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Climate change has recently become a major focus of industry and government
agencies. Pinch analysis techniques have now been extended to various carbon and
environmental-constrained problems. The first applications were meant to determine
the minimum amount of zero- or low-carbon energy sources needed to meet regional or
sectoral emission limits. The concept was later extended to segregated targeting with
regions using unique sets of energy sources, and for targeting retrofits for carbon
sequestration in the electricity sector. Furthermore, the pinch analogy was used for
energy planning in scenarios involving land and water footprints. Graphical, algebraic
and automated targeting variants have been developed for these problems. This paper
discusses the historical evolution of recently developed pinch analysis techniques for
the various emission- and footprint-related problems, along with their contributions and
limitations. Some recent applications in Ireland and New Zealand are also reviewed.
Finally, a new application of the use of composite curves for company-level analysis of
carbon footprint improvement options is described

1. Introduction

In recent years, public concern about climate change has grown significantly. Emissions
of greenhouse gases such as carbon dioxide (CO,), methane and nitrous oxide from
industrial activities have long been known to be major contributors to global warming.
This trend has led to significant interest in the increased use of energy technologies with
inherently low carbon footprints (e.g., renewable energy sources such as wind, solar or
biomass) as well as in the retrofitting of existing ones (e.g., via carbon capture and
storage) to reduce greenhouse gas emissions. At the same time, there has been increased
research on the development of modeling techniques to analyze and simulate the effects
of these technologies on carbon emissions, and furthermore to optimize the deployment
of appropriate technologies in order to meet environmental goals while simultaneously
considering technical and economic constraints.
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A number of papers have recently been published on the use of pinch analysis methods
for such applications. Pinch analysis techniques date back to early work in the 1970’s
on the systematic design of heat recovery systems (Linnhoff et al., 1982; Smith, 1995).
Even though these early applications focused on the economic implications of energy
savings, the enhanced energy efficiency also contributes significantly to the emission
reduction of process plants. Further applications were demonstrated also to the analysis
of emissions for total sites (Dhole and Linnhoff, 1992; Linnhoff and Dhole, 1993;
Klemes et al., 1997). In the late 1980’s, mass integration techniques were developed
based on the analogies between heat and mass transfer (El-Halwagi and
Manousiothakis, 1989; El-Halwagi, 1997, 2006). The work concept was later extended
to water network synthesis (Wang and Smith, 1995; El-halwagi et al., 2003; Manan et
al., 2004; Prakash and Shenoy, 2005; Foo et al., 2006a; Ng et al., 2007) and property
integration (Kazantzi and El-Halwagi, 2005; Foo et al., 2006b). These various pinch
analysis techniques include graphical and numerical approaches.

More recently, pinch analysis concepts were extended to applications involving
management of CO, emissions from industrial systems. The development of these
techniques is discussed in the next section.

2. Brief Review of Carbon Emission Pinch Analysis (CEPA)

Tan and Foo (2007) developed the first approach on the use of pinch analysis technique
for carbon constrained energy sector planning, in short Carbon Emission Pinch Analysis
(CEPA). The method assumes that within the system, there exists a set of energy
sources, each with a specific carbon intensity characteristic of the fuel or the
technology. At the same time, the system also contains a set of energy demands, and
that each demand has a specified carbon footprint limit. Alternatively, a total carbon
footprint limit may be specified for all of the demands combined. Under the assumption
that the various energy sources are fully interchangeable, the original problem was to
minimize the amount of zero-carbon energy sources (i.e., renewable energy or non-
combustion based sources such as nuclear or geothermal power) needed in order to
satisfy the specified carbon footprint limits. The original technique made use of energy
planning composite curves similar to those used for water recovery (El-Halwagi et al.,
2003; Prakash and Shenoy, 2005) using energy as the horizontal axis and CO, emissions
as the vertical axis (Figure 1). The basic technique has since been applied for energy
planning purposes by researchers in Ireland (Crilly and Zhelev, 2008a) and New
Zealand (Atkins et al., 2008). The latter work presents an interesting extension that
takes into account the growth in energy demand within a sector over time.

The next development in CEPA was the use of an equivalent numerical approach to
solve similar problems (Foo et al., 2008). The extension is based on the established
equivalence between graphical techniques (El-Halwagi et al., 2003; Prakash and
Shenoy, 2005)and numerical ones (Manan et al., 2004; Foo et al., 2006a). Furthermore,
it was soon recognized that the assumption of zero-carbon technologies had to be
relaxed, as even non-combustion based technologies had small carbon footprints when
life cycle considerations are taken into account. Hence, a subsequent paper published
recently accounts for such low-carbon technologies by allowing the composite curves to
be shifted diagonally along a shallow locus, rather than horizontally as in the original
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method (Lee et al., 2009). At the same time, two other new elements were proposed in
the work of Lee et al. (2009). The authors reformulate the CEPA targeting technique as
a linear programming model that minimize the amount of zero- or low-carbon sources
in an automated way. Furthermore, the concept of segregated targeting was introduced,
in which not all energy sources can be used interchangeably by the demands (Lee et al.,
2009). Recently, a new decomposition algorithm was also developed to solve the
segregated targeting problem (Bandyopadhyay et al., 2009). These methodologies have
all been developed based on the concept of carbon intensity as the “quality” index for
energy streams. Alternative applications have also been proposed using different quality
indices for biomass-based energy, including land area (Foo et al., 2008) and water
footprint (Tan et al, 2009a), as well as emergy (Crilly and Zhelev, 2008b;
Bandyopadhyay et al., 2009).

