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We present an approach to closed-loop online model-based redesign of experiments for system identification. 
Special attention is given to the compliance with safety restrictions and operating requirements during online 
experiments. For doing so, we propose the integration of a controller into the system identification algorithm. To 
avoid numerical problems regarding ill-conditioned matrices an algorithm for local parameter identifiability analysis 
is used. The proposed approach is applied to a real case study. The proposed strategy is compared to a 
conventional open-loop step response technique in terms of the accuracy of the identified system parameters as 
well as the closed-loop performance after controller tuning.  

1. Introduction 

In process industry, dynamic models are commonly applied for design, computational simulation, optimization and 
process control. The model building process is usually performed by a combination of theoretical and 
experimental steps until an appropriate model  is found. However, parameter estimation is an expensive and time 
consuming task if performed experiments are not properly designed. Thus, the model-based experimental design 
technique is an effective mechanism for building and refinement of dynamic process models.  
In process control, the objective of system identification is to approximate a model as good as necessary for the 
task at hand and not to search for an exact model. The model error can be distinguished into bias error, due to 
undermodelling and variance error, which is introduced by noise, limited number of measurements and correlated 
effects (Gevers, 2005, Bates, 1988 and Vajda, 1989). If the model is accurate, then it is suitable for all 
applications. However, if the model only approximates the real system, then the required degree of the model 
adequacy depends solely on its application. This led to the so-called goal-oriented identification (Gevers, 2005). 
In the field of process control, there are two types of methods for system identification: open-loop and closed-
loop. The former sets the input variables, whereas the latter manipulates the set-points. In practice, most 
processes are operated as part of a control system. In many cases, due to safety restrictions and ongoing 
production, it is impossible or not allowed to open the loop for identification and controller tuning purpose. The 
open-loop identification is simple, though experiments are sensitive to disturbances and are not applicable for 
unstable processes (Rajapandiyan and Chidambaram, 2012). Furthermore, a direct manipulation of plant 
variables (for instance a stepwise change in the reactor temperature) is often impossible or prohibitive on a real 
plant. In contrast, closed-loop experiments enable the control of the input/output signals during the experiments 
(Van den Hof, 1998) and direct manipulation of the experiment design variables (e.g. set-point of reactor 
temperature). To summarize, the conventional open-loop strategy may lead to undesirable state variable changes 
and as new information is processed with a possibly large time delay, it may also lead to longer and more 
expensive experiments.  
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Research on the field of closed-loop system identification began in the 1970s (see Gustavsson et al., 1977). The 
experimental conditions in heuristic closed-loop identification methods are represented in most cases by white 
noise reference signals (see De Callafon et al, 1993, Hjalmarsson et al., 1996, Ng et al., 1975, Defalque et al., 
1976 for more details). Eek et al., 1996 applied generalized binary noise sequences (GBN), which were presented 
by Tulleken (1990).  
We took a different approach by extending the optimal experimental design (OED) technique, which was originally 
intended for open-loop experiments (Bauer et al. 2000, Franceschini and Macchietto, 2008, Pukelsheim, 1993), 
also referred to as sequential experiment design. The idea of an online redesign of the OED has been discussed 
first in the 1960s (Mehra, 1974). Currently different research groups have studied this approach  for open-loop 
systems again, see Barz 2013. In order to avoid the downsides of open-loop system identification we extend this 
approach by introducing a controller to the system identification to comply with safety conditions. In the 
conventional OED method, the planning, execution and analysis of experiments is realized consecutively, and 
new information is used only after termination of an experiment which is time consuming. We propose closed-loop 
online model based redesign of experiments (CL-OMBRE) that enables us to change the experimental conditions 
while an experiment is still running. The controller gain and set-point represent the experiment design variables 
and are influenced directly. Applying the OED methodology lets us to potentially increase model quality.  
In this work, we assume that the model structure of the process behavior is well defined and the bias error on the 
model is negligible, whereas the values of the model parameters are unknown and need to be estimated. Thus, 
the discrimination between alternative models is not considered. Our contribution is to show that the proposed 
strategy leads to better model parameter accuracy, reduces experimental costs and allows us to increase 
controller performance in comparison to the conventional open-loop method. 

