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The technical challenge in designing an onsite power generation system incorporating
renewable energy technology for overall sustainability is the inherent unpredictability of
the renewable resource. Integration of a battery bank as energy storage can alleviate the
mismatch between the load and power generation. By accounting for the system
operating and geometrical constraints, the entire set of feasible design options can be
identified on a plot of battery capacity vs. rated power of wind generator. Such a
diagram is known as the design space. The present study illustrates the generation of
design space for different reliability levels for wind-battery systems using chance
constrained programming. The proposed approach can generate and evaluate a range of
possible design alternatives which can speed up the decision making process and also
provide a clear understanding of the system design limitations.

1. Introduction

Reliance on conventional fossil fuel energy to satisfy the growing electricity demand is
not sustainable. One of the options for sustainability is to generate power utilizing
renewable energy sources. In order to integrate renewable energy based power systems,
its economic competitiveness and uncertainty in availability compared to conventional
fossil fuel based power generation is a subject of concern. Optimum choice of
equipment size, system design and consideration of uncertainty of the resource can
promote competitiveness of these technologies. This paper proposes the design space
methodology for sizing and optimizing a wind-battery power system by incorporating
the uncertainty of the wind resource in the design stage. The methodology originally
derives inspiration from design and optimization of heat exchanger networks in
chemical process plants (Poddar and Polley 1996, Muralikrishna and Shenoy 2000). The
application of design-space approach in identifying the optimum design options has also
been demonstrated in the case of solar water heating systems (Kulkarni et al. 2007),
standalone battery integrated diesel generator power system (Arun et al. 2008) and wind
— photovoltaic hybrid system (Roy et al. 2007).

2. Mathematical model of Wind — battery system

The wind-battery system consists of the wind turbine rotor, transmission system,
electrical generator and battery bank. The mathematical model of each of the above sub-
components is described below:
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2.1 Wind turbine rotor and transmission system

The fundamental rotor performance representation, known as the power coefficient (C,)
vs. tip speed ratio (A) characteristic can be obtained from the Blade Element Momentum
(BEM) theory. The turbine modeled is a horizontal axis three-bladed upwind rotor with
a NACA 23015 aerofoil section. From the knowledge of blade geometrical parameters
such as rotor diameter, blade pitch angle, chord and twist distribution and aerofoil
characteristics, the C, - A characteristic can be obtained. The rotor C, - A model was
validated with the field test results reported by Anderson et al. (1982). Maximum power
extraction from the wind can be achieved by a variable speed configuration in which the
tip speed ratio is maintained constant at A,,, which corresponds to the maximum power
coefficient (Cpnax). The power extracted by the rotor (P,,) at any wind speed (V) with
respect to the cut-in (V,), rated (V) and cutoff (/) velocities can be expressed as

P,=P, . whenever V, <V <V,

=(1/2)pav>C

=0 otherwise

whenever V, <V <V, M

p max

where P, , is the power extracted by the rotor at the rated wind speed (V,) also
designated as the low speed shaft rated power. It is assumed that power control above
rated wind speed is done by progressively yawing the turbine rotor out of the wind in
such a manner that P,, = P,, ,. Mechanical efficiency (#,) of the drive train can be
modeled using Eq (2) with the assumption that the transmission loss is proportional to
P,y » (Johnson, 1985).
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where ¢ is the number of gear stages and r is the constant of proportion for the power
loss per stage.

2.2 Electrical generator

In the present study a self excited induction generator has been considered in which the
reactive power is supplied by charged capacitor banks connected across the stator
terminals. The capacitor current can be controlled so as to allow a variable frequency
generation. With known values of generator circuit parameters and given input wind
torque, the output power can be determined from the equivalent circuit model of the
induction machine. In order to supply a load that requires a constant frequency, the
variable voltage variable frequency output of the generator needs to be converted into
constant voltage constant frequency by means of a power electronic device consisting of
an AC-DC and DC-AC converter. By integrating the rotor, transmission and generator
model the power output characteristics of the wind machine can be obtained. It is
assumed that at rated condition the generator three phase voltage is 415V and the
frequency of current is 50Hz for a 4-pole electrical machine.

