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In this paper we will present a detailed study about a specific algorithm based on the
moving finite element method (MFEM) to solve Stefan problems in one dimensional
space domain. At each time the MFEM determines both nodal amplitudes and nodal
positions. Our formulation of MFEM use different meshes associated to each dependent
variable and polynomial approximations of arbitrary degree in each finite element. The
algorithm we developed to solve nonlinear moving interface problems is based on a
mesh decomposition strategy of the spatial domain. In our moving finite element
algorithm the spatial domain decomposition is implemented by the introduction of a
moving node describing the position of the internal moving interface. This strategy
demands an attentive and accurate choice of initial mesh for the spatial domain with an
initial length close to zero. Numerical tests are provided to demonstrate the accuracy
and robustness of our formulation of the MFEM to solve moving boundary problems.
The algorithm developed enables us to achieve accurate results at acceptable CPU
times, showing that MFEM is appropriate to solve these kind of problems.

1. Introduction

A large set of engineering problems require a solution of a time dependent partial
differential equation in the presence of several phase transformation. Such problems are
usual referred as Stefan problems. The description of different numerical techniques to
solve Stefan problems and a useful bibliography can be found in Crank (1981). In this
paper a moving finite element method (MFEM) is presented to solve Stefan problems
with more than one internal moving boundary, in one dimensional space domain. The
MFEM originally proposed by Miller (1981) is a discretization process in two stages:
firstly the spatial discretization using finite elements is done allowing the movement of
the space nodes and secondly the time integration of the resulting ordinary differential
equations (ODE) system. To solve this implicit time-dependent ODE system we use the
package LSODI, (Hindmarsh, 1980). We will consider the MFEM with piecewise
polynomials of arbitrary degree as basis functions implemented by Sereno (Sereno et
al., 1992) and Coimbra (Coimbra et al., 2001, 2004) which generates an adaptive mesh
and hence it can be modified in order to be an efficient solver for a class of problems
showing one or more internal moving boundary. To modify the moving finite element
equations we perform the decomposition of the spatial domain by the introduction of a
moving node describing the position of each internal interface. The formulation
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presented by Robalo (Robalo et. al., 2005) is expanded in this work to deal with several
internal moving boundaries. We study a larger class of problems assuming the existence
of linear and nonlinear boundary conditions at each internal moving boundary. The plan
of the paper is as follows. In section 2 we present an overview of the proposed
algorithm where a concise description of the method is presented. Section 3 is
concerned with numerical examples. We apply the computer code resulting from the
numerical algorithm implementation to the simulation of an ice-water-ice Stefan
problem (Djomehri et al. 1988) and we solve a causticizing reaction model, an
important step of the kraft paper process of pulp production (Duarte et al. 1995). We
conclude with a short discussion.

2. The moving finite element applied to Stefan problems

In this work we will consider the general mathematical model of k-phases system in
one-dimensional fixed space domain, with £ internal moving interfaces, defined by a
system of n parabolic partial differential equations (PDE) whose m-th equation fill the
form
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on a<x<b, t>t,. Let us assume some initial conditions and that equation (1) is

subject to Dirichlet or Robin boundary conditions at the end points of space domain. We
suppose that at initial time, ¢=¢,, it is known the positions of the & internal moving

interfaces, S= [Sl(to), Sy (1), -+, Sk(to)]T. The discretization of equation (1) by

the MFEM is achieved in two stages. Firstly the space domain is discretized by finite
element allowing the movement of the spatial nodes. Secondly we must deals with the
numerical integration in time of the resulting ordinary differential systems to generate
the numerical solution as well the mesh grid where this solution is represented. For this
last step we use LSODI integrator described by Hindmarsh (1980). Concerning the
discretization of the space domain we consider for each dependent variable a spatial

mesh. The solution y, is approximated by U, =Z¢,U,’f,’ ;» where ¢;are the
i

piecewise basis functions at ith node, time dependents through the time dependence of

k

the nodal position, and U,, ;

