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A mechanistic model is proposed to estimate heat transfer coefficient for non-boiling
two-phase flow in horizontal and vertical pipes using analogy between friction factor
and heat transfer. The proposed mechanistic correlation is validated by using
experimentally measured heat transfer data. Evaluation of the mechanistic correlation
with the measured heat transfer data indicated that the analogy between friction factor
and heat transfer can be used with reasonable accuracy for heat transfer prediction in
non-boiling two-phase pipe flow. Comparison with experimental results showed that the
bulk of the data points were predicted within £30% by the mechanistic model.

1. Introduction

In industrial applications such as the flow of oil and natural gas in flow lines and
wellbores, the knowledge of non-boiling two-phase, two-component (liquid and
permanent gas) heat transfer is required. During the production of two-phase
hydrocarbon fluids from an oil reservoir to the surface, temperature of the hydrocarbon
fluids changes due to the difference in temperatures of the oil reservoir and the surface.
The change in temperature results in heat transfer between the hydrocarbon fluids and
the earth surrounding the oil well, and the ability to estimate the flowing temperature
profile is necessary to address several design problems in petroleum production
engineering (Shiu and Beggs, 1980).

The hydrodynamic and thermal conditions of non-boiling two-phase flow are dependent
upon the interaction between the two phases. Due to the complex nature of the two-
phase gas-liquid flow, the accessible heat transfer data and applicable correlations for
non-boiling two-phase flow are extremely limited in the literature. In most situations
encountered by practicing engineers, direct heat transfer measurements for two-phase
flow are extremely difficult to perform. It is in such respect that mechanistic models for
heat transfer estimation using, for example, analogy between friction factor and heat
transfer can have appealing prospect.

The concept of developing two-phase heat transfer correlation based on the analogy of
momentum and heat transfer has been explored by a few researchers (Fried, 1954; Vijay
et al., 1982; Kaminsky, 1999). However, there are still many unanswered questions
concerning the viability and robustness of a two-phase heat transfer correlation
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developed based on the analogy of momentum and heat transfer. It is the goal of this
study to explore the plausibility of using the Reynolds analogy to develop a mechanistic
correlation to predict heat transfer coefficients for non-boiling two-phase flow in pipes.

2. Development of Correlation

The development of a correlation to analogize momentum and heat transfer in non-
boiling two-phase pipe flow begins with the Reynolds analogy. The Reynolds analogy
relates important parameters of momentum and thermal boundary layers in a simplistic
form in terms of friction coefficient (cg), Nusselt number (Nu), Prandtl number (Pr), and
Reynolds number (Re):
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For flow inside pipes, the frictional pressure gradient is given as
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Combining both Eq. (1) and Eq. (2) yields the expression relating the heat transfer
coefficient with the frictional pressure gradient:
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Using the definitions for Nusselt number (Nu), Prandtl number (Pr), and Reynolds

number (Re), Eq. (3) can be expressed in terms of the heat transfer coefficient (h) with

the following expression:
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Adopting Eq. (4) for the use in non-boiling two-phase pipe flow, the ratio of the heat
transfer coefficient for the two-phase flow (hrp) to the heat transfer coefficient for liquid
single-phase flow (h;) becomes

b _ Ciﬂpi(dp/dz)ﬂr’ _Crp My Py 9?2 )
= : _ : 2
h, ., m py (dp/dz)m ¢, m pg

Note that the frictional pressure gradient ratio for the two-phase flow to the liquid
single-phase flow is recognized as the pressure drop multiplier (¢ ) defined by
Lockhart & Martinelli (1949). In this study, the values for the two-phase frictional



pressure gradient, (dp/dz);q, . are determined via experimental measurements, while

the single-phase liquid frictional pressure gradients, (dp/dz),, . are calculated using Eq.

(2) with ¢, =16/Reg for Reg <2000, and the Blasius equation, ¢, =0.079/Reg” , for

Regy, > 2000. Introducing a constant as a leading coefficient (C) for the ratio of two-
phase to single-phase specific heats (crp/cy), and exponents (m, n, and p) into Eq. (5),
the mechanistic heat transfer correlation takes on the following expression:
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The mass flow rate (m ) in Eq. (6) is the sum of the gas phase (mg ) and liquid phase

(m, ) mass flow rates. The two-phase density (prp) is defined as the mass of two-phase
fluids per unit volume of the pipe and can be determined using

Prp =0Pg +(1_0“)pL (7

The void fraction (o) needed to calculate the two-phase density in Eq. (7) is measured
experimentally or estimated using void correlations recommended by Woldesemayat
and Ghajar (2007). The single-phase liquid heat transfer coefficient (hy) is calculated
using the Sieder and Tate (1936) correlation.