2.3 System modeling following a probabilistic approach

The components of a standalone wind - battery power system connected in a parallel
fashion is shown in Figure 1. The load dispatch is such that, whenever excess power is
available after meeting the load, it is stored in the battery bank and when generation



from the wind turbine is insufficient to meet the demand, energy is drawn from the
battery, provided the battery has not reached its depth of discharge (DOD). When the
battery is fully charged, any excess power available is dumped. There is a loss of load if
at any instant there is no or less generation from the wind turbine and the battery bank is
fully drained. Power transfer across the battery bank (dQp/df) can be calculated by
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Figure 1 Schematic of a standalone wind-battery power system

considering the balance between the power supplied by the wind turbine (P,,(¢)) and the
load (L(?)) at a given instant 7 as :

dQg/dt =[P, (t) = L(t) - P, (D1f 3)
where f =7, whenever P, (¢) 2> L(¢) @)
=1/n, whenever P, (¢) < L(¢)

n. and 5, represent the charging and discharging efficiency of the battery bank and bi-
directional converter, while P,(¢) is the power which may be sent to dump loads,
whenever the generation exceeds the demand. It is assumed that #. and #, and therefore /'
do not vary within the time step. The hourly wind speed is treated as a stochastic
variable which follows a Weibull distribution. Assuming that power generated by the
wind turbine (P,) also follows a Weibull distribution, the density function and
cumulative density function (CDF) of the power generated by a given turbine can be
derived from the density function of wind speed and the functional relation between the
power generated and the wind speed (Papoulis et al., 1984). The CDF of the power
function may be given by:

F(P,)=1- exp[— (Pw Jac? )3/1(} where a = (1/2)pAC 7, C))

k and ¢ represent the shape and scale parameters of the wind speed distribution and 7, is
the combined efficiency of transmission and generator system. Assuming that the
demand at a given time step is deterministic, the load can be met if power supplied by
the system (Py(¢)) is equal to or greater than the demand as expressed by the following
chance constraint (Charnes and Cooper, 1959).

Prob[P,(1) > L(1)]> a (5)



The system sizing therefore corresponds to a specified value of a. Since, power may be
supplied to the load through the combined sources of battery bank and the wind turbine,
for a small time step At Eq. (5) may be expressed as follows:

Prob{l’w(t) < 1)+ 208D G0 } <l-a ©)
FOA fOA

It may be observed that Eq. (6) represents the CDF of P,. Knowing the distribution
function of power, the deterministic equivalent of Eq. (6) in terms of the battery energy
values may be expressed as:

Oy (t+ M) = 0 (0 +(ac* (~Ine)T* — L)~ P, (0 ¢ @)

The storage capacity for a given rating of the wind generator capable of meeting the
specified load may be obtained by solving Eq. (7) over the entire horizon (7). The
required battery bank capacity (B,) is then obtained as follows:

B, = max{ O, (1)}/DOD ®

For each value of generator rating considered, the associated minimum battery bank
capacity is obtained by minimizing the storage capacity given by Eq. (8). The
optimization variables are the initial battery energy, Op( = 0) and the power dumped at
each time step (P (f)), subject to the constraint of non-negativity of the battery state of
energy (Qp (f) > 0), non-negativity of the power dumped (P,,(#)> 0), and the equality of
the battery energy at the start and end of the time horizon (Qy (1=0) = O (=1)). The
latter constraint suggests that the battery being an energy storage device, in a given time
horizon, no net energy is supplied to or drawn from the battery bank. The above
procedure obtains the minimum battery capacity for a given generator rating. In order to
find the minimum wind generator rating (P,,;,), the power dumped at each time step
P4(f) in Eq.(7) should be minimum (ideally equal to zero).

