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The comprehensive study of highly reactive systems is essential to
achieve a safe and productive operation of existing processes. Such study
is also fundamental for inherently safe new designs. Hence, the thermal
runaway phenomena must be studied to determine the safe operating
range conditions from a material and a human point of view.

This work shows a comparison between steady state and dynamic
thermal stability study. Indeed, the steady state analysis is necessary but
not sufficient to ensure the thermal stability. Even if the reactor is stable
according to the van Heerden criterion, small perturbations of inlet
parameters of the system can lead to the conditions of thermal runaway
or quench of the reactions. The differences between the stationary and
dynamic stability curves are illustrated with a simple CSTR case. Finally
a criterion valid under dynamic conditions is proposed to determine the
regions of safe operability of the reactor.

1. Introduction

One of the security priorities involving highly reactive systems is the risk
of thermal runaway. The temperature increase for the reactions that
follow an Arrhenius law, induces the rise of the heat generation that
further increases the reaction temperature; this situation may result in a
thermal runaway. The consequences of a runaway can be: the early
deactivation of the catalyst (coking), lost of selectivity, conversion or the
operability of the unit, the onset of secondary reactions and in some cases
even the reactor explosion.

The design of industrial reactors must rely on an accurate thermal
stability study. Indeed, the design of the whole reactive system (reactor
and the devices used for heat input/removal) should ensure a priori the
thermally stable operation of the reactor. It is also important to determine
the regions of operating conditions where the reactor has an unreliable
behavior (runaway regions). In practice, most of the industrial designs of
reactive systems are based only on the van Heerden (1953) criterion. This
criterion imposes that the slope of heat generated by the reactions
(dQgen/dT) must be lower than the slope of the heat extracted from the
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system (dQex/dT). Since this comparison is realized only under
stationary conditions the dynamic behavior of the system is not taken into
account and the thermal stability cannot be guaranteed. This work makes
a comparison between steady state and dynamic thermal stability study
for a simple CSTR case. It is shown that the stability conclusions may be
completely different between both approaches. The importance to apply
an appropriate stability criterion is clearly demonstrated. A dynamic
runaway criterion for this ideal reactive system is proposed.

2. Case study

A one phase Continuous Stirred Tank Reactor was chosen as a study case
(Froment & Bischoff, 1979). The following exothermic reaction is used

with a first order kinetics.
E

A—B Hoss) =Ko K1.C, (1)
The dependency of the reaction rate with the temperature is taken into
account with the Arrhenius law. A heat exchanger was considered to
remove the heat generated by the reaction. Transient material and thermal
balances are written as follows:

mol/s
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In stationary regime, the conversion and the temperature become:
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3. Stationary analysis

The van Heerden criterion was tested for a given set of operating
conditions. The reactor operating point was set to 90°C, and the effect of
the variation of the heat exchange surface was evaluated. As shown in
Fig. 1a) for a CSTR with 25 m*/m’ of heat exchange surface, the system
is thermally stable according to the van Heerden criterion. A dynamic
simulation of this case was realized (Eq. 2 and 3) and is illustrated in Fig.
1b). The reactor behavior was simulated with a reactor temperature
controller (Harriot 1964). While the regulation is activated the reactor
temperature is controlled at 90°C. The regulation was shut-down after



10000 seconds. The reactor is thermally stable since in the absence of
regulation the reactor temperature remains stable at 90°C.
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Fig. 1 — a) Diagram of heat production and consumption for a 25 m*/m’ heat exchange
surface. b) Dynamic simulation of the CSTR

Another case was simulated where the heat exchange surface was
reduced to 16 m*>/m>. Since dQgen/dT is lower than dQe/dT, the van
Heerden criterion clearly indicates that the reactor is thermally stable
(Fig. 2a). A dynamic simulation of this case was realized (Fig. 2b). The
reactor temperature is maintained at 90°C while the regulation is
activated, however, if the controller is shut-down (8000 s), the reactor
temperature rises leading to a thermal runaway. Indeed, since the
dynamic heat accumulation term is not taken into account, the heat
exchange capacities are not sufficient to evacuate the heat production.
This example clearly illustrates that the van Heerden criterion is
necessary but it is not the ultimate condition to guarantee the thermal
stability.
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Fig. 2 — a) Diagram of heat production and consumption for a 16 m*/m’ heat exchange
surface. b) Dynamic simulation of the CSTR

