,
voltage, pressure and composition of the residual gases etc. For some of these sensing
variables there may be several probes at different locations of the chamber. Each of
these probes reported data at intervals of micro-seconds. These profile data are
summarized according to operating characteristics of each step. Eventually we are

supplied with 21 characteristics process variables, i.e. X(k)= [321 (k),x, (k). %y (k):| .
The quality variable of concern is the sheet resistance of the glass substrates at 9
different locations §'(k)=|:)31(k),j/2(k),---,)39(k):| . 110 samples covering four

months were collected for VM modeling after data preprocessing. Various events
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including preventive maintenance, idle operation and change of recipes have occurred
during this period.

3.2 Results

The first 21 samples were used as the initial batch for training and the rest are predicted
by RCVA model. The forgetting factors were set as: o, =«a,=099 ,

B, =B, =pB,=0.9. Nine CVA components are selected.

Table 1 demonstrates the accuracies of recursive tracking of the values of y using
RCVA models. It can be seen that the accuracy of RCVA model is much good enough.
The R? of the RCVA predictions varied from 48 to 65% which is consistent with the
modeling error achieved.

Table 1: The prediction accuracy of RCVA VM models

position 1 2 3 4 5 6 7 8 9
I(R]l-\gSZI)E 1.54 1.51 1.49 1.56 1.61 1.86 1.48 2.03 1.25
3 | MAPE
)<> (%) 1.08 1.14 1.13 1.18 1.20 1.36 1.15 1.44 0.95
R? (%) | 54.68 | 58.69 | 62.53 | 57.01 | 64.63 | 54.50 | 59.16 | 48.15 | 62.40
p.s.
1 &, . 2 1 & 7, (k)
RMSE = |—=> (p. (k)-¥, (k)) ,MAPE =—) [1--2—£{x100%
q K;( ‘1( ) ‘1( )) q K; yq(k)
. 1 K . K . N2 K . B 5
Ay = 25, (k). SST, =305, (F)= 4, ) . SSE, =3.(5,(K)=3, (%)) -
k=1 k=1 (=1
qu =[ - 4]x100%
T,
q=1’2""’9

However, the predicted accuracy of RCVA and RPLS are also influenced by the
forgetting factor. As mentioned by Sang et al. (Sang et al., 2006), the optimal value of
the forgetting factor which varies significantly depending on the rate of process change
can improve the performance of adaptive algorithm. In this work, we only compare the
performance of RPLS and RCVA under the same forgetting factors.

4. Conclusions

In this work, we have presented a detailed approach for constructing a VM model using
a recursive CVA. We have demonstrated the advantages of this approach using an
application to a sputtering process. The advantages are due to the fact that CVA
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captured the directions of maximum correlation between process sensor variable input x
and quality variable y of the VM model. A PLS model will include variations in x that
are large but irrelevant to quality predictions. This is especially important when VM
models are developed for processes in which process sensors are comprehensively
placed irrespective to their relevance of final quality. In such applications, the
generalization ability of a CVA-based VM model is superior.
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