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Convex relaxations play an important role in many areas, especially in optimization and
particularly in global optimization. In this paper we will consider some special, but
fundamental, issues related to convex relaxation techniques in constrained nonconvex
optimization. We will especially consider optimization problems including nonconvex
inequality constraints and their relaxations. Finally, we will illustrate the results by a
problem connected to N-dimensional allocation.

1. Introduction and Motivation

In the area of optimization, different types of relaxation techniques are used. In this
paper we will focus on convex relaxations and especially on some properties related to
these in connection to global optimization. Several global optimization methods are
based on the principle of relaxing a nonconvex problem into convex subproblems and
solving these iteratively. By using a branch and bound framework, a subdivision of the
initial domain can be automated and the global optimal solution finally obtained. How-
ever, independently of the type of procedure used, it is important that the relaxations
used when solving the subproblems are made as tight as possible.

2. Problem Formulation
Let us consider the following constrained nonconvex optimization problem

minimize f{x) e))
subjectto  g,(x) <0, m=1,2,...M

where fis a convex objective function, g are functions defining inequality constraints, M
the number of inequality constraints and x a vector of variables in X, a convex subset of
R". Convex constraints can be included in g, but in this case only the nonconvex con-
straints need to be relaxed. An attractive convex relaxation of problem (1) is obtained
by replacing the nonconvex functions with their tightest convex relaxations, i.e., the
convex envelopes conv g. This does not, however, necessarily result in the tightest poss-
ible convex relaxation of the feasible region of the optimization problem.
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3. Relaxations of Functions Defining Inequality Constraints

According to Tuy (1998): “A nonconvex inequality constraint g(x) < 0, x € X, where X
is a convex set in R”, can often be handled by replacing it with a convex inequality con-
straint ¢(x) < 0, where c(x) is a convex minorant of g(x) on X. The latter inequality is
then called a convex relaxation of the former. Of course, the tightest relaxation is ob-
tained when c¢(x) = conv g(x), the convex envelope, i.e., the largest convex minorant, of
gx).”

It should, however, be observed that conv g is the tightest relaxation of the function g
over the convex set X (Sherali and Alameddine, 1990), and not the tightest convex re-
laxation of the set {x € X/ g(x) <0} itself.

From an optimization point-of-view, the convex envelope of the feasible region is even
more important than convex envelopes of the constraint functions, since the tightest
convex relaxation of the feasible region is not generally obtained by replacing the func-
tions in problem (1) by their convex envelopes. Instead, the tightest convex relaxation
of the problem is given by the convex envelope of the set defining its feasible region,
and the convex envelope of this set is the border of its convex hull.

4. Convex Relaxation of a Feasible Region and its Convex Envelope

Problem (1) is defined by a convex objective function, variables connected to the set X,
and a number of nonconvex inequality constraints. The level sets of the nonconvex
inequality constraints can be defined as

£ =Nixe X g, <a}

m

The feasible region of problem (1) can, thus, be defined as the level set L?_, defined
by the RHS = 0 of the inequality constraints. Now, observe that a potentially good con-
vex relaxation of the feasible region of the problem can be obtained if the feasible re-
gion L%_, of the nonconvex problem is replaced with L0 ¢, i.e., by replacing the non-
convex functions g,, by their convex envelopes conv g,. However, there is no guarantee
that L7"0%, will result in the tightest convex relaxation of L%_, and we will later on
illustrate, that this is not generally the case. Thus, replacing the nonconvex functions
defining the inequality constraints with their convex envelopes does not necessarily
result in the convex hull conv L2 _, i.e., the tightest convex relaxation, of the set L2 _.
As mentioned previously, the convex envelope of a set is the border of its convex hull.
Therefore, if the border of conv Lf ;| can be defined by convex functions ¢, different
from the convex envelopes conv g, then a tighter, or at least an equally tight, convex
relaxation of the feasible region of the problem will be obtained.

If the convex functions ¢ over X are defined as g(x) <0, Vxe X: g(x) < 0, then
L, < L!_,and the functions ¢ giving the tightest convex relaxation of L?_, are ob-
tained when L!_,=conv Lf_,. Thisresultsin L , < L! , < L3°.

Unfortunately, we do not have a general procedure to generate convex envelopes of the
type ¢, defining the border of the convex hull of conv Lf_, for general classes of prob-

lems. We will, however, show by an example that such functions can be obtained.
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5. An Illustrative Example

This example is related to a problem in N variables connected to N-dimensional alloca-
tion. A general model for such problems was presented in Westerlund et al. (2007). In
the paper, items in an N-dimensional space were considered: rectangles in 2D, boxes in
3D, and so on. The sizes of the items were defined with fixed side lengths. In two re-
lated papers, Bonds et al. (2007) and Castillo et al. (2005), the items were defined by
their total areas, volumes etc. and aspect ratios were used to define maximum and min-
imum side lengths. The size constraint for an item in the N-dimensional case could thus
generally be defined by a scalar parameter .S and a product of variable side lengths x;,
restricted by defined aspect ratios in each direction in the N-dimensional space.

