Chiral Aromatic Alcohols Production by Thermophilic NADH-dependent Carbonyl Reductase

Angela Pennacchio 1, Biagio Pucci 1, Francesco Secundo 2, Francesco La Cara 1, Mosè Rossi 1, and Carlo A. Raia 1

Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, I-80131 Napoli, Italy 1
Istituto di Chimica e del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via M. Bianco 9, I-20131 Milano, Italy 2

Dehydrogenases/reductases (ADHs) are nowadays among the most requested enzymes used for the preparation of optically active compounds, for the inherent advantages over chemocatalysts in terms of their high chemo-, enantio-, and regioselectivity as well as to be environmentally friendly. Our aim was to identify and characterize novel ADHs for the selective bioreduction of sterically demanding ketones or alcohols, preferably NAD(H)-dependent and endowed with good operational stability. The gene encoding a novel dehydrogenases/reductase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily has been identified in the genome of *Thermus thermophilus* HB27. The *tadh* gene has been heterologously overexpressed in *E. coli* and the protein, named TiADH, has been purified to homogeneity and characterized. The enzyme was found to be a thermophilic and thermostable NAD(H)-dependent SDR, active on both aromatic alcohols as well as a discrete spectrum of carbonyl compounds, including substituted benzaldehydes, aromatic ketones, and α-ketoesters. TiADH shows a good tolerance towards common organic solvents such as methanol, acetonitrile, ethyl acetate, and 2-propanol used at 2–10% concentration and at a temperature range from 25°C to 60°C. The preparative applicability of TiADH was investigated by way of an efficient in situ NADH-recycling system involving 2-propanol and a second NAD(H)-dependent ADH. TiADH enzyme catalyses the reduction of acetophenone, 2,2,2-trifluoroacetophenone, methyl and ethyl benzoyleformate with high yields and excellent enantiomeric excess.

1. Introduction

Biocatalysis is increasingly being used in synthetic routes for the preparation of enantiomerically pure compounds due to their importance in the pharmaceutical, agricultural, fragrance and flavour industries (Krouit et al., 2004, and refs. therein). This is reflected in the fact that the sales of single-enantiomer small-molecule drugs has reached about US $10 billion in 2002 and the percent of chiral compounds as pharmaceutical intermediates is expected to grow to 70% by 2010. Moreover, the FDA has become increasingly reluctant to permit the introduction of additional racemic drugs, as these therapies are by definition saddled with 50% of chemical ballast (Rouhi, 2003).
Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure alcohols from carbonyl compounds. Furthermore, NAD(H) dependence and preference for bulky side-chained ketones/alkohols are two features that make a dehydrogenase/reductase more attractive from an application perspective; however, there is still a striking lack of sturdy ADHs with these characteristics that are even stable and active in organic solvents and in a broad range of temperature (Kroutit et al., 2004). Therefore, our aim was to search for novel activities, following the criterion to identify one or more gene(s) in the genome sequence of thermophilic microorganisms present in the database with the highest amino acid sequence identity with respect to that of *Lactobacillus brevis* ADH, a very well-known enantioselective NADPH-dependent SDR, active mainly on various aromatic ketones (Schlieben et al., 2005).

2. Materials and Methods

2.1 Chemicals. NAD(P)⁺ and NAD(P)H were obtained from AppliChem (Darmstadt, Germany). Alcohols, aldehydes, ketones and ketoesters were obtained from Sigma-Aldrich. Other chemicals were A grade substances from Applichem. Recombinant *Bacillus stearothermophilus* ADH (BsADH) was prepared and assayed as previously described (Fiorentino et al., 1998).

2.2 Purification and characterization. The cloning and expression of the *tadh* gene, and the purification of recombinant enzyme were performed according to Pennacchio et al., (2008).