2. Problem statement 

We represent a general dynamic model of a given process described by a set of differential algebraic equations 
(DAE’s) ݕሶ (ݐ) = ,ݐ)݂ ,(ݐ)ݕ , u(ݐ)),  ݕ(ݐ) = ,)ݕ ,ݐ u(ݐ)) (1) 

where ݐ ∈ ;ݐ] (ݐ)ݕ ,ௗ] represents the timeݐ ∈ ℝே denotes state variables,  ∈ ℝே is a set of parameters to be 
estimated and (ݐ)ݑ ∈ ℝேೠ represents the set of time-varying design or input variables. The problem is discretized 
according to equidistant sampling times where the measurement data is collected (process responses) using a 
piece-wise constant control function. Parameter estimation (PE) problem is defined as given in Bard, 1974 based 
on the maximum likelihood criterion: ̂ = min	݃ݎܽ ߮ா(ܷି,  (
 ߮ா(ܷି, ( = (ܻି(ܷି, ( − ܻ)் ∙ ௬ିߑ ଵ ∙ (ܻି(ܷି, ( − ܻ) (2) 

s.t.	DAE’s	(Eq.	(1))	
where ܻି(ܷି, ( ∈ ℝே∙ே is the vector of the responses predicted by the model for all discrete time instances ݅ ∈ 1, … ,ܰ, ܻ ∈ ℝே∙ே is the vector of the obtained measurement data, ܷି ∈ ℝேೠ∙ேಶೣ denotes the piece-wise 
constant input actions. Finally, Σ୷ ∈ ℝே∙ே×ே∙ே represents the measurement-covariance matrix. Note that for 

the sake of simplicity we assume that all ௬ܰ states are measurable. The result of the PE yields the estimator ̂. 
Measured data is considered to be a random variable because of random measurement errors (a Gaussian white 
noise is assumed). As a result, the solution of the PE problem is also random. The model-based experimental 
design strategy (ED) aims to design experimental settings ܷା such that they maximize the accuracy of the 
parameter estimation. We describe the accuracy of the parameter estimation by the variance-covariance matrix ܥ ∈ ℝே×ே. Here, the optimization problem is formulated as follows: ܷା∗ = శ݊݅݉	݃ݎܽ ߮ா(ܥ(ܷି, ܷା, 	((̂
s.t. DAE’s	(Eq.	(1))	
ܻ ≤ ܻା(ܷା, (̂ ≤ ܻ௫ 

(3)
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where ܷା ∈ ℝேೠ∙ is the piece-wise constant trajectory of future input actions, ℎ represents the length of a 

receding (future) horizon (see section 3). The functional ߮ܦܧ characterizes the chosen optimization criterion. 
Common design criteria are so-called A-, D- and E-optimal criteria (Franceschini and Macchietto, 2008):  ߮ா, = ௧()ே  (4) 

߮ா, = det	(C) భಿ (5) ߮ா,ா = max	(λ(C)) (6) 

The uncertainty of the parameter estimation can be represented by the parameter confidence region using 
probabilities of α = 90% or 95%. Thus, the goal of the experimental design is to minimize the confidence region to 
an acceptable size. The A-optimal criterion represents the trace of the variance-covariance matrix and minimizes 
the mean parameter standard deviations. The D-optimal criterion minimizes the determinant of the variance-
covariance matrix and aims at decreasing the volume of the confidence region. Even at small confidence region 
volumes, the shape can get overly stretched, which results in high parameter correlation (Schöneberger et al., 
2009). While the E-optimal criterion denotes the largest eigenvalue of the variance-covariance matrix (λ 
represents the eigenvalue of C in Eq. (6)) and decreases the size of the major axis of the confidence region. The 
variance-covariance matrix C is obtained from the inverse of the Fisher information matrix ܨ ∈ ℝே×ே (Galvanin 
et al., 2007). ܥ = ଵିܨ = ൫Fି(ܷି, (̂ + Fା(ܷା, ൯ିଵ(̂ = ൫ܨ + Fା(ܷା,  ൯ିଵ (7)(̂

In Eq. (7) ܨ denotes a constant part of the Fisher matrix which depends on past input actions ܷି. Accordingly, in 
Eq. (7) only vector ܷା is optimized. The calculation of the Fisher matrix is based on sensitivity coefficients ܵ ∈ ℝே∙ே×ே for each estimated model output ܨ(ܷ, (̂ = ்ܵ(ܷ, (̂ ∙ ௬ିߑ ଵ ∙ ܵ(ܷ, 	(̂ (8)	
The sensitivity coefficients describe the impact of the change in the model parameters on the predicted model 
response 

