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Virtual soft sensors are developed for properties estimation of diesel fuel as the crude 

oil column side product. Because of the growing standards for the fuel quality and needs 

to produce various gradations of diesel fuel, frequently laboratory testing and quality 

controls of the products are necessary. On the basis of available continuous temperature 

measuring of particular process streams, soft sensors for estimating end boiling point 

(D95) of diesel fuel have been developed. Linear and nonlinear soft sensor models have 

been built using linear regression and artificial neural networks. Statistical data analysis 

has been carried out and the results were critically judged. 

1. Introduction 

From industrial facilities are expected to have greater efficiency and compliance with 

prescribed laws that impose hard limits to the quality of products and emissions of 

pollutants. For this reason there is a need for an effective measurement and process 

control, which imposes the need to monitor a large number of process variables using 

appropriate measuring devices. The main problems are big price, and unreliability of 

on-line measuring instruments and analyzers. 

Soft sensors, as part of virtual instrumentation, are focused on assessing the system state 

variables and quality products by applying the model, so replacing the physical senses 

and laboratory analysis (Bolf et al., 2008, 2009). 

There are numerous reasons why soft sensors should be applied in industry. They 

become standard tools showing tendency to change their role from the regulatory one 

within open control loop towards playing the role of a sensor in control loop. Fields of 

application characteristically include substitute for measuring devices, reducing need 

for measuring equipment, sensors validity evaluation, failure detection, and diagnostics 

(Fortuna, 2007; Kadlec et al., 2009). 

Based on the available continuous measurement of process streams the soft sensors 

have been developed to estimate the distillation end point of diesel fuel. Experimental 

data were collected on refinery crude distillation unit. Several linear and nonlinear 

models of soft sensor are developed using a linear regression analysis and artificial 

neural networks. 
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2. Diesel Fuel Production in Crude Distillation Unit 

Diesel fuel is a mixture of kerosene fraction, light gas oil fraction, and heavy benzene, 

containing mainly hydrocarbons C10 to C12 from the alcane (parafine), cycloalcane 

(cycloparafine, naphtene), and aromatic hydrocarbons groups. It is used to fuel diesel 

engine with internal combustion, where the ignition takes place by self-combustion of 

compressed fuel and air compound. Its important properties include: density, distillation 

curve, cetan number (cetan index), filterability, ignition point, viscosity, aniline point, 

corrosion tendency, and sulphur quantity. One of the key properties is distillation end 

point (Cerić, 2006).  

Heavy naphtha, kerosene, and light gas oil fractions are used for blending of diesel fuel; 

these are being drained away as side fractions of crude distillation column. Section of 

the column with diesel fuel products is given in Figure 1. Based on the analysis of the 

process and process expert knowledge the following variables are used for soft sensor 

development: 

TCT - column top temperature, TRC-6104 

THN - heavy gasoline temperature (36
th

 tray), TR-6196 

TK - kerosene temperature (23
rd

 tray), TR-6197 

TLGO - the light gas oil temperature (19
th

 tray), TR-6198 

THGO - the heavy gas oil temperature, TR-6199 

TPA – pump around temperature, TRC-6103. 

All the temperatures are functions of side product flow rates and operating conditions. 

 

  

Figure 1: Crude distillation column with diesel fuel products 



3. Results and Discussion 

3.1 Linear model 

At the beginning of the analysis, statistical data processing has been conducted 

(Statistica, 2006). The data from the plant have been obtained in the period of one year. 

Laboratory analysis was conducting 4 times a day. The extreme values from the data 

were eliminated using data filter. The correlation coefficients between the variables 

have been calculated, Table 1. If the input and output variables are independent 

correlation coefficient ρ is equal to zero and if they are dependent correlation coefficient 

is in the range from -1 to 1. 

Table 1 Correlation coefficients after removing the extreme values 

ρ TCT THN TK TLGO THGO TPA TD95 

TCT 1.00 0.71 0.04 0.05 -0.15 -0.15 -0.17 

THN 0.71 1.00 0.62 0.53 0.12 -0.04 0.21 

TK 0.04 0.62 1.00 0.73 0.34 0.11 0.61 

TLGO 0.05 0.53 0.73 1.00 0.34 0.36 0.71 

THGO -0.15 0.12 0.34 0.34 1.00 0.16 0.36 

TPA -0.15 -0.04 0.11 0.36 0.16 1.00 0.35 

TD95 -0.17 0.21 0.61 0.71 0.36 0.35 1.00 

 

Based on the analysis it was decided to create a linear model with the two most 

influential input variables (TK  and TLGO). 

Table 2 presents statistical parameters of the linear model. Multiple correlation 

coefficient R represents relatively good correlation, and the value of the coefficient of 

determination R
2
 and adjusted coefficient of determination, which indicate 

approximatively linear model. F-test rejects the hypothesis that the model has no linear 

dependence, and with the level of significance (p) which is equal to zero we can 100 % 

confirm the reliability coefficient of determination. The standard error estimate of 

parameters has a satisfactory value for the linear model. 

