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This paper focuses on the current developments on the estimation/reconciliation
modules of a novel framework for integrated decision support of process systems
(IDSoPS). Built on the initial conceptual definition, a generic and versatile error-in-
variables (EVM) was implemented and tested for both off-line and on-line applications
using a state-of-the art modeling tool. The IDSoPS has the capability to formulate all
related model-based reconciliation and estimation activities by a user not familiar with
the model of the process and very little knowledge of the enabling modeling (and
solution) engine. To validate these developments, the effects of random and/or
systematic errors on the EVM estimation/reconciliation of an integrated chemical
process are discussed.

1. Introduction

During the past two decades the computer-aided process engineering (CAPE)
community has made important progresses in the development and commercialization
of modeling, simulation and optimization environments (MSOEs), on the one hand, and
in the establishment of standard interfaces for the communication between components
of these environments, on the other hand (Braunschweig et al. 2000). One of the main
features of MSOE:s is the inclusion of different model-based activities (i.e. simulation,
estimation, reconciliation and optimization); the corresponding mathematical problems
have been subject to extensive research and have been applied widely in the past.
However, one could argue that software applications targeted to process industries have
not been designed to the formulation of real process engineering problems and,
therefore shifting from simple to more realistic applications demands innovative and
effective ways of solving old problems using current technologies and contemporary
research advances.

The conceptual definition of a single and consistent model-centric framework integrated
decision support of process systems (IDSoPS) aimed at facilitating the realistic
formulation of related engineering problems was proposed by Rolandi and Romagnoli
(2005). The framework introduces a new concept, the Problem Definition Environment
(PDE), to provide innovative mechanisms, the data model template (DMT) and the data
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model definition (DMD) for such formulation. Not only is the formulation of related
phenomenological problems possible but also of entire complex chemical plants.

This paper focuses on the current developments on the estimation/reconciliation module
of the framework mentioned previously. Built on the initial conceptual definition, a
generic and versatile error-in-variables (EVM) was implemented for both off-line and
on-line applications. To validate these developments, the effects of random and/or
systematic errors on the EVM estimation/reconciliation of an integrated chemical
process are discussed. It is implied through the course of this paper, that the PDE was
used to formulate all model-based problems presented. This paper is organized as
follows. Section 2 gives an insight of the proposed framework along with the
advantages of its utilization on the problem definition. Next, an overview of the EVM
data reconciliation module is presented. Then, section 3 describes the example process
and presents and discusses the results obtained. Finally, section 4 draws some
conclusions and the direction for future work.

2. The Framework for Integrated Decision Support of Process
Systems

2.1 Framework architecture

The (framework for) IDSoPS is founded on the interaction among four main entities
(see fig. 1): (i) the user, (ii) the PDE, (iii) the PME and (iv) the PMCs. The user
interacts directly with the PDE to define the problem of interest, including the activity
to perform and the establishment of all possible initial guesses and variable bounds. The
PDE provides the mechanisms for the translation of the formulated problem into a form
which is readable by the process modeling environment (PME, software tool to assist in
the construction of the process model and the execution of model-based activities).
Then, it delegates the solution of the problem to the corresponding PME, which
coordinates the execution of the necessary process modeling components (PMCs,
software components in charge of a specific function) to eventually achieve a solution.
The translation of the problem description into the problem input files (PIFs) readable
by the PME is attained by means of two proposed new data entities: the Data Model
Template (DMT) and the Data Model Definition (DMD). On the one hand, the DMT
corresponds to a data structure containing all available structural and numerical
information, such as the type of activity, available process variable, and statistical
model, among others; furthermore, it relates the physical process variables and the
mathematical variables (used for the construction of the model). On the other hand, the
DMD represents an abstraction or mapping of the problem incorporating the DCS plant
data in a seamless way. This structure is reusable, so that different model-based
activities can be defined using the same DMD. At the current stage of the problem
definition environment, both DMT and DMD are given by databases implemented in
Excel workbooks files. During the problem definition (see fig. 1), the information
contained in the DMT is presented to the user who, then, through the PDE is able to
define his/her specific problem in terms of the (real) physical variables instead of the
(abstract) mathematical variables, which represents an important advantage for the
process engineer. During the problem translation (see fig. 1), the PDE creates the
necessary PIFs making use of the problem specification given by the DMD. Finally, the
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MSOE instatiates the problem and coordinates its execution (problem instantiation and
problem solution).
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Figure 1. (a)Framework architecture and (b) Problem definition environment for data
reconciliation/parameter estimation