It is also possible to represent the reactor temperature (7) as a function of
the variation of the cooling temperature (7.) (Song et al. 2003). The
simulations of a 6 m*m’ heat exchange surface case are presented in Fig.
3. Equations (4) and (5) were used to calculate the stationary trajectory of
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the reactor temperature. In this case, the reactor is not stable as stated by
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temperature. Stationary and dynamic trajectories. Stationary unstable operating

points. Without an efficient
control system, these points can never be reached. Starting from 7,=40°C
and by increasing cooling temperature, the operating point will directly
pass from the lower part of the curve to the upper part that leads to
runaway. Then, starting from 7,=75°C and by decreasing the cooling
temperature, the operating point will follow the upper part of the curve
until 7,=36°C. At this 7, the reactor temperature 7 falls to the zone of
the quench of the reaction. This hysteresis phenomenon is well known.
The dynamic trajectory was also determined. As illustrated, the stationary
and dynamic trajectories are different. Indeed, when the cooling
temperature is diminished and the reactor temperature is in the hot region
(T > 140°C), the dynamic behavior indicates that at about 7=145°C the
reactor starts a temperature oscillation and 7" suddenly falls to the quench
zone. According to the stationary hysteresis, this temperature drop should
had been taken place at about 7=116°C. As shown in Fig. 3, the unstable
region obtained under stationary conditions (Zone A) does not fit with
the dynamic unstable region (Zones A+B). We can conclude that even
for an unstable reactor, the thermal stability regions must be determined
under dynamic conditions.

4. Dynamic analysis

According to the previous CSTR analyses, it was pointed out that an
unstable dynamic region exists which is not predicted by the van Heerden
criterion. Therefore, a dynamic analysis must be systematically carried
out to determine if a runaway may occur. Indeed, the boundaries of these
unstable dynamic regions must be taken into account for the reactor
design and operation (Perlmutter 1972). The methodology of the
dynamic analysis consists in three steps:



a- Perturbation of the dynamic reactor model around a stationary
operating point.

b- Linearization of the perturbation model.

c- Resolution of the perturbation model and analysis of the
solution (perturbations should tend to zero when time tends to
infinity).

4.1 Perturbation of the dynamic reactor model

The reactor model can be written into a generalized formalism as follows
dy,

%=J‘,-(yl,yz,~~~,y,-,~-~,yn) (6)
where y;=T, C;, C,,... are the model variables. The perturbation variables
x; around a stationary operating point are defined as the difference
between the variable y; at time ¢ and its value at stationary conditions y; ;.

X =Yi T Vis = Yi=Yig TX (7
Substituting Eq. (7) into Eq. (6), the reactor model becomes:
a(yi‘s + xi )

at =\fi(yl,.\ +xl’y2‘s +'x2’”" yi,.\ +xi""’ yn,.\ +xn) (8)

4.2 Linearization of perturbation model

If the perturbation variables are very small, the first order Taylor
expansion can be applied to linearize the reactor model around the
stationary operating point.

w =f (ym, Vagreees Yigoeews Vs )+ [g—f’l]s - X, +[§)}L’J3 - X, +...+[%l -X; +...+[§Tfljs “X, (9)
Under stationary conditions Eq. (9) becomes:

() [ e[ 2) [2). (10)
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Using a matrix formalism, the dynamic model for all perturbations is

given by Eq. 11:

X=J-X (11)
i = "oy _(x/ @ a, /Y i

with X =(x, x, .. x,), X:[ x/at x/az x/al j and J the Jacobian

Vi

matrix.

The resolution of this linear first order differential equation system
allows to know if the perturbation of one of the whole set of variables
diverge with time. In this case the dynamic runaway conditions are
achieved.