2.3 Enzyme assay. TiADH was assayed spectrophotometrically at 65°C by measuring the change in absorbance of NADH at 340 nm using a Cary 1E spectrophotometer equipped with a Peltier effect-controlled temperature cuvette holder. The standard assay for the reduction reaction was performed by adding 5–25 μg of the enzyme to 1 ml of preheated assay mixture containing 20 mM methyl benzoate and 0.3 mM NADH in 50 mM potassium phosphate, pH 6.0. The standard assay for the oxidation reaction was performed using a mixture containing 20 mM (S)-(−)-1-phenylethanol and 3 mM NAD⁺ in 100 mM glycine-NaOH, pH 10.5. 1 unit of TiADH and BsADH represented 1 μmol of NADH produced or utilized per min at 65° and 60°C, respectively on the basis of an absorption coefficient of 6.22 mM⁻¹ for NADH at 340 nm.

2.4 Enantioselective biosynthesis. The enantioselectivity of TiADH was determined by reduction of aryl ketones and α-ketoesters using an NADH-regeneration system consisting of BsADH and 2-propanol. The reaction mixture contained 1 mM NAD⁺, 20 mM carbonyl compound (3 mg), 11 U of BsADH, 260 mM 2-propanol, and 7 U TiADH in 1 ml of 100 mM MES, pH 6.0. 5 mM 2-mercaptoethanol and 100 mM KCl. The reactions were carried out at 50° and 60°C at different times in a temperature controlled water bath. Upon termination, the reaction mixture was extracted twice with ethyl acetate. The enantiomeric excess of the product (ee) and conversion were determined by GLC (Agilent 6850) equipped with a dimethylpentyl, β-cyclodextrin 25 m, 0.25 mm ID,
MEGA column (Legnano, Italy). Conditions for 1-phenyl-ethanol and α-(trifluoromethyl)benzyl alcohol were: oven temperature from 90°C (initial time 10 min) to 110°C (final time 5 min), with a heating rate of 2.5°C/min. Conditions for ethyl and methyl mandelate were: oven temperature from 100°C (initial time 5 min) to 130°C (final time 5 min), with a heating rate of 2.5°C/min. The conversion yield was determined on the basis of the peak areas of carbonyl substrate and alcohol products on GC chromatograms.

3. Results and Discussion

3.1 Enzyme properties. Gel filtration chromatography, SDS-PAGE and kinetic studies assessed that TiADH is a homotetrameric SDR (MW =108 kDa), markedly thermophilic (optimal temperature = 80°C) and thermostable (Tm50 = 90°C). The optimal pH for the reduction and oxidation reaction catalysed by TiADH resulted around 6 and 10, respectively (Pennacchio et al., 2008).

3.2 Coenzyme and substrate specificity. The enzyme showed no activity with NADP(H) and full activity with NAD(H). Moreover, the following compounds resulted substrates of TiADH (reported in decreasing order of relative %). Alcohols: (S)-(–)-1-phenylethanol (100), 4-methoxybenzyl alcohol (99), (±)-1-phenyl-1-propanol (59), 1-(4-fluorophenyl)ethanol (45), 1-(4-chlorophenyl)ethanol (26), trans-cinnamyl alcohol (25), 2-methoxybenzyl alcohol (25), 1-phenyl-2-propanol (16), (R)-1-phenyl-2-propen-1-ol (14) and 3-methoxybenzyl alcohol. Carbonyl compounds: 1-phenyl-1,2-propanedione (146), 2,2,2-trifluoroacetophenone (100), 2,2-dichloroacetophenone (32), benzaldehyde (14), 2-, 3-, and 4-methoxybenzaldehyde (13, 14, 13). α-Ketoesters: ethyl benzoyleformate (100) and methyl benzoyleformate (57). Kinetic constants analysis indicated that the enzyme is S stereospecific and that the physiological direction of the catalytic reaction is reduction rather than oxidation (data not shown).