2.1 Formulation of Error-in-variable (EVM) data reconciliation/parameter
estimation problem

Data reconciliation refers to the process of obtaining better measurement estimates so
that they comply with the mass and energy balances. Classical reconciliation assumes
that the independent (input) process variables are error-free. However, this assumption
is not valid for most of industrial processes (Kim et al., 1991). A more general approach
to this problem has been studied by a number of researchers (Kim et al., 1991; Tjoa and
Biegler, 1992; Romagnoli and Sanchez, 2000). In this approach, a distinction between
dependent and independent variables does not exist and the measurements can be
related to the errors as:

2 =z()+e+ (1)

where Z(t) refers to the variable measurements, z(#) is the true value and € and B
correspond to random and gross errors respectively. This approach is known as error-in-
variables method (EVM). In our formulation we propose the following mathematical
definition for the general estimation problem:

min go(?(l), z(l), a(t))

0.0y

subject to: (1)
FG0)x(0).y(0)ade). p.6. )= 0, 1€[0,1,]

1((0).x(0). »(0).u(0). p.6. 5)=0

o(t)=o(2(t) (). 7), te[0.1/]

In problem (pl), ¢() is a generic objective function. z designates experimental
observations; @ are model parameters. In our formulation these parameters can also be
part of the estimation problem in the case of joint data reconciliation parameter
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estimation. The variables ® and y are associated with the statistical information about
the experimental observations. These parameters can also be included in the estimation
problem, thus allowing the characterization of the statistical properties of the different
measurements directly from plant data. F(.) and /(.) denote the set of partial differential-
algebraic equations encompassing the fundamental process model and the set of initial
conditions respectively. In these equations x and y denote the differential and algebraic
variables respectively; u(?) are the set of input variables. Additionally, o(f) denotes the
variance model of the measurement error. The objective function can take several forms
depending on the nature of the mathematical model, and on the decision variables of
interest. The latter will define the name given to the general problem stated by the set of
equations (pl). For instance, when only the model parameters, 6, are taken into
consideration the problem will be called parameter estimation; if the measurement
biases, £, are the only decision variables involved, the problem will now be called gross
error estimation. A weighted least squares (WLS) objective function was implemented
to solve for the measurements, (gross and random) errors and parameters (in
combination or separately).

Online data reconciliation was implemented with a moving window or history horizon
approach. A time horizon HAt is selected so that the H most recent measurements are
reconciled over the time period t-HAt; where t is the actual time and At is the time
interval for measurement availability. The difference between the problem definition of
an offline and online DDR through the PDE is the specification of the number of data in
the window, H, which was set to 15 for the case study under consideration. It is worth to
mention that all related model-based reconciliation and estimation activities become
transparent to the user, not familiar with the model of the process and very little
knowledge of the enabling modeling (and solution) engine, through the use of the
proposed framework described in Section 2. In this way, the definition and redefinition
of the problems to be considered as well as the variables and parameters to be used as
decision variables is straightforward.

2.3 Implementation considerations

The general process modeling system, gPROMS (PSE Ltd., 2004), was selected as the
state of the art modeling, simulation and optimization engine (MSOE) to solve the
related model-based activities. The general EVM data reconciliation problem is not
currently supported by the gPROMS language and, consequently, it was necessary to
create the mechanisms for this activity. Since data reconciliation is by itself an
optimization activity, this notion was used to reformulate the reconciliation problem in
gPROMS. The sequential quadratic programming method incorporated in gPROMS
was used to solve the EVM data reconciliation problem.