4.3 Resolution of the perturbation model and analysis of the solution
Since all the equations are independent, the Jacobian can be
diagonalized. The solution of the perturbation around the stationary point
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is given by Eq. 12 where U; is the i eigenvector of the Jacobian and /; is
the corresponding eigenvalue. Eigenvalues can be real or complex.
x, =U, .a.e™ +U, a,e™ +.+U

A1
Ln 'an €

(12)

: : A
a.et +U ,a,e™ +.4U,, .a,e™"

xll =U n,n n
It clearly appears that x;,—oco with time only when one of the n
eigenvalues has a positive real part. Hence, the condition for stability is:

V i limx =0 (13)

[—00

if AeR=> A<0 .if A€ C = Re(A)<0
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(14 a,b)
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0 2 40 60 8 wo| Fig. 4 shows these zones for
Gooling Temperature (19 the CSTR model using only

two variables (T and C,). For
this reactor model, only two
eigenvalues have to be analyzed. Table 1 shows the analysis of the
eigenvalues corresponding to the temperature and the concentration. The
eigenvalues can be real or complex. In the case of real eigenvalues, when
both are negative, perturbations are exponentially attenuated (Fig. 4,
Zones 1 and 7). If the eigenvalues are real but at least one is positive,
runaway conditions are achieved and perturbations are exponentially
amplified (Zones 3 and 4).
However, for complex eigenvalues, oscillatory behavior of the
perturbation is observed. Then, two situations are possible:
- Both real parts of the eigenvalues are negative. In this case the
perturbation is attenuated with an oscillatory behavior (Zones 2
and 6).
- One ore both real parts of the eigenvalues are positive. In this
case, exponential amplification of the perturbation is observed
with an oscillatory behavior (Zone 5).
These behaviors can be illustrated with phase plane diagrams. The phase
plane diagram is a representation of variable trajectories (Strozzi and
Zaldivar, 1994). It consists to draw one variable as a function of the

Fig. 4 - Dynamic propagation zones



others in dynamic conditions. For the CSTR case study, the phase plane
diagram is the representation of the reactor temperature as a function of
concentration. Simulations were carried out in each zone using a
temperature controller (Harriot 1964) to stabilize a stationary point which
could be unstable. Then, the control system of the reactor is stopped and
the dynamic behavior is observed. Figure 5 shows the dynamic behavior
in different zones. Zones 2 and 6 correspond to stable operating points.
The perturbations are attenuated with an oscillatory behavior. On the
contrary, in Zone 5 the operating points are unstable; in this case the
perturbations are amplified with an oscillatory behavior. The Zone 3

corresponds to unstable operating points that lead to runaway.
Table 1 - Eigenvalues analysis

Zone | Re(A)) | Re() | Im(\) | Im(Ly) Observations

1 <0 <0 0 0 No runaway: exponential
attenuation of the perturbation

2 <0 _ <0 <0 >0 No runaway: oscillatory
attenuation of the perturbation

3 >0 <0 0 0 Runaway

4 >0 >0 0 0 Runaway

5 >0 — >0 >0 <0 Runaway: oscillatory
amplification of the perturbation

6 <0 _ <0 >0 <0 No runaway: oscillatory

] attenuation of the perturbation
7 <0 <0 0 0 No runaway: exponential

attenuation of the perturbation
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Fig. 5 — Phase plane diagrams of the CSTR system.
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5. Conclusions

The reliable determination of the thermal stability regions in chemical
systems is essential to ensure the safe and productive operation of
industrial processes. In practice, the design of industrial reactors is
commonly realized based only on the stationary regime. This work shows
that the dynamic study of the chemical system is essential to guarantee
that the reactor operates in a thermally stable region. A runaway criterion
was presented for a CSTR simple case. It accurately predicts a priori the
unstable dynamic zones. Further work will focus on the study of an
industrial refining process taking into account a multiphase complex
reactive system. For this case the space-time dimensions will be
introduced in the stability analysis.

Nomenclature

A: volumetric heat exchange area T; reactor inlet temperature (K)
(m*/m®) U heat transfer coefficient (W/m*/K)
C,: concentration of A (mol/m°) X vector of perturbation
C,,;: concentration of A at reactor inlet X - vector of perturbation derivatives
'xl
yl
yl S

(mol/m’) . perturbation of the variable y;
C,:  heat capacity (J/kg/K) model variable

E:  activation energy (J/mol) variable at stationary condition
f model function

J: Jacobian Greek letters:’

r Kinetic rate (mol/s) X conversion of reactant A

R:  gas constant 8.314 J/mol/K AH,: reaction heat (J/m01)%

t time (s) p: liquid density (kg/m")

T: reactor temperature (K) T residence time of reactant A (s)
T.:  cooling temperature (K) A eigenvalue
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