3.3 Stability in organic solvents. The effect of common organic solvents such as methanol, 2-propanol, acetonitrile, dioxane and ethyl acetate was studied by assaying TiADH activity in their presence at two different times and temperatures. Table 1 shows that the enzyme activity increases significantly in aqueous buffer, as well as in the presence of all the solvents tested. Moreover, the activity measured after 65 h incubation at 25°C in TiADH samples containing 10% methanol, 2-propanol, acetonitrile, dioxane, ethyl acetate, 1-propanol, and n-hexane resulted increased by 172, 110, 167, 160, 115, 173 and 182%, respectively, whereas that of the control remained unchanged. Furthermore, standard assays performed in the presence of 0.01 to 0.5% 2-propanol resulted in no change in activity, suggesting that the activity enhancement is not due to an immediate effect of solvent on the protein structure. A considerable body of literature exists which describes the activation of thermophilic enzymes by loosening of their rigid structure in the presence of protein perturbants (Fontana et al., 1998). To account for the observed enhancements of TiADH activity, the organic solvent is proposed to induce a
Table 1. Effect of organic solvents on *T. thermophilus* ADH.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Activity (%)<sup>a</sup> 50°C</th>
<th>Activity (%)<sup>a</sup> 60°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>131</td>
<td>5 h</td>
</tr>
<tr>
<td>5% Methanol</td>
<td>138</td>
<td>24 h</td>
</tr>
<tr>
<td>2% 2-Propanol</td>
<td>165</td>
<td>151</td>
</tr>
<tr>
<td>10% 2-Propanol</td>
<td>174</td>
<td>180</td>
</tr>
<tr>
<td>5% Acetonitrile</td>
<td>131</td>
<td>158</td>
</tr>
<tr>
<td>5% 1,4-Dioxane</td>
<td>152</td>
<td>180</td>
</tr>
<tr>
<td>5% Ethyl acetate</td>
<td>151</td>
<td>183</td>
</tr>
</tbody>
</table>

^a Activity assays were performed as described in M. M. using ethyl benzoyleformate as the substrate. ^bThe percent of activity was calculated with respect to the value measured before the addition of solvent.

conformational change in the protein molecule to a more relaxed and flexible conformation into one which is optimal for activity.

3.4 Enantioselective biosynthesis

The enantioselectivity of TiADH was tested using acetophenone, 2,2,2-trifluoroacetophenone, methyl and ethyl benzoyleformate as substrates, and an efficient NADH-regeneration system (Figure 1) consisting of Zn-containing, homotetrameric ADH from the moderate thermophilic bacterium *Bacillus stearothermophilus LLD-R strain* (BsADH) (Fiorentino et al., 1998). This NAD(H)-dependent ADH is mainly active on aliphatic and aromatic primary and secondary alcohols and aldehydes, but not on aliphatic and aromatic ketones, nor on the carbonyl substrates of TiADH and corresponding alcohols (data not shown). Since 2-propanol is not a substrate of TiADH, it may be a suitable substrate for BsADH in NADH recycling, as well as being used as a co-solvent. Experimental conditions including buffer, pH,

![Chemical structure](image)

Figure 1. Coenzyme recycling in the production of (R)-methyl mandelate with *T. thermophilus* ADH (TiADH) utilizing *B. stearothermophilus* ADH (BsADH) and 2-propanol. MBF, methyl benzoyleformate; R-MM, methyl (R)-(−)-mandelate.
temperature and reaction time were chosen to optimise productivity. The k_{cat}/pH profiles indicated that MES buffer, pH 6.0 and 60°C were the optimal pH and temperature conditions for catalysis by the two enzymes. Conversion experiments were carried out at 50°C and 60°C, and the reactions allowed to proceed for 1, 6 and 24 h. Figure 2 shows that methyl benzyllformate was reduced by TtADH to methyl (R)-(−)-mandelate with 18, 91, and 99% conversion at 50°C and 38, 83, and 98% conversion at 60°C following 1, 6, and 24 h, respectively. The higher ee value (92%) was achieved after 6 h reaction at 50°C, whereas it was 91% at 60°C after 6 h, and 89 and 91%, at 50 and 60°C, respectively after 24 h reaction. However, the reaction with larger amounts of substrate and enzyme (100 mg, 92 and 62 U of BsADH and TtADH, respectively, in 30 ml) resulted in 93.5% ee and 90% conversion after 24 h reaction at 50°C.