The most recent application of pinch analysis in this area is for the planning of minimal
retrofit of power plants for carbon capture and storage (Tan et al., 2009b). In this work,
pinch analysis is used to determine the minimum extent of retrofitting needed across a
region’s power plants in order to meet an overall carbon footprint target. Note that
retrofitting in general is undesirable as it entails capital costs for retrofitting as well as
energy losses due to the power requirements for carbon capture and storage processes.
The approach assumes that compensation for such power losses is accomplished by
installing additional zero-emission plants using renewable energy.

3. New Application of CEPA for Carbon Footprints Reduction

This section briefly outlines a novel application of carbon pinch analysis for companies
to determine strategies to reduce their carbon footprints. Note that the carbon footprint
is a life cycle based concept that measures the total emissions generated, taking into
account an internal component (generated by the company itself) and an external one
(generated upstream of the company by its supply chain). The concept is closely linked
to life cycle assessment (LCA) and may be viewed as a simplified form of the latter
(Weidema et al., 2008). A graphical technique has been proposed for visualizing carbon
footprints of companies (Tahara et al., 2005) that resembles the appearance of the
energy planning composite curves (Tan and Foo, 2007), but which does not explicitly
make use of pinch principles. Here, a revised methodology is proposed to combine these
prior concepts.

In general, the total carbon footprint of a company consists of internal and external
components. At the same time, the value of goods produced in an industrial process
consists of the value of the inputs, plus the value added internally by the firm itself. The
ratio of the carbon footprint to the economic value is termed as the carbon intensity.
Note that, in general, the carbon intensities of the internal and external components need
not be the same. These components can thus be plotted as the source composite curve in
Figure 1, using the same approach as in the original CEPA technique (Tan and Foo,
2007), with economic value along the horizontal axis and CO, emissions on the vertical
axis. We apply the convention of plotting the external component first, as shown in
Figure 1. Note that if a diagonal line is drawn from the origin to the terminal point of
the source composite curve, the slope of the line is equivalent to the overall carbon
intensity of the company, combining both internal and external component.
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Figure 1. Carbon Footprint Composite Curves (Scenario 1)

Next, it is assumed that a benchmark carbon intensity level is set, which is lower that
the company total carbon intensity. This benchmark may be based on industry
standards, competitive benchmarking, or internal company choices, and may act as a
demand composite curve (see Figure 1). In any case, the problem is for the company to
determine general strategies to reduce its carbon intensity from the current level to the
desired value.

Two scenarios may be considered. In Scenario 1, if the external carbon intensity
(represented by its slope of the segment) is lower than the internal one, such as that
shown in Figure 1, the appropriate strategy is to reduce the internal carbon footprint of
the company. Graphically, the result is a reduction in the slope of the internal footprint
segment of the source composite curve, until it touches the demand composite curve.
Thus, it is possible to see how much the internal carbon intensity needs to be reduced to
meet the benchmark level.

In Scenario 2, the external carbon footprint has a much higher intensity than the internal
one (Figure 2). Note that the source composite curve now lies completely above the
demand composite curve that denotes the benchmark value for carbon intensity. In this
case, the appropriate strategy for the company is to reduce the length of the external
footprint segment. This is equivalent to shifting the internal footprint component
diagonally, along the external footprint segment of the source composite curve. The
shifting is done until the tip of the composite curve touches the carbon intensity
benchmark, as shown in Figure 2. As a result, the external footprint of the product is
reduced, corresponds to the increase of the internal footprint (see Figure 2). In practical
terms, this implies that companies with low internal carbon footprints can best reduce
their carbon intensity simply by reducing the use of external inputs per unit of product,
as these inputs contain embedded carbon footprints that become part of the overall
company footprint.
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Figure 2. Carbon Footprint Composite Curves (Scenario 2)

4. Conclusion

Pinch analysis techniques have recently been extended for various applications
involving management of carbon emissions in response to climate change issued.
Several methodological (graphical and numerical) approaches have been developed to
such problems as energy allocation, segregated targeting, and retrofit planning. At the
same time, similar applications for considering emergy, land and water footprint issues
in energy and biofuel systems have been developed. These methodologies and recent
applications have been reviewed here. Finally, a novel application has also been
developed on the use of graphical pinch analysis for determining strategies to meet
corporate carbon intensity benchmarks.
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