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In this paper the problem to identify modularity in a complex network is studied. The
ability to identify modularity can be vital for a clear understanding of how a complex
network is constructed and the interaction in the network. The aim in this study is to
compare different solving strategies and find the most appropriate ones to solve this
type of problem. The strategies consist of using different problem formulations and
solvers. Five network identification problems, where the networks are of different size,
are studied with seven different solvers in the General Algebraic Modeling System
(GAMS). Two different mathematical formulations are used: a convex Mixed-Integer
Quadratic Programming (MIQP) formulation and a compact bilinear MIQP formulation.
With two of the solvers the bilinear MIQP formulation is solved by starting the solution
procedure from random network configurations. Furthermore, the impact of using
symmetry breaking constraints, presented in (Xu et al., 2007), is evaluated.

1. Introduction

The problem of module identification in a complex network is a combinatorial problem.
Combinatorial problems in optimization are formulated by using binary or/and integer
variables. A linear increase in the number of these variables results in an exponential
increase in combinatorial complexity. Some examples of complex networks are World
Wide Web related networks (Flake et al., 2002; Eckmann and Moses, 2002), social
networks (Girvan and Newman, 2002; Guimera et al., 2003) and biochemical networks
(Guimera and Amaral, 2005).

The studied problem is a nonlinear problem. Nonlinear problems can in general be
difficult to solve to global optimality, however, a local optimal solution is substantially
casier to find. If the nonlinear problem is convex then a local optimal solution is also a
global optimal solution. Typically the nonlinear solvers of today solve a problem only
to a local optimal solution and therefore a convex nonlinear formulation is appealing. If
the objective function and all constraints in a problem are convex inequality constraints
then the problem is convex. A binary or integer variable makes a problem non-convex
but if the integer relaxed problem is convex then global optimality can be proven, for
example, with the branch and bound method. A bilinear term makes a problem non-
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convex, but it can be made convex by reformulating it, which is done for the studied
problem. The down side of reformulating is that it typically increases the problem size,
i.e. the number of variables and/or constraints. Furthermore, note that a nonlinear solver
that guarantees global optimality is of little use if the solution time becomes
unreasonable, which can be the case for a large scale problem.

The choice of solution method is equally important when the solving time becomes an
issue. Different solution methods are provided by different solvers, which are typically
included in modeling platforms. Some examples of modeling platforms are: AIMMS
(Bisschop, 2006), AMPL (Fourer, 1990) and GAMS (Rosenthal, 2008). For solver
descriptions the reader is advised to the respective platform documentations.

In this study we focus on the problem of module identification in a complex network by
comparing different formulations and solvers on five test problems. The problem has
carlier been studied, for example, in (Aloise et al., 2010).

2. Problem Description

The studied network type consist of nodes and links, undirected and unweighted, which
can be grouped into modules. For example, a node can represent a person, a link
between two nodes can represent friendship between those persons and a module can
represent a group of friends. The goal is to divide the nodes into as few compact
modules as possible. A module is compact if there are very few links outside from the
module, but many links within the module. Each node can only belong to one module.
If the number of nodes and links in a network is large we have a complex network.

The characteristics of the studied problems can be found in Table 1. Problem “Karate”
and “Dolphin” are social network problems similar to the example given above.
Problem “Miserables” is a co-appearance network of characters in the novel Les
Miserables. Problem “Football” is a network of American football games between
divisions and problem “Power” represents a network topology of the Western States
Power Grid of the United States. The problems were found from Mark Newman’s web
page: http://www-personal.umich.edu/~mejn/netdata/. In Table 1 the number of
modules denotes the maximum number of allowed modules and it impacts heavily on
the combinatorial complexity, i.e. the number of binary variables, of the problem. The
maximum number of modules can in principle be as many as the number of nodes, but
here we have chosen a reasonable upper limit. For the three smallest problems the
number of modules found in (Xu et al., 2007) was used.