3. Case Study

3.1 Process description
The case study considered here consists of an integrated plant (two CTRS in series and

fresh feed mixing with the outlet stream of the first reactor before entering the second
vessel, plus a series of heat exchangers). Both a real hybrid pilot scale (real plant-soft
reactions) and virtual versions of the process are available for testing, however, only the



simulated results are presented here. The corresponding model for the simplified
diagram has been presented elsewhere (Romagnoli and Sanchez, 2000). However, the
value of the reaction parameters and input variables were taken from Bequette (1998).
Additionally, the process variables were scaled using a nominal reference temperature
T, and a reference volumetric flow rate Q, to make all variables of the same order of
magnitude. Once the model was constructed in gPROMS, a simulation was run for a
total of 15 hours to obtain 150 experimental values. This original dataset was modified
by adding random errors to all variables so that a new data set was formed (NB). Then,
measurement biases (systematic errors) were added to (two input) process variables
forming a second data set (BI).
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Figure 2. Comparison of reconciled trajectory for EVM-DDR for temperature in second
reactor for (a) data set not biased and (b) data set with bias.

3.2 Results and discussion
On- and off-line error-in-variables dynamic data reconciliation (EVM-DDR), and Joint

parameter estimation and (EVM) data reconciliation were performed for the
corresponding datasets. The reaction kinetic constant in first CSTR (CSTR1.k) and the
heat transfer coefficient in second CSTR (CSTR2.UA) were considered for parameter
estimation. Furthermore, measurement biases were estimated in conjunction with
parameters (refer to table 1).

Table 1. Parameter and bias estimates and for joint PE/EVM-DDR

Process parameters” Measurement biases”
Dataset/case Error norm CSTR1.k CSTR2.UA Input-1 Input-2
(9702.78 s (0.8717 kJ/s.K) (1.5 m’/s) (-0.4 K/K)
NB 658.584 9552.96 0.984 - -
BI-1 8167.322 10500.00 0.300 - -
BI-2 1304.910 10088.40 0.710 1.000 -0.387

*True (simulated) values in parenthesis

Table 1 shows that biases in input variables have a detrimental effect in the
reconciliation/estimation results. In fact, error norm increased in approximately 94%,
and parameter estimates degrades when measurement biases in input variables are not
estimated (NB vs. BI-1). An improvement in error norm and in parameter estimates is
observed when biases are also estimated (BI-2). In figure 2(a) the results for EVM-DDR
on- and off-line for the data set with no bias (NB) are compared. It can be observed that
trajectories do not differ significantly from the simulated (true) trajectory, indicating the
satisfactory performance of the EVM-DDR for both off- and on-line. Figure 2(b) shows
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the negative effect of measurement biases over the reconciled trajectory, which does not
follow the true trajectory when biases are not estimated (BI-1). This trajectory is
followed closely when biases were estimated (BI-2). Figures 3(a) and (b) present the
reconciled trajectory for the input concentration. The standard deviation of this variable
decreases in approximately 30% once the EVM-DDR was performed. This suggests that
EVM-DDR would produce more accurate estimates and, therefore, it should be adopted
when input variables contain high levels of measurement noise.
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Figure 3. Comparison of reconciled trajectory for input concentration for (c) data set
not biased and (d) data set with bias.

4. Conclusion

A single and consistent model-centric framework for integrated decision support of
process systems (IDSoPS) has demonstrated to have the capability to formulate
different model-based related problems. The error-in-variables method (EVM) was
implemented within the framework for joint parameter estimation/dynamic data
reconciliation (JPEDR) using the sequential approach for its solution. This method
showed a good performance when measurement biases are estimated in conjunction
with process parameters. A significative reduction in measurement noise of input
variables was observed, which contributed to the improvement of estimates. The
incorporation of robust methodologies for estimation/reconciliation activities 1is
currently under development.
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