3. Experimental Setup

The test section, with air and distilled water as working fluids, is a 27.9 mm L.D. straight
stainless steel pipe with length to diameter ratio of 95. A schematic of the overall
experimental setup is shown in Figure 1. The uniform wall heat flux boundary condition
is maintained by a Lincoln SA-750 welder for Reg, > 2000 and a Miller Maxtron 450
DC welder for Reg. <2000. The water and air flow rates are measured by Micro Motion
Coriolis flow meters, models CMF 100 and CMF025, respectively. T-type thermocouple
wires were cemented with Omegabond 101 on the outside wall of the stainless steel test
section. The inlet and exit temperatures are measured by Omega TMQSS-125U-6
thermocouple probes. Calibration of thermocouples and thermocouple probes showed
accuracies within £0.5°C. Validyne model DP15 pressure transducer with a series of
interchangeable diaphragms (full scale accuracy of £0.25%) is used to measure pressure
drop. Careful attention is given to ensure that the range of the diaphragm used is
conducive to the pressure being measured. The peripheral heat transfer coefficient (local
average) was calculated using a data reduction program developed by Ghajar and Kim
(2006). The reliability of the experimental setup and procedures was checked and
validated by making several single-phase validation runs with distilled water (Kim and
Ghajar, 2002). The uncertainty analysis of the overall experimental procedures using the
method of Kline and McClintock (1953) showed that there is a maximum of 11.5%
uncertainty for heat transfer coefficient and 3.5% for pressure drop. Detail discussions
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on non-boiling two-phase heat transfer experimental data measured from this
experimental setup are documented by Ghajar and Tang (2007).
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Figure 1. Schematic of experimental setup

4. Validation of Correlation with Experimental Data

Heat transfer experimental data for non-boiling two-phase flow in horizontal and
vertical pipes were used for comparison with the correlation. Experimental data points
for horizontal pipe were measured from the experimental setup described in previous
section, and data points for vertical pipe were measured by Sujumnong (1998). Table 1
summarizes the experimental data points used in the validation of the mechanistic
correlation, Eq. (6). The experimental database consists of 233 data points with different
gas-liquid combinations and wide ranges of superficial gas and liquid Reynolds
numbers, and liquid Prandlt number. When compared with the experimental data points,
the predictions by the correlation, Eq. (6), are satisfactory. Overall, the correlation
successfully predicted 85% of the 233 experimental data points within +30% agreement.

Table 1. Summary of experimental data used in the validation of the correlation

Data set dazoﬁc?iﬁts oriePnizzion Res. Res P
Air-water 98 Horizontal t© 12960 (;) 00 . igg 00 toG;,. 7
Alr-waterf 63 Vertical 13(7)800 o égooo t06 ;),4
Al/rv_vi];ie(zrlﬁ)g;/u) ¥ Vertical o ;(3)00 to 5490000 to7 36

Air-glycerin(82%) 23 Vertical 50 40 800
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Figure 2. Comparison of predictions by Eq. (6) and experimental two-phase heat
transfer coefficients

The predicted data points have an average error range of —15% to 29%, and an average
absolute error of 22%. The leading coefficient and exponents used in Eq. (6) for this
validation are C = m =1, n = —0.1, and p = 0.2. Figure 2 shows the comparison of the
calculated hrp values from the mechanistic correlation, Eq. (6), with experimental data
for non-boiling two-phase flow in horizontal and vertical pipes. The results illustrated in
Figure 2 show that the mechanistic correlation, Eq. (6), performed quite satisfactory,
thus prompting further investigations are necessary to determine the viability and
robustness of the two-phase mechanistic heat transfer correlation, Eq. (6).

5. Conclusions

A mechanistic correlation for non-boiling two-phase flow in horizontal and vertical
pipes was developed based on Reynolds analogy. The mechanistic correlation is
validated with experimental data. The comparison of the experimental data and
predictions of the mechanistic correlation is quite satisfactory. The results from this
study prompt the need for further investigations on whether the mechanistic correlation
has the robustness for application in various gas-liquid combinations, pipe diameters,
system pressures, and pipe inclinations.
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Nomenclature

A cross section area, m’ 0 pipe inclination angle, deg.
C constant value leading coefficient n dynamic viscosity, kg/(m s)
c specific heat, J/(kg K) p density, kg/m®

cp Fanning friction coefficient T wall shear stress, N/m?

D pipe diameter, m Subscripts and superscripts

dp/dz  pressure gradient, Pa/m CAL calculated

h heat transfer coefficient, W/(m?K) EXP experimental

k thermal conductivity, W/(m K) f frictional

m mass flow rate, kg/s G gas phase

Nu Nusselt number, hD/k L liquid phase

Pr Prandtl number, pc/k SG superficial gas

Re Reynolds number, 4m /(nDp) SL superficial liquid

Greek symbols TP two-phase

o void fraction m,n,p  constant value exponents

) pressure drop multiplier
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