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An original approach to global optimization of continuous models is introduced. It
belongs to the class of homotopy continuation methods, but “only” requires non linear
equation systems to be solved. Unconstrained and non-linearly constrained optimization
problems are specified nearly the same way. They are solved by coupling a robust
Newton formulation for under determinate systems and a heuristic estimating the global
minimum value by means of the discrete Legendre-Fenchel biconjugate of the criterion.
For the time being, the main drawback of the method is the too important number of
function evaluations near by the global minimum. However, its success rate being very
good on test problems, such as the global optimization of Lennard-Jones atomic
clusters, it should be investigated further.

1. Introduction

Among the main classes of global optimization methods, reviewed for example in
Floudas and Gounaris (2009), homotopy continuation methods remain quite
confidential within the CAPE community. One reason is the difficulty to handle several
optimization problems starting from a “simple” one, and moving to the problem of
interest.

This paper introduces an homotopy method, suitable for continuous models only, which
solves global optimization problems under non linear constraints. This original
approach may be attractive because, instead of tackling intermediate optimization
problems, it requires “only” to apply a Newton iterative scheme to non linear equation
systems.

2. Unconstrained global optimization

Let illustrate the method principle with the unconstrained global optimization of a
continuous criterion f(x), where x € R™. We assume that we know some global
minimum underestimate 1 of the criterion. Instead of solving the initial optimization
problem min,cgmf(x), we are interested in a parameterized non linear problem (P;):
92,(x) = f(x) —2; = 0. For a given value of 4;, we compute a sequence of K Newton

iterates x;q, X;, = Ny Ai(xm), X3 =Ny " (xi,z)' ... where Ny A 152 Newton operator
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associated to g,. Among those Newton iterates, we consider only a subset §; =
{ie{12.. K} gli(xi,j) < 0}. At any Newton iterate x;
criterion value is less than 4;.

j» Where j belongs to §;, the

The principle is to build a strictly decreasing sequence of criterion values from §;
subsets. First of all, we try to exhibit some x,, verifying ||D f (xo,1)||00 > ¢. We define

Ao = f(x0,1) and S, = {1}. The next subsets are built according to the following:
e If§5; is not empty, pick an iterate x; ;- from S; according to some strategy.

fla) =2 <A
o If ||Df(x;;-)
global minimum of f;

o If ||Df(xi,j*) |oo = ¢ then, from x;,,0 = x; v,

Newton iterates associated to g, (¥) = gz(x) = f(x) =1 =10 to

< ¢ then consider that x;* = x; ;« approximates a

|OO

compute the K first

produce S;,4;

e IfS; is empty, consider the last non empty set S, and define 1;,,; = 2a 2+'1i.

o If |44, — ;| < & then consider that x,* approximates a global
minimum of f;

o If |A41 — A4 | =€ then, from x;,,0 = x,*, compute the K first
Newton iterates associated to g;,, (x) = f(x) — 4;41 =0 to produce
Sit1-

3. Non-linearly constrained global optimization

The previous method can be easily extended to non-linearly constrained global
minimization. Equality constraints are added to non linear problems (P;). Inequality
constraints are transformed into equality constraints by introducing slack variables.
Then those equality constraints are added to (P;) problems.

Once again we assume that we know some global minimum underestimate 1 of the
criterion. Instead of solving the initial optimization problem min,cgm f(x) under the
constraints ¢(x) = 0, we are interested in a parameterized non linear problem (P;):

fx) =4

92, (%) =( () )= 0. For a given value of A;, we compute a sequence of K

Newton iterates X;q, X;, = NMi(xi_l),xi_3 = Ngli(xi_z),... where Ng/ll- is a Newton
operator associated to g;,. Among those Newton iterates, we consider only a subset
S;={€{1.2,..,K}; f(x;;) —2; <0 Ac(x;;) =0}. At any Newton iterate x;;,
where j belongs to S;, the criterion value is less than 4;.

