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Process development in chemical industry is a multiobjective optimization problem.
Objectives of this optimization are for example product quality, raw material and
investment cost, energy efficiency, reliability or health, safety, and environmental
issues. Parameters for this optimization are, e.g., feed stock, utilities, process
configuration, equipment, operating parameters, and site.

In process design, the developer usually generates a certain number of process variants
by varying process parameters intuitively. The process is usually stopped if a solution is
found that is acceptable regarding all or at least most criteria, optimality cannot be
guaranteed. The present paper describes a feasible alternative approach, which is a real
multiobjective optimization based on the Pareto optimality concept. The Pareto front
describes a set of solutions where no improvement in one objective can be reached
without at least getting worse in another objective. The Pareto front allows investigating
the trade-offs between different objectives, but the final choice of the design is left to
the user. In the present work the multiobjective optimization is used together with a
decision support system, which allows navigating within the Pareto front and thereby
finding the best compromise between the objectives in a rational and efficient way.

1. Introduction

At the time being optimization of a process design is usually an iterative process
including subsequent steps of simulation, basic design and economic evaluation. This
optimization process will typically end due to limited time resources. As a result an
improved but probably sub-optimal process design will be obtained, since many
different, partly conflicting objectives have to be met in an acceptable range. This is a
typical multiobjective optimization problem which is not yet accounted for in the
developer’s workflow.

Please cite this article as: Asprion N., Blagov S., Ryll O., Welke R., Winterfeld A., Dittel A., Bortz M., Kuefer K.H., Burger J.,
Scheithauer A. and Hasse H., 2011, Decision support for process development in the chemical industry, Chemical Engineering
Transactions, 24, 301-306

DOI: 10.3303/CET 1124051



302

One step forward to overcome this situation is the concept of the intelligent total cost
minimization approach (i-TCM) presented by Wiesel and Polt (2006). In that approach
the different objectives are weighted with costs to a total cost function which can be
minimized. One drawback of that method is that other, not cost related objectives can
not be included. Furthermore, the approach suffers from the typical drawbacks of
weight-based multiobjective optimizations (cf. Miettinen, 1999). One example is the
strong dependency of results on the chosen (or assumed) weighting factors. An
alternative promising approach is studying the different objectives individually and
investigating sensitivities. For example it might be interesting to investigate different
price scenarios for the raw materials and to see the impact on the different objectives. In
the present approach theses studies are carried out not taking the entire solution space of
the process design problem as a basis but only on the relevant subset of the Pareto
optimal solutions, i.e. on the Pareto front. As the Pareto front has a considerably lower
dimensionality than the entire solutions space, this considerably facilitates the search for
the most advantageous design, which will, when using the present approach, always be
Pareto-optimal. To support the choice of the final design an interactive new decision
support system the so-called “Pareto-Navigation System” (Monz, 2006) is used in the
present work. The work does not aim at presenting a comprehensive overview of the
technique, but rather illustrates the main ideas by a simple example. The tools and
methods used for that preliminary study will be continuously improved in order to allow
routine applications in the future.

Note that Pareto navigations are very compatible with the process engineer skills
and his freedom to choose the final solution according to any complex criteria he may
wish to apply. In fact, Pareto navigation has been intuitively used for a long time in
process engineering. The best known example for this is probably the N,Q-curve for
designing distillation columns, see e.g. Billet (1973): a given set of specifications of a
simple distillation column, can be fulfilled by different combinations of the choice of
the number of theoretical stages N and the reboiler duty Q, cf. Figure 1. The feed stage
is optimized for all choices of N and Q. N and Q are conflicting objectives reflecting
investment and operational costs of a column. The N, Q-curve divides the solution space
in two regions: one in which the design (choice of N,Q, and the corresponding number
for the feed stage) does not allow meeting the specifications and one in which the
design allows overfulfilling them, i.e., lower numbers for N,Q would be sufficient to
meet the specifications. Hence, the choice of N, Q in that region would not be Pareto
optimal. Furthermore, any other choice of the number of the feed stage than the one
resulting from the optimization would lead to an increase in Q and would, hence, also
not be Pareto optimal. Therefore, the N,Q-curve is a true Pareto front and choosing the
operating point on the N,Q-curve is a true Pareto navigation.