ܵ(ܷ, (̂ =
ۈۉ
ۇۈ

డ௬(௨,ො,௧భ)డොడ௬(௨,ො,௧మ)డො⋮డ௬(௨,ො,௧ಿ)డො ۋی
	ۊۋ (9)	

where 
డ௬డො ∈ ℝே×ே represents the sensitivities at each sampling time ݐ evaluated at ݑ and ̂. The mathematical 

formulation of the sensitivity coefficients plays a decisive role in the evaluation of the expected information. 
Therefore, the calculation of the sensitivity matrix has to be accurate. However, the variation of the parameter 
magnitude has a large impact on the values of the sensitivities. Thus, unscaled sensitivities can often lead to a 
singular Fisher matrix and produce numerical problems which affect the OED procedure. In order to avoid this 

problem we apply parameter scaled sensitivities as S୧୨ = 	 డ୷డೕ ݅∀  ;̂ ∈ 1,… , ௬ܰ ∙ ܰ, ݆ ∈ 1,… , ܰ (Franceschini 

and Macchietto, 2008). 
Note that operation requirements or safety restrictions have to be considered by the formulation of the ED 
optimization problem (see Eq. (3)). However, by the formulation of the PE optimization problem (see Eq. (2)) we 
do not need to consider these constraints because measured data already includes these process limitations. 

3. Closed-loop online optimal model-based redesign of experiments (CL-OMBRE) 

In the proposed strategy (see Figure 1), the system identification is done with the closed-loop control in order to 
satisfy safety requirements. An overview about conventional closed-loop identification methods was done by Van 
den Hof, 1998. Note that all experiments are executed only with a P-controller. We select the controller gain ݇ 
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and the set-point ݕ௦ as experiment design variables ܷ = ൣ݇,   . are measuredݕ  and the controlled variableݑ ௦൧். The output of the controller (control actions)ݕ

3.1 Fixed time horizon 
The redesign technique implemented by the CL-OMBRE strategy adopts well known concepts from model 
predictive control (MPC) (see Camacho and Bordons, 2004) to obtain optimal experimental design. Accordingly, 
the time axis is divided into two parts (see Figure 2). Namely, the time horizon which deals with the past 
experimental course, and a prediction or so called receding horizon within which we predict the future course of 
the experiment. A challenging problem is to find a length for the prediction horizon that works for all iterations.  
Overly distant prediction horizons would result in poor prediction of the model behaviour because of high 
uncertainty of the parameter estimation. On the other hand a very narrow horizon would restrict the possible 
experimental conditions which can be simultaneously planned to a small subspace and drive the solutions to 
suboptimal local points where only parts of the interesting  process dynamics and conditions are covered.  
Due to the fact, that our strategy is executed in real-time, we have limited time to perform all computations. The 
larger the number of design variables the higher the calculation effort to find a solution for the ED problem with a 
growing length of the receding horizon. Therefore, a tradeoff has to be found between the optimal length of the 
receding horizon and the calculation costs. 
The whole experiment time [ݐ,  ୬ୢ] is divided into equidistant time intervals (control intervals) with piece-wiseୣݐ
constant experiment design variables ݑ, with length ∆t = 	 t୩ − t୩ିଵ and ݇ = 1,… , ாܰ௫ being the number of 

intervals. In each interval ݇ all prior measurements are used to update the current parameter set ̂. Thus, the 
number of elements in the vector ܻ increases with ongoing experimental time. Here, the vector with simulated 
responses ܻି(ܷି,  is fitted to the vector with measurement data ܻ (solution of Eq. (2)). This is done with (
regard to the input actions for all past time intervals ܷି and the initial states ݕ = 	.(ݐ)ݕ In contrast, the model 
prediction ܻା(ܷା,  is computed based on the solution of the Eq. (1) for a receding horizon of a fixed length ℎ by (̂
taking the future input actions ܷା and the initial states ݕ =  into account. Here, the future trajectory of (ேାଵݐ)ݕ

input actions ܷା is obtained from the solution of Eq. (3) based on the current parameter set and is updated for 
each interval ݇ of the receding horizon. In the online implementation, parameter estimation and generation of the 
new input actions are performed for each time interval t୩. Therefore, all computations need to be performed within 
one control interval ∆t which represents a computational time step. At the end of each interval ݇ we implement the 
corresponding input action ݑାଵା . Therefore, ݑାଵା  is not considered in the formulation of the ED problem. So, we 
only update future input actions ൣݑାଶ,ା ା,ାݑ ൧. Note that by formulation of the PE problem we use measurements 

from the time horizon [ݐ,   .[୩ݐ
For the calculation of the ED problem, the initial states ݕ =  (ேାଵݐ)ݕ are needed. Thus, we determine (ேାଵݐ)ݕ
by solving Eq. (1) within [ݐே, ାଵ,ାݑ ேାଵ], taking into account thatݐ ݕ and ̂ , =  Note, that the predicted .(ேݐ)ݕ

model output ݕேାଵ is not used to update the current parameter set. 