Table 1: Problem characteristics

Binary Links/Nodes

Problem name Shortname  Nodes  Links  Modules variables ratio
Zachary's karate club Karate 34 78 4 136 2.3
Dolphin social network Dolphin 62 159 5 310 2.6
Les Miserables Miserables 77 254 6 462 33
American College football Football 115 613 10 1152 53

Power grid Power 4941 6594 20 98820 1.3
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3. Problem Formulations

The studied problem can, among others, be formulated as a compact bilinear non-
convex MIQP problem or a convex MIQP problem. In this paper, the convex MIQP
problem denotes an otherwise convex problem except for the integer requirement. The
convex MIQP proposed by (Xu et al., 2007) was used and from that the bilincar MIQP
can easily be formulated. Furthermore, the node data was reordered in descending
connectivity order and symmetry breaking constraints proposed in (Xu et al., 2007) was
applied for the formulations. The metric to estimate the module compactness was first
proposed by (Newman and Girvan, 2004). In the following a full description of the used
formulations is given.

The following notation is used:

Constants: M = the total number of nodes, L = the total number of links,

d, = the number of links connected to node n

Indices: n,e=node, [ =link, m=module

Variables: Q = modularity compactness measure and objective variable (continuous),
L,, = number of links among nodes within module m (positive and continuous),

D,, = degree of module m, i.e. the number of links connected to a node for each node in

module m (positive and continuous),
Y, » =1 if node n belongs to module m, otherwise 0 (binary),

X, ,,=liflink [ belongs to module m, otherwise 0 (positive and continuous)

The following bilinear MIQP formulation, where Q is maximized, was used:
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, where [ € {n,e} denotes if there exist a link between the two nodes nand e.

Symmetry breaking was applied by replacing (2) with the following constraints:
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The convex MIQP was formulated with constraints (1) to (3) and the following
additional constraints:

)(l,m < Yrtm Ym |l < {n,e} (9)

X <Y ,Vm,l|l c {n,e} (10)
L

Lm = z Xl,m ,Vm (11)

l‘lg{n.e}

The convex MIQP problem with symmetry breaking constraints was formulated by
adding to (1), (2), (3), (5), (8) and (11) the following constraints:

X <Y, ,Vm,l|l<_:{n,e},n2m/\e2m (12)
X <Y, ,Vm,l|l<_:{n,e}, nZMmAe=m (13)
X;,,=0 ,Vm,l|lg{n,e},n<mve<m (14)
4. Setup

To compare the problem formulations and their suitability for different solvers GAMS
23.5.2 was used. The following solvers were compared: CPLEX, AlphaECP, BARON,
CoinBonmin, DICOPT, LINDOGIlobal, SBB. The solvers were set to solve the five test
problems so that each of the four formulation was used with two different time limits,
see Table 2. Special attention was given to DICOPT and SBB when solving with the
bilinear MIQP formulation without symmetry breaking constraints. These solvers
terminated with a solution for each test problem within 2 minutes. With this motivation
each test problem was solved 100 times with a random network configuration at startup,
i.e. the discrete variable levels are selected randomly, see Table 3. The test computer
was an Intel core 17 with 8 processors of 2,8 GHz and 6GB of memory.

5. Computational Results and Conclusions

The result of the comparison can be found from Table 2 and 3. In Table 2 and 3 the
following abbreviations are used: F=Formulation, B=Bilinear MIQP, C=Convex MIQP,
S=Symmetry breaking applied, T=Time limit in hours, *=Terminated before time limit
was reached. In Table 2 the last column in each row denotes how many solvers found
for that formulation a modularity value above 0.1, i.e. a good or modest solution. The
last row denotes the number of solved problems to a modularity value above 0.1 by the