2. Decision Support System

The general problem in process engineering is that we are usually working with certain
process parameters X, e.g., temperatures, pressures and concentrations which will result
in different outcomes for the objectives f like variable and fixed costs. The projection
from the parameter space to the objective space is usually a nonlinear transformation so
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that the outcome for the objectives upon a variation of x is hard to predict. It is also in
general not easy to solve the inverse problem, i.e. to fix the objectives f and to
determine the process parameters x so that the desired f is obtained. Multiobjective
optimization using Pareto-navigation helps fulfilling this task.

Pareto front

specs overfulfilled

number of theoretical
stages N

specs not fulfilled

reboiler heat duty Q

Fig. 1: N,Q-curve for a simple distillation with given specifications: The N,Q-curve is a
Pareto front and choosing the operating point on the N,Q-curve is a Pareto navigation.

Multiobjective optimization especially with a large number of objectives is often very
time-consuming. Therefore, efficient strategies for exploring the Pareto front are
necessary (e.g. Ruzika and Wiecek 2005). In the following the sandwiching approach
and the Pareto-Navigation will be briefly presented.

2.1 Sandwiching

Experience shows that within one process concept and with continuous objectives, it is
reasonable to assume that most Pareto fronts in chemical engineering are convex (like
e.g. N,Q-curves). That assumption helps to considerably reduce the effort for
constructing the Pareto front. In case of non-convex Pareto fronts it can be shown that
these can be sub-divided in convex parts (Monz, 2006).

First the extreme compromises (i.e. the solutions with optimized single objectives) are
estimated in the given parameter range. With an inner and outer convex hull the
uncertainty region of the Pareto front can be estimated. The Pareto front will be
explored until a certain accuracy is reached.

In the first step the inner convex hull is defined by the already known Pareto points,
which are the vertexes of the convex hull. For the two-dimensional case the inner
convex hull connects adjacent Pareto points by straight lines, which is shown in Fig. 2a.
The outer convex hull can be determined by the normal vectors to the Pareto front at the
estimated Pareto points, which are also results of the optimization. The normal vectors
are defining tangential hyperplanes of the Pareto front. Besides the extreme compromi-
ses the intersections of these hyperplanes are the vertexes of the outer convex hull. For
the two-dimensional case the hyperplanes are straight lines as can be seen in Fig. 2a.

In the sandwiching approach always the region with the largest difference between the
inner and the outer convex hull is explored. To determine this thickest part the inner
convex hull is elongated until this elongated hull includes the complete outer hull (Fig.
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2b). It can be shown that the thickest part is always at a vertex of the outer convex hull.
This vertex is than the starting point for a one-dimensional optimization. The direction
of the optimization is in the direction of the thickest part (method of Pascoletti-Serafini
(Monz, 2006, see for example Fig. 2b). The convex hull has to be recalculated in the
neighborhood of this new Pareto point only (Fig. 2c¢), which means the effort is
relatively small.

Compared to other techniques like evolutionary algorithms or the g-constraint method
(kind of optimization with enumeration, Miettinen, 1999) the sandwiching approach has
a superior performance due to the controllability of progress and the estimation of
errors.

f, f,
Inner
. convex
Pareto hull
front
Outer
convex
hull
a) 2 c) f;

Fig. 2: Sandwiching approach for determining the Pareto front: a) determine convex
hulls, b) indentify thickest part of the sandwich and calculate Pareto point in this
direction, ¢) update convex hulls

2.2 Pareto-Navigation

The goal of the sandwiching approach is to estimate the Pareto front only on a few
points which allow an interpolation as well in the objectives as in the parameter space.
Usually the Pareto front will be estimated in an off-line mode and the results of each
simulation will be stored. This allows to load the results afterwards in a navigation tool
and to navigate in the Pareto front. Here the different objectives together with certain
process parameters will be shown. For example one might change the outcome of one
objective and will see the impact on the other objectives and the parameters. It is also
possible to change parameters and to see the influence on the objectives. The navigation
tool gives the possibility to compare Pareto fronts of different process configurations or
sites. One can use it also for comparison of different absorption or extraction solvents.
From a chosen solution a simulation with the model can be restarted.