The principle is to build a strictly decreasing sequence of criterion values from §;
subsets. First of all, we try to exhibit some x, ; verifying ||D f (%,1)”00 >enc(xg,) =
0. We define o = f(x,,) and Sy = {1}. The next subsets are built according to the
following:
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e If 5 is not empty, pick an iterate x; j« from S; according to some strategy.
flri) =2 <A

o If [IDf(xi)ll,

global minimum of f;

O If ||Df(xi’j*)

Newton iterates associated to g, (x) = g7(x) = (

< ¢ then consider that x;* = x; ;« approximates a

= ¢ then, from x;,,, = X; j=, compute the K first

f) -2\ _
c(x) )—Oto

|00

produce S;,1;
o IfS; is empty, consider the last non empty set S, and define 4;,; = Aq 2+)~i.
o If |44, — A, | <& then consider that x,* approximates a global
minimum of f;
o If [A4; — A, =€ then, from x;,,0 = x,*, compute the K first
St T
c(x)

Newton iterates associated to g, (x) =(

produce S, 4.

To summarize, the non linearly constrained global optimization algorithm differs from
the unconstrained global optimization procedure only in the following points:

1. Aninitial guess x,, has to be found on the constraints variety;

2. Homotopy functions g, incorporate the residuals associated to the equality
constraints. g, is a vectorial function, defined from R™ to R", where n <m
in the usual case (criterion value is optimized within a constraints variety not
restricted to a single point). D g,li(x), derivative of g, at x, is an n by m
matrix;

3. S; subsets definition is modified to take constraints validation into account.
One should notice that any of the selected points in the S; subsets is a feasible
point.

4. Numerical challenges and answers

The homotopy method introduced here seems to be easier to implement than other
homotopy continuation methods. First, it can be viewed as a Newton homotopy, which
is simple and efficient (Yakoubsohn, 2003). Second, instead of tackling intermediate
optimization problems, it requires “only” to apply a Newton iterative scheme to a family
of non linear equation systems. However, some numerical and software challenges have
to be tackled.

4.1 Under determinate non linear systems

The first numerical challenge comes from the fact that the non linear systems are under
determinate, with more variables than equations. Consequently, a generalized Newton
formulation, adopted from Dedieu (2006), is required. Assuming F is the residual
function to nullify, the generalized Newton operator associated to F in the surjective
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case is defined by Np(u) =u — [DF(w)]t.F(u), where [DF(u)]" stands for the
Moore-Penrose pseudo-inverse of the Jacobian matrix of F at u.

When F takes its value in R (unconstrained global optimization), the generalized

. . o F(u)
Newton operator associated to F is Np(u) = u DECD-DEGD)" DF(u).

4.2 Global minimum underestimate
The second numerical challenge is related to finding a good underestimate of the global

minimum. Obviously, most of the time, a good approximation of the global minimum is
not available when starting the method. So, instead of using a single global minimum
underestimate A, as stated in parts 2 and 3, a first refinement is to use a sequence of
global minimum underestimates (ii)i’ each one being predicted from the criterion

values already computed (/Ij*)i. When 4; prediction is based only on the last two

criterion values ;" and A;_", a strategy may be to try to decrease the criterion value
twice more than previously done. In such a case, 4; = 4;" — 2(4;_" — /Ii*). To initiate
the process, A, is set to a numerical value representing —oo. Assuming S; is not empty,
Aiissettod, = A, — 2o — A4 ).

Unfortunately, this first refinement is not always efficient for leaving the basins of
attraction of local minima. We have to incorporate some global knowledge to the
previous prediction which is based only on the local behavior of the criterion. So, the
second refinement consists in estimating a convex hull of the criterion by applying
twice the Legendre-Fenchel transform to it. Calculating the Legendre-Fenchel bi-
conjugate from the analytical expression of the criterion may be harder than the initial
global optimization problem: instead of one optimization problem, one has to solve two
parameterized optimization problems! In fact, the bi-conjugate of the criterion function
is estimated only at points where the criterion has already been calculated. Moreover,
this estimation is based on a discrete Legendre-Fenchel transform. Instead of calculating
the conjugate f* of a real function f from f*(k) = Sl;p{k -x — f(x)}, we assume that
i lx) = m;lx{xi X —f (xj)}, where {f(x;),f(x;),..} are previous criterion
evaluations. The first prediction formula 4; = 2(1;_" — Ai*) is replaced by:

A, = min [Z(Ai_* - li*),mimf**(xi)]-

Such a prediction leads to an underestimation of any minimum, either local or global.
For local minima, this strategy is adequate. But, when reaching the basin of attraction of
the global minimum, this strategy leads to unnecessary criterion evaluations because we
are looking for points x; ; satisfying f (x; j) — A; < 0 without success, until 4; becomes
slightly greater than the global minimum.