Thus, the size constraint for an item in an N-dimensional allocation problem can togeth-
er with overlapping protection constraints (Westerlund et al., 2007), be defined as

ﬂx, >5. Q)

The constraint function g, connected to an item in an optimization problem of the type
(1), would then be given by

g(x)=S—]ﬁx,. (3)

In a 2D case the constraint would contain a negative bilinear term and in the 3D case a
negative trilinear term, and so on. For such terms there are known convex envelopes.
However, independently of the application, the constraint function is given by equation
(3). In this particular case x € X c R}, and we observe that the function g is in fact
quasiconvex. Since quasiconvex functions have convex level sets, the border of the
convex hull of Lf_, must be given by the border of the level set Lf_, itself. The inequa-
lity constraint corresponding to expression (3) is written as

S —

=

x; <0. “)
This inequality can, however, be reformulated into convex form at the border (RHS =
0), for example, by dividing away all variables x; except the k-th one, i.e.

q,(x)=8 ]ﬂ[x,.—xk <0, k=12,...,N. 5)
ik

Since equation (4) and its convex reformulation in equation (5), result in identical solu-
tions at RHS = 0 both expressions must also exactly represent the same border of the
level set L2_;. Thus, we may conclude that the nonconvex function g in an optimiza-
tion problem of type (1) can be replaced with the convex constraints g, < 0. In this par-
ticular case, we in fact obtain the border of the convex hull of the level set Lf_; (as it is
identical to the level set itself) simply by replacing g(x) in the problem (1) with the
convex functions gy(x): L _ =L , < L)%,



334

When solving a problem of type (1) using g, or replacing g with conv g or g;, we obtain
the minimum objective function value for the different domains as

SR < ) = ).

Note that g;(x) < conv g(x) < g(x) does not hold true in this case for all x< X. Conse-
quently, the functions g, are neither convex minorants nor the convex envelope of the
function g(x) in X. Replacing g with conv g in problem (1) will thus not result in the
tightest convex relaxation of the problem. Instead, a tighter convex relaxation of the set
L% _,, is obtained by replacing g in the problem with any of the functions ¢, resulting in

the convex envelope of the set Lf_; forall xe X.

When considering the special case where N=2 and S=50, the function g is given by
2(x) =50 —xx,.

Convex envelopes of bilinear terms are given in McCormick (1976). Using the convex
envelope of negative bilinear terms, the convex envelope of the function g(x), where the
bounds on the variables are, e.g., 0.5 <xy, X, < 10, is given by

conv g(x) = 50 + max{-10x, —0.5x, +5,-0.5x, —10x, +5}

Furthermore, the functions g, are given by
q1(x) = 50/x, — x; and g,(x) = 50/x; — x,.

In Figures 1 and 2, the feasible region and the functions are shown. In Figure 1, the
upper left figure illustrates the level curves of the original nonconvex constraint. The
feasible region L% _, is illustrated by the dark gray region. The upper right figure illu-
strates the level curves of conv g. The gray region is the relaxed convex feasible region
L770¢ obtained in this case. Finally the lower left and right figures are the level curves
of ¢, and g, respectively. The gray regions illustrate the convex feasible regions L?_,
and L% . We can observe that the convex envelope of the constraint function overesti-
mates the feasible region while the functions ¢; and ¢, express it exactly.

In Figure 2, plots of the nonconvex constraint function g and the convex functions ¢,
and g, are illustrated. The zero-level is indicated by a white plane. Observe that the
functions ¢; and ¢, exactly represent the feasible regions but under- and overestimate
the constraint function g in different parts of the infeasible region and overestimate the
constraint function in the entire feasible region. However, since the requirements for
these functions are only to be convex and fulfill g(x) <0, Vxe X : g(x) <0, they are
valid reformulations of g(x) <0 when used as constraints of the type g(x) < 0.
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Figure 1: Level curves and feasible regions indicated for g (upper left), conv g (upper
right), q; (lower left) and q, (lower right)

6. Summary

In this paper, we have considered some issues related to convex relaxation techniques in
constrained nonconvex optimization. We have pointed out the importance of differen-
tiating between convex envelopes for functions and convex envelopes for sets when
creating the tightest possible convex relaxations in constrained problems. The tightest
convex relaxation of L = {x | g(x) < O} is conv L and is generally not obtained when g
is replaced by conv g. If g is replaced by a convex function ¢ defined by ¢(x) < 0,
Vx e X : g(x) <0, a tighter convex relaxation of L can be obtained than when replacing
g with conv g. This was illustrated using an example from N-dimensional allocation.
When it comes to the exact convexity requirement of ¢ it depends on the solution me-
thod used to solve the problem. If an outer approximation method like the method in
Westerlund and Porn (2002) is used, then ¢ need only be convex in Lf_,. More general-

a=0"

ly, ¢ need only be quasiconvex as quasiconvex functions have convex level sets.
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Figure 2. The functions g, q; and q,, as well as, the feasible region g(x) <0
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