is the value of U,, at kth interpolation node of the jth

element of the mesh. The positions of the mesh points and the solution are predicted by
minimizing the square of the norm of the residual of the approximation in the governing
partial differential equations with respect to variations in nodal amplitudes and their
positions. This procedure originates a nonlinear system of ordinary differential
equations. Some of these equations must be overwritten to introduce the boundary
conditions. The implementation of the moving finite element method is based on the
numerical calculations of all integrals defining the ODE system and the use of penalty
functions to prevent the mass-matrix singularities and the grid distortion. These
functions do not interfere with the solution and have as an additional effect preventing
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the singularities of the mass matrix and the collapse of the spatial mesh. In order to
solve Stefan problems the spatial domain is decomposed in k+1 subdomains. We also
split the space of dependent variable and therefore we

have§=[§fl,)72,~--,)7k]T =[y1,...,yn]T, where iiT =[y1i,...,ynil]T. Consequently the

general Stefan problem to be solved is defined by equation (1), subject to initial
conditions and Dirichlet or Robin boundary conditions at the end points of spatial
domain. At each internal moving interface the boundary conditions can be expressed by
Dirichlet, Robin or implicit conditions in the form
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To complete the model we assume that on each internal moving interface a well-known
condition,
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is satisfied. Consequently to solve this problem we combine the domain decomposition
and the moving finite element method.

3. Numerical examples

3.1 Ice-Water-Ice Stefan Problem
Let us consider the Ice-Water-Ice Stefan Problem that consists in the heat transfer

between ice-water-ice interfaces in an ice-water-ice medium occupying a region.
The mathematical problem is to find the values of the temperature,
y(t,x)= [yl t,x), »(t,x), n(, x),], in each phase and the position of the liquid/solid
and solid/liquid interface. The water is changing phase to ice at both interfaces and
initially we suppose and S, =0.25andS,=0.75. Initial conditions are
1(0,x)=4x -1, y,(0,x) =0 and y;(0,x) =—4x+3. The equations defining the internal

moving boundaries are
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The equations for dimensionless temperature are:
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subject to the boundary conditions, y;(z,0)=-1, »,(#,S,(#)=0, »,(S,(#))=0,

1 (t,8,() =0, y3(t7S2(t)) =0, y3(t71) =-1

The MFEM solutions were obtained using 4 finite elements in each phase and cubic
approximations in each element. Figure 1 shows temperature profiles at the interface for
time t=0 to t=1.2. This solution compares favorably to the previous solutions using
others techniques. Our results with cubic approximations agree with the results
presented by Djomehri (Djomehri et al. 1988) and Robalo (Robalo et al. 2006). The
CPU time is 2.8 seconds.
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Figure 1: Temperature profiles for ice-water-ice problem.

3.2 Causticizing Reaction
Causticizing reaction is an important step of the kraft pulp production that occurs in a
solid / liquid interface which moves to the center of the particles. It is assuming (Duarte
et al. 1995) that diffusion controls the process. We want to know the location of the
interface and both concentrations of hydroxide ions, y; and y;, and concentrations of
carbonate ions, y, and y,, on phase 1 and 2 respectively. The initial conditions at
t=600, arey, =y, =0, y3 =2.025 y, =0.337 andS=0.8. D is the diffusion
coefficient, £ the porosity, R the length of the particles, K the equilibrium constant, &,
the mass transfer coefficient and C the initial concentration of Ca(OH),. The
normalized equations describing the process are
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where y; are the concentration around the particles. The reaction front velocity is

L= | AL x=5(F) ©))
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Figure 2 shows the concentrations of hydroxide ions and carbonate ions respectively.
The nodes movements for the meshes associated to the concentration of hydroxide ions
in phase 1 and 2 are presented in figure 3(a). In figure 3(b) we can see the nodes
movements for the meshes associated to the concentration of carbonate ions in phase 1
and 2. In bold we can note the front reaction evolution.
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Figure 3: Nodes movements for meshes associated to hydroxide ions concentration (a)
and carbonate (b) ions concentration.
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The values of all parameters are taken from Duarte (Duarte et al. 1995). For the
numerical simulations we consider 3 finite elements for each mesh, cubic
approximations on phase 1 and approximations of degree four in phase 2. The CPU time
is 24 seconds and the solutions are in good agreement with those obtained by others
methods.

4. Conclusions

In this paper we have presented a MFEM for Stefan problems. The main advantages of
the method are its simplicity and performance. The numerical results obtained by this
formulation of MFEM exhibit very good agreement with those obtained by previous
methods so this work establishes the efficiency and applicability of the MFEM to solve
moving boundary problems.
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