4.3 Symbolic numeric calculations
From the software point of view the challenge is, starting from the initial optimization

problem min,cgmf(x):
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¢ To obtain automatically the g;, functions and their analytical derivatives Dg; ;

e To obtain the numerical values of [D g Ai(u)]Tmatrices;

e To obtain a numerical approximation of the Legendre-Fenchel bi-conjugate
gy, from some values of g;..

Those symbolic processing steps and those numerical evaluations both take place within
eXMSL, a symbolic and numerical calculation system (Alloula et al., 2009). Very
accurate Jacobian matrices are obtained automatically from the model. The IMSL®
numerical library is in charge of the Moore-Penrose pseudo-inverse calculations. The
Legendre-Fenchel bi-conjugates are evaluated without any care about CPU time.

5. Application to global optimization of Lennard-Jones atomic
clusters

The global optimization of Lennard-Jones atomic clusters is a classical test problem for
global optimization methods. The problem description can be found in Daven (1996).
The strategy described in this paper, and coded within eXMSL, was applied to clusters
up to 100 atoms. The initial guess was always randomly selected without any a priori
knowledge, making the problems harder to solve.

With an unconstrained formulation of the problem, we retrieved the best criterion values
given within the literature only when the number of atoms was less than 20. The success
rate decreases with N, being 80% for N = 6, and vanishing to 0% around N = 15.

In order to check the method validity on non-linearly constrained problems, we stated
that all the inter-particle distances were greater than 0.6187 (Vinko, 2005). For a cluster
of N atoms, this results in N(N — 1)/2 constraints. With this constrained formulation of
the problem, we retrieved all the best criterion values given within the literature for
3 < N < 100. The success rate increases with N, being 70% for N = 6, and reaching
100% when N > 30. Combined with the equation f(x) —A =0, constraints on the
inter-particle distances provide a good path for the homotopy method to reach a global
minimum. When N is quite small, the feasible domain defined by “the inter-particle
distances are to be greater than 0.6187” is important when compared to the whole
variable space (for N = 6, the inter-particle distances at the global minimizer are close
to 0.995531). When N = 30, the feasible domain defined by “the inter-particle
distances are to be greater than 0.6187” is small when compared to the whole variable
space. Then, the main difficulty becomes to find an initial point belonging to the
constraint variety. This problem consists in solving an under determinate non linear
system of 1+ N(N—1)/2 equations and 3N + N(N —1)/2 variables. The
generalized Newton formulation, cited previously, was applied successfully, even for
initial guesses without any physical meaning.
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6. Conclusion and further work

This paper introduces a deterministic method for global optimization. Applied to non-
linearly constrained continuous models, this homotopy method produces a feasible path
along which the criterion value decreases. Points of the homotopy curve come from a
Newton process where a generalized Newton operator tries to keep iterates on the
constraint variety. Two benefits are associated with such a feasible path optimization:

e the variables remain in the validity domain of the (thermodynamic) models;

e the search space being limited to the constraint variety, the probability for the
algorithm to reach and stay at a non global minimum is reduced.

This method was applied successfully to a collection of test problems. Unfortunately,
for the time being, the number of function evaluations remains important, mainly
because of a costly bisection process: the homotopy parameter A; is successively
increased or decreased, depending on whether some x; ; verifying f (xi, j) < 4; is found
or not. For the method to be not only robust, but also efficient, the bisection strategy has
to be improved. Two ways are investigated:

e study the discrete Legendre-Fenchel transform which, when applied twice to a
set of points on the criterion representative surface, provides us a convex hull
of those points. The closer this convex hull is to the criterion representative
surface, the better is the prediction of the next homotopy parameter value;

e find the “best” bisection parameter value to be applied when some x;;

verifying f(x; j) < 4; is not found. Until now, this bisection parameter is set to

0.5. Its value may be related to the absolute error |f(x; j) — A
This homotopy method replaces the initial optimization problem by a sequence of non
linear systems involving continuous variables. We would like to extend such an
approach to mixed integer non linear programming, discrete variables being considered
as continuous ones by adding constraints in order to restrict their allowed values.
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