Table 2: The objective value for the maximization problems

Alpha- Coin- LINDO-

F S T | CPLEX ECP BARON Bonmin DICOPT Global SBB
Karate
B No 1 0.42 0.00* 0.42* 041* 0.42% 0.42% 0.42% 6
B No 2 0.42 0.00* 0.42* 0.41* 0.42* 0.42* 0.42* 6
B Yes 1 0.29 0.29* 0.42* 0.42* 0.38* 0.42* 0.38* 7
B Yes 2 0.29 0.29* 0.42* 0.42* 0.38* 0.42* 0.38* 7
C No 1 0.42* 0.42* 0.42* 0.42* 0.00* 0.42 0.42% 6
C No 2 0.42* 0.42* 0.42* 0.42* 0.00* 0.42 0.42% 6
C Yes 1 0.42* 0.42* 0.42* 0.42* 0.35% 0.42% 0.42% 7
C Yes 2 0.42* 0.42* 0.42* 0.42* 0.35% 0.42* 0.42* 7
Dolphin
B No 1 0.43 0.02* 0.53 0.50* 0.49* 0.53 0.49* 6
B No 2 0.52 0.02* 0.53 0.50* 0.49* 0.53 0.49* 6
B Yes 1 0.48 0.00* 0.53 0.50* 0.50% 0.52 0.50% 6
B Yes 2 0.45 0.00* 0.53 0.50* 0.50% 0.53 0.50% 6
C No 1 0.53 0.52 0.15 0.53 0.00* 0.51 0.46* 6
C No 2 0.53 0.52 0.15 0.53 0.00* 0.51 0.46* 6
C Yes 1 0.53* 0.53* 0.46 0.53 0.01* 0.47 0.53* 6
C Yes 2 0.53* 0.53* 0.52 0.53* 0.01* 0.47 0.53* 6
Miserables
B No 1 0.45 0.17* 0.56 0.55* 0.55% 0.56 0.55% 7
B No 2 0.49 0.17* 0.56 0.55* 0.55% 0.56 0.55% 7
B Yes 1 0.24 0.12 0.56 0.56* 0.44* 0.56 0.45* 7
B Yes 2 0.24 0.12 0.56 0.56* 0.44* 0.56 0.45* 7
C No 1 0.56 0.56 0.12 0.56 0.00* NA 0.54* 5
C No 2 0.56 0.56 0.14 0.56 0.00* NA 0.54* 5
C Yes 1 0.56* 0.56* 0.15 0.56 0.25% NA 0.56* 6
C Yes 2 0.56* 0.56* 0.15 0.56 0.25% NA 0.56* 6
Football
B No 1 0.48 0.16* 0.60 0.60* 0.48* NA 0.48* 6
B No 2 0.48 0.16* 0.60 0.60* 0.48* 0.52 0.48* 7
B Yes 1 0.36 0.30* 0.54 0.57* 0.51* NA 0.51* 6
B Yes 2 0.39 0.30* 0.54 0.57* 0.51* NA 0.51* 6
C No 1 0.44 0.46 0.39 0.00 0.00* NA NA 3
C No 2 0.49 0.46 0.39 0.00 0.00* NA NA 3
C Yes 1 0.52 0.01 0.00 0.00 0.00* NA NA 1
C Yes 2 0.52 0.01 0.00 0.00 0.00* NA NA 1
Power
B No 1 NA 0.07 NA NA 0.66* NA 0.70* 2
B No 2 NA 0.07 NA NA 0.66* NA 0.70* 2
B Yes 1 NA NA NA NA NA NA NA 0
B Yes 2 NA NA NA NA NA NA NA 0
C No 1 NA 0.00 NA NA NA NA 0.81 1
C No 2 NA 0.00 NA NA NA NA 0.85 1
C Yes 1 NA NA NA NA NA NA NA 0
C Yes 2 NA NA NA NA NA NA NA 0

32 24 30 28 22 21 32
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Table 3: The best and average, in brackets, modularity value

Solver F S Karate Dolphin Miserables Football Power
DICOPT B No  0.42(0.39) 0.53(0.49) 0.56 (0.51) 0.59 (0.54) 0.69 (0.67)
SBB B No  0.42(0.40) 0.53 (0.50) 0.56 (0.52) 0.59 (0.54) 0.73 (0.71)

corresponding solver. In Table 3 the average value denotes the arithmetic mean value.
From Table 2 and when considering the solving times (not shown) suggests that the
solver CPLEX combined with the convex formulation that contains symmetry breaking
constraints is to prefer if the problem is not too large. However, with the used time
limits the formulation is not very suitable for the larger problems, i.e. the two largest
problems in the comparison. In that case by using the more compact formulations, the
remaining three, some solver could find the best solution. From Table 3 we can see that
DICOPT and SBB were able to find good solutions when repeatedly solved starting
from random network configurations. The solvers reported for each solver call a
solution, except with DICOPT for problem “Power” when 29 times out of 100 a
solution was reported. The total solving time for DICOPT was about 1 hour and for
SBB about 8 hours, which suggests that it can be a good solving strategy especially for
large networks. In the future a formulation with a reduced set of symmetry breaking
constraints might be worth investigating.
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