The reaction with ethyl benzyllformate performed for 6 h at 50°C yielded ethyl (R)-(−)-mandelate with a conversion of 90% and 95% ee. Acetophenone was reduced to (S)-(−)-1-phenylethanol following a 6 h reaction at 50°C, with a conversion of 70% and 99% ee. The conversion of 2,2,2-trifluoracetophenone was 20 and 40% in 1 h at 50° and 60°C respectively, approximating 100% in 6 h at both the temperatures. TtADH preferably reduced this arylketone to (R)-α-(trifluoromethyl)benzyl alcohol with an ee of 90 and 93% at 60° and 50°C respectively, after 3 h of reaction. However, reaction times extended to 24 h did not improve the yield or ee of the biotransformation (data not shown).

On the whole, enantioselectivity data indicate that the hydride ion of NADH is transferred to the re face of the carbonyl of acetophenone, 2,2,2-trifluoracetophenone,
as well as that of methyl and ethyl benzoylformate, suggesting that TlADH exhibits
Prelog specificity (Prelog, 1964). Noteworthy, the optically active alcohols produced are
used as chiral building blocks in organic synthesis. O-protected methyl (R)-(−)-
mandelate is used as an intermediate for the synthesis of pharmaceuticals (Kobayashi et
al., 1990), and optically pure trifluoromethyl-substituted benzyl alcohols are important
precursors for specialty chemicals used in electro-optical devices such as LCDs
(Fujisawa et al., 1993).

4. Acknowledgements

This work was funded by FIRB (Fondo per gli Investimenti della Ricerca di Base)
RBNE034XSW, and by the ASI project MoMa n. 1/014/06/0.

5. References

Fiorentino G., R. Cannio, M. Rossi and S. Bartolucci, 1998, Decreasing the stability and
changing the substrate specificity of the *Bacillus stea*rotherm*ophilus* alcohol
dehydrogenase by single amino acid replacements. Protein Eng. 11, 925.
Fontana A., V. De Filippis, P. Polverino de Laureto, E. Scaramella and M. Zambonin,
Elsevier Sciences, Amsterdam.
Fujisawa T., K. Ichikawa and M. Shimizu, 1993, Stereocontrolled Synthesis of p-
Substituted Trifluoromethylbenzyl Alcohol Derivatives of High Optical Purity by
Kobayashi Y., Y. Takimoto, Y. Ito and S. Terashima, 1990, A novel synthesis of the
(2R,3S)- and (2S,3R)-3-amino-2-hydroxycarboxylic acid derivatives, the key
components of a renin inhibitor and bestatin, from methyl (R)- and (S)-mandelate.
Kroutil W., H. Mang, K. Edegger and K. Faber, 2004, Recent advances in the
biocatalytic reduction of ketones and oxidation of *sec*-alcohols. Curr. Opin. Chem.
Biol. 8, 120.
Pennacchio A., B. Pucci, F. Secundo, F. La Cara, M. Rossi and C. A. Rai,a, 2008, A
Novel Short-Chain, Highly Enantioselective, NAD(H)-dependent Alcohol
Dehydrogenase from *Thermus thermophilus*. Characterization of the Recombinant
Enzyme. (Submitted).
Prelog V., 1964, Specification of the stereospecificity of some oxido-reductase by
diamond lattice sections. Pure Appl. Chem. 9, 119.
Schlieben N. H., K. Niefind, J. Muller, B. Riebel, W. Hummel and D. Schomburg, 2005,
Atomic resolution structures of R-specific alcohol dehydrogenase from *Lactobacillus
brev*is provide the structural bases of its substrate and cosubstrate specificity. J. Mol.
Biol. 349, 801.