Table 2 Statistical parameters of linear model 

R R
2
 Corrected R

2
 F(2,319) p Stand. error 

0.72 0.52 0.52 175.21 0.00 10.81 

 

Multiple correlation coefficient, determination and adjusted coefficient of determination 

values are between 0.5 and 0.6 which are small but indicates that the regression model 

is partly representative. Parameter p is equal to zero, which tells there is no 

autocorrelation of error relation.. 

The resulting linear model has the following form: 

 

D95 K LGO274.11 0.64 1.61T T T     (1) 
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3.2 Nonlinear model 

After performing multiple linear regression analysis, it was determined that due to 

relatively small multiple correlation coefficient and big standard error it was not 

possible to realize linear models in real plant environment. So, neural network-based 

soft sensors were developed. 

Neural network based soft sensor models were developed using simulation package 

(Statistica, 2006). During preliminary tests, some twenty experiments had been carried 

out where, in reciprocity, the characteristics of differently structured neural networks 

have been compared: the linear ones, the networks based on the RBF – Radial Basis 

Function Networks, and the Multilayer Perceptrons (MLP). Each experiment included 

examining of one hundred neural networks, and twenty best of them were singled out.  

The entire data set is divided into three parts by randomization: the train set, the select 

set, and the testing set, positioned in the 2:1:1 ratio. In order to study the impact of 

individual inputs to the outputs of model of the software sensor also was carried out 

sensitivity analysis. Sensitivity analysis showed that it is necessary to consider five of 

the seven possible inputs for both soft sensors, Figure 2. 

The findings showed that the MLP networks have the best characteristics, thus they 

were chosen to carry on additional researches aimed to improving the model. 

During MLP neural networks training, the number of neurons in the hidden layer was 

varied from 1 to 20 and different learning algorithms were used (back propagation with 

variations of learning rate and momentum, conjugate gradient descent, Levenberg-

Marquardt) as well as pruning and Weigend regularization techniques. Also, the best 

results were achieved using a combination of back-propagation algorithm in the first, 

and conjugate gradient descent algorithm in the second stage of neural network training. 

 

 

Figure 2: The structure of the neural network model 

Multilayer perceptron neural networks has optimal structure of 5-7-1 (five neurons in 

the input network layer, seven in the hidden layer, and one neuron in the output layer), 

and are shown in Figure 2. 

Table 3 show performances and errors of each data set – the train set, the select set, and 

the testing set. The performance of the sets equals the ratio of standard deviations, i.e. 

the ratio of standard error deviation and standard data deviation: 
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Error (E) is equal to the difference sum squares between neural network outputs and 

experimental outputs: 

 

2

exp,

1

1
ˆ( )

n

i i

i

E y y
n 

   (3) 

Table 3 Parameters of best model performance 

TD95 (°C) 
Performance 

of train set 

Performance 

of select set 

Performance 

of testing set 

E 

(train 

set) 

E 

(select 

set) 

E 

(testing 

set) 

MLP 5-7-1 0.59 0.59 0.58 0.12 0.13 0.13 

 

The best network model has also been trained with the back propagation algorithm in a 

hundred iteration steps, followed by thirty-three iterations with gradient descent 

method. The best neural network for each of the models has been chosen using the 

testing set error criterion. It is taken into account that the train set, the select set, and the 

testing set performances are at approximately the same level, which indicates that 

behavior of the neural networks is uniform in each of the three sets. 

Table 4 Regression parameters for diesel fuel distillation end point (D95) 

TD95 (°C) Train set Select set Testing set 

expx  322.04 334.48 333.39 

exp  14.80 15.99 16.57 

e  0.11 -1.37 -0.19 

e  8.78 9.43 9.69 

e  6.78 7.82 7.86 

Ratio   0.59 0.59 0.58 

R 0.81 0.82 0.83 

 

Table 4 shows that absolute error mean for the developed neural network for distillation 

end point is about 7 °C. Multiple correlations for the neural network are relatively high 

(0.8). Figure 3 shows the results obtained by neural network model where two most 

influential variables were taken as inputs (TK and TLGO). 
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Figure 3: The results obtained using two most influence variables 

4. Conclusions 

Based on continuous temperature measurement of adequate process streams the soft 

sensors for estimation of diesel fuel distillation end point were developed. Several soft 

sensor models were developed using regression analysis and neural networks. 

Sensitivity analysis showed that the temperature of light gas oil eminently affects the 

diesel fuel distillation end point. 

Based on the result analysis and statistical indicators it can be concluded that models of 

linear soft sensor satisfy the purpose. Models are suitable for use, but caution is needed 

due to variability of operating conditions. Nonlinear models applying neural networks 

give similar results. 

Developed soft sensors can be used for continuous estimation of diesel fuel properties, 

and the methods of inferential control. For this purpose it is necessary to implement one 

of the dynamic compensation methods. 
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