3.2 CL-OMBRE algorithm 
A major challenge for the experimental application of the CL-OMBRE algorithm is to determine the number of 
parameters that can be reliably estimated from available measurement data. Generally, those parameters whose 
sensitivities are low or non-exist are not identifiable. In this case, the sensitivity matrix is singular from a numerical 
point of view and leads to ill-conditioned PE and ED optimization problems. In order to avoid this problem we 
apply the Subset Selection technique (SsS) presented by Barz et al., 2013 and Lopez et al., 2013. The SsS may 
reduce the parameter set ܰ to a subset with dimension ݎ. The set dimension ݎ represents the rank of the 

sensitivity matrix with linear independent columns of ܵ. In turn, the reduced sensitivity matrix ܵ ∈ ℝே∙ே×, with ܵ ⊆ ܵ, only represents sensitivities of remaining or active parameters ̂. In contrast to the strategy presented by 
Barz et al., 2013, in our procedure, the parameter set is always updated with each iteration step. Therefore, the 
SsS is applied only to the ED problem (see Figure 1). In the CL-OMBRE algorithm, first, the initial guess of the 
model parameters  and an initial experiment design ܷା as well as the length of the receding time horizon ℎ are 
defined. At the end of each time interval ݇ we gather measurement data ܻି and set design variables ܷାଵା . We 
also update the current parameter estimate ̂ (solution of the PE problem) based on available measurements ܻି and ܷି . After that, based on the last results of the parameter estimation the vector of simulated states 
variables ܻି (ܷି , ) and the sensitivity matrix ܵି̂ |ೖୀො are generated. Next, we determine the reduced sensitivity 

matrix ܵ with respect to the active parameters ̂ computed by SsS. Based on these results, we calculate an 
optimal action for the next sub-experiment ܷାଵା∗  (solution of the ED problem). Furthermore, we initialize the PE 
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Figure 1: CL-OMBRE strategy Figure 2: Time horizons used in the CL-OMBRE strategy. 
Here, m represents the number of measurements in one 
time interval 

Usually, the solution of PE and ED optimization problems require several iterations until a given convergence 
criterion is satisfied. Therefore, ∆t should be chosen in accordance to the process dynamics, so that all 
computations can be performed in real-time, within a control interval ∆t. Hence, we set an upper limit to the 
number of iterations performed by the optimizer (see Eq. (2) and Eq. (3)).  

4. Case study 

The efficiency of the proposed strategy has been evaluated in a real case study. We have applied our technique 
to the identification of a temperature controlled tank. Figure 3 shows the piping and instrumentation diagram 
(P&ID). All experiments are performed on the PCS Compact Work Station from Festo Didactic GmbH & Co. KG, 
Denkendorf, Germany. The process monitoring and control is realized using the ABB Freelance Controller AC 
700F with Analog Input/Output Module AX 772F. All numerical computations are implemented in the programming 
environment Matlab R2010a. The communication is realized using the ABB OPC-Server and the OPC Toolbox 
from Matlab. 
We conducted our experiments by changing the temperature controller settings (controller gain kୡ and 
temperature set-point yୡୱ୮) which in turn impact the temperature in the tank by changing the heater power  
(manipulated control variable ݑ). In these experiments we have two measured responses of the process: heater 
power and the temperature of the tank (controlled variable ݕ). The systems dynamic is of first order with time 
delay. In order to avoid discontinuities, the dynamic closed-loop system is approximated by a DAE of fourth order 
(see Eq. (10)). Disturbances are neglected.  ହ ∙ ௗర௬(௧)ௗ௧ర + ସ ∙ ௗయ௬(௧)ௗ௧య + ଷ ∙ ௗమ௬(௧)ௗ௧మ + ଶ ∙ ௗ௬(௧)ௗ௧ + (ݐ)ݕ = ଵ ∙ (ݐ)ݑ  (ݐ)