The sandwiching approach gives a good estimate of the uncertainty in the Pareto front.
So it is possible to start a multiobjective optimization with a lower accuracy and as soon
as the parameter region with the interesting solutions in the navigation tool is identified
to perform a second multiobjective optimization with tighter limits for the parameters
and higher accuracy in the Pareto front. Furthermore it is possible to add additional
parameters and objectives and to explore the new Pareto fronts.
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3. Example

For the preliminary study which is reported here, the e-constraint method (Miettinen,
1999) was used for constructing the Pareto front. In a later project phase the
computational effort will be reduced by using the sandwiching approach and
interpolation as presented above.

In this study the separation of an acetone/chloroform mixture by a pressure swing
distillation was investigated, cf. Fig. 3.

chloroform acetone
2 4
First Column
Number of theoretical stages 50
acetone / 1 Feed stage 34
chloroform Refiux ratio 20
Second column
Number of theoretical stages 60
3 5 Feed stage 43
Reflux ratio 40
1 bar 10 bar

Fig. 3: Separation of an acetone/chloroform mixture by pressure swing distillation

The following three objectives were chosen: purity of the chloroform product (Stream
2), purity of the acetone product (Stream 4) and the amount of recycle (Stream 5). Here
the basic assumption was: minimizing the recycle will give the most profit. For
simplicity, the columns in the rigorous simulation had a fixed but reasonably chosen
number of stages and a fixed reflux ratio and were operated at the pressure given in Fig.
3. Therefore the only parameters of this optimization were the reboiler duties of both
columns. An optimization of the column design could straightforwardly be included in
the procedure. In the simulation a short-cut tool for apparatus design of the columns,
investment and variable cost estimates as well as prices for the products were included,
so that it was possible to estimate the profit (here given without currency).

4. Results

In Fig. 4 a snapshot from the navigation tool is shown which also includes a
visualization of the Pareto front obtained from the rigorous simulations (with BASF’s
inhouse steady-state simulation tool CHEMASIM using the NRTL model). As can be
seen, interestingly, the highest profit is not achieved at low recycle rates as one could
assume, but rather at high recycle rates. Furthermore, the highest profit is achieved for
the lowest tolerable purity of chloroform (98%), but the highest purity of acetone
(99.95%). All this is not obvious at a simple glance and such solutions could well be
missed when the presently still common intuitive design procedures are applied. Of
course, these findings can be explained: the reason is the higher price of chloroform
compared to acetone. Due to increasing purity of acetone the yield of chloroform
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increases and, furthermore, the recycle gets further from the azeotrope at 1 bar, so that
the separation in the first column becomes easier (i.e. less variable costs).
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Fig. 4: Pareto-navigation tool applied to the separation of an acetone/chloroform
mixture as shown in Figure 2

5. Conclusion and Outlook

This very simple example of a pressure swing distillation shows that a manual
optimization in chemical engineering will be sub-optimal, since some cases will be
omitted due to certain expectations — especially when the flow sheets are complex and
recycles are present. Pareto navigation helps to understand the influence of design
parameters, carrying out a rational and efficient multiobjective optimization, and finally
finding economically superior designs for chemical processes

In the presentation the approach will be described, results of the application of the
Pareto navigation tool will be presented. The examples will be extended and will
include the comparison of a pressure swing distillation to an entrainer distillation.
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