3. lllustrative Example

An average hourly power demand profile of a chemical plant located in Maharashtra,
India is shown in Figure 2 (Sridhar, 2004). Figure 3 shows the hourly mean and
standard deviation of wind speed (CWET, 2001) on a representative day for a sensor
height of 25m near the plant location. For a chosen reliability level (), and with known
resource and demand profiles, the minimum wind generator rating (P,;,) and the
associated battery bank size can be found (Section 2.3). The time step of simulation is
lh and the time horizon is 1 day. The battery — converter system net charging and
discharging efficiency is taken to be 85%, while DOD of the battery is 60%. The turbine
has a hub-height of 40m and the power law index for the site is 0.13. For ratings greater
than P,,;,, the minimum battery capacity required may also be determined from the
system mathematical model. The loci of all such minimum battery requirement - wind
turbine rating points plotted on a battery size vs. wind turbine rating diagram is known
as the sizing curve and is shown in Figure 4. It can be seen that the sizing curve shows a
minimum and maximum value of wind turbine rating for a given a. In the present
example, the minimum wind turbine rating required to supply the load is 36.1 kW along



with a battery bank of 62 kWh This corresponds to a reliability level of 0.6. It may be
noted that the P,,, point is numerically close to the daily average load demand. This
provides a check on the result obtained.
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For values of a greater than 0.6, the minimum generator rating required increases while
the maximum generator rating decreases. This is because, typically, with an increase in
the confidence level (o), the power produced by the wind turbine decreases (Eq. 4). It
may be clarified that the rotor diameter varies with different values of o as well as along
the sizing curve for a given o. By tracing a particular constant reliability line (e.g.
0=0.65) it may be seen that with an increase in the generator rating from P,,,, there is a
resulting decrease in storage requirement which is due to the higher energy produced
over the time horizon by a generator of higher capacity. For a rated power of 50 kW, the
battery capacity required is least. If the wind turbine rating is increased beyond 50 kW,
the storage requirement increases. This may be justified because the maximum rotor
diameter being constrained by the hub height, an increase in the rated power leads to an
operation with higher rated wind speed. This results in de-rating of the turbine at
relatively low wind speeds leading to an increase in storage requirement.
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Figure.4 Sizing curve and design space for different reliability levels
Thus, for o = 0.6 to 0.7, the sizing curve shows an optimum battery capacity; however

for a greater than 0.7, the optimum battery capacity coincides with the minimum
generator rating point. This difference in the nature of the sizing curves is attributed to



the tradeoff between the incremental energy available from a relatively higher generator
rating and the energy lost due to de-rating of the turbine with an increase in rating. The
maximum generator rating which will suffice the load is 670 kW with an associated
battery bank size of 690 kWh. The region enveloped by the sizing curve is the area in
which a feasible configuration may be designed and is hence the feasible design region;
whereas the area below the sizing curve (excluding the sizing curve) will not meet the
load energy requirement and is hence the infeasible design region (shown by the shaded
area). The maximum confidence level for which a feasible system may be designed is
0.8. For confidence level greater than 0.8 the demand can not be met by any
combination of wind turbine rating and battery capacity.

4. Conclusions

The effectiveness of design space approach in solving a multi-parameter design problem
is demonstrated. Through the application of the proposed ideology the system designer
can first choose the system reliability level and then the combination of wind turbine
rating and battery capacity which can at the best realize the system design objective. By
application of chance constrained programming approach it was possible to account for
the uncertainty in resource availability. The system reliability can be further enhanced
by installing the system in a better wind regime or by increasing the hub-height of the
turbine. A system designer may therefore explore the practicality of the chosen
configuration by referring to the design space. The methodology is adaptable to the
chosen time horizon, not restricted by non-linearity in system sub - component models,
overall generic by nature and can be conveniently solved on a computer.
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