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We address how the Equation-Free approach can be exploited to bridge in a
computational rigorous way the micro to macro scales of the dynamics of stochastic
individualistic neuronal models evolving on complex random graphs. In particular, we
show how bifurcation analysis can be performed bypassing the need to extract
macroscopic models in a closed form. The analysis targets on the majority rule model
developing on Regular Random (RRN), Erd6s—Rényi, and Watts-Strogatz (small-world)
networks. We construct the coarse-grained bifurcation diagrams with respect to the
switching probability and we show how the connectivity distribution may result to
symmetry breaking of the underlying macroscopic dynamics.

1. Introduction

Symmetry breaking of majority rule dynamics has been associated to phenomena such
as herd behaviour under panic, the emergence of cooperation dynamics and public
opinion formation. For individualistic/ stochastic models whose dynamics evolve on
complex networks, the extraction of closed coarse-grained models in the form of
ordinary (ODEs) and/ or partial-integro-differential (PIDEs) equations is not an easy
task. Due to the stochastic, nonlinear nature, multi-scale character and complexity of the
network-deployed interactions, such equations are simply not available, or
overwhelming difficult to derive. Without the existence of such models, what is usually
done for analysis purposes is simple brute-force simulations: starting from different
initial conditions, run in time and average over many ensembles to get the required
statistics. Even if we try to exploit the tools of Statistical Physics in order to derive
some closures, these are just approximations that may introduce biases in the modelling
and therefore in the analysis of the actual emergent dynamics.

This imposes a major impediment in our ability to analyse in a rigorous way the
system’s behaviour. In order to analyse the way the network topology influences the
emergent dynamics we exploit the Equation-Free framework (Kevrekidis et al., 2003)
bypassing the construction of explicit coarse-grained models. In particular, we construct
the coarse-grained bifurcation diagrams of the basic majority rule model, for Regular
Random, Erd6s—Rényi, and Watts-Strogatz (small-world) networks (Newman, 2003)
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with respect to the switching probability and analyze the stability of the computed
stationary solutions.

2. The Majority Rule Model

Each neuron is labeled as i (i =1,2,..., N ), and its state gets two values: the value “1” if
is it activated and the value “0” if it is not. We describe the state of the i —#4 neuron in
time ¢ with the function g, (f)e {0,1}. Let A(i) be the set of the neighbors (i.e. the

neurons connected to i—th neuron, with self loop included). Also consider the
summation

JjeAl)

which gives the number of activated neighbors of the i-t4 neuron. At each time step
each neuron interacts with its neighboring neurons, and changes its state-value
according to the following stochastic way (Kozma et al., 2005):

k.
1. An inactive neuron becomes activated with probability ¢, if o, (t) < 7’

k,
(k, is the degree of the i —rhneuron). If o, (t) > 5’ the neuron becomes

activated with probability 1 — & .
2. An activated neuron becomes inactive with probability &, if the

k. k.
o (t)>—’ . If o (t)s—’ the neuron becomes inactivate with
2 ! 2

1

probability 1—-¢.

& takes values in the interval (0,0.5) .

3. The Equation-Free Approach

The Equation-free approach can be used to bypass the need for extracting explicit
continuum models in closed form (Makeev et al., 2002; Gear et al., 2002; Kevrekidis et
al., 2003; Siettos et al., 2003). The main assumption of the framework is that
macroscopic models in principle exist and close in terms of a few coarse-grained
variables, which are usually the first moments of the underlying microscopic
distributions; all the other higher-order moments become very-fast in the macroscopic
time, functionals of the lower-order ones. What the methodology does, is to provide
these closures “on demand” in a strict computational manner. A caricature of the
method is described in the following steps:



351

(a) Choose the coarse-grained statistics, say X, for describing the emergent behavior of
the system and an appropriate representation for them (for example the mean value of
the underlying evolving distribution).

(b) Choose an appropriate lifting operator g that maps X to a detailed distribution U

on the network. (For example, # could make random state assignments over the
networks which are consistent with the densities).
(¢) Prescribe a continuum initial condition at a time 7, , say, X, .

(d) Transform this initial condition through lifting to N, consistent individual-based
realizations U, =p1x, .

(e) Evolve these N, realizations for a desired time 7, generating the U fo ? where # =

kT.

(f) Obtain the restrictions x, = NU, .
The above steps, constitute the so called coarse timestepper, which, given an initial
coarse-grained state of the system X, at time [, reports the result of the integration of

the model over the network after a given time-horizon 7 (at timet ), i.e.

x, =®,(x, ,p),where®,: R"xR" — R" having X, as initial condition.

et

4. Numerical Analysis Results

The numerical analysis was obtained using networks of N =10000 neurons. We
performed a coarse-grained analysis for RRN, Erdés—Rényi, Watts-Strogatz (small-
world) networks. The bifurcation diagrams, with respect to the activation probability
parameter £ , were constructed exploiting the Equation-free framework as described in
the previous section. Our coarse-grained variable was the density d of the active
individuals. At time 7,, we created N, different distribution realizations consistent
with the macroscopic variable d denoting the density of activated neurons. The coarse
timestepper is constructed as the map:

dy :@T(d,g) (1

The derived coarse-grained bifurcation diagrams are depicted in Fig. 1-3. These are
obtained using the detailed stochastic majority-rule simulator as a black-box timestepper
and wrapping around it the Newton-Raphson iterative procedure in order to find the
fixed points of the map (1). In the figures, dotted lines correspond to unstable solutions,
while solid ones to stable stationary solutions. Figure 1 shows the coarse-grained
bifurcation diagram as derived using a RRN with a connectivity degree equal to five. As
it is shown the coarse-grained stationary solutions are symmetric with respect to the
solutiond = 0.5 . Figure 2 illustrates the coarse-grained bifurcation diagram when the
underlying structure follows an Erd6s—Rényi topology constructed using a with
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connectivity probability p =0.0008. Figure 3 shows the derived coarse-grained
bifurcation diagram in the case of a Watts-Strogatz network constructed with a rewiring
probability p = 0.2 starting from a ring lattice with eight neighbours per node (four left

and four right). As it is shown in Fig. 2, 3 the heterogeneity in the connectivity
distribution results to a symmetry breaking of the stationary solutions.
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Figure 1: Coarse-grained bifurcation diagram of the density of activated neurons vs. &
for a RRN with constant degree distribution equal to five.
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Figure 2: Coarse-grained bifurcation diagram of the density of activated neurons vs. &
for a Erdés—Rényi network constructed using with connectivity probability p = 0.0008 .
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Figure 3: Coarse-grained bifurcation diagram of the density of activated neurons vs. &
for a Watts-Strogatz network constructed with a rewiring probability p = 0.2 starting
from a ring lattice with eight neighbours per node (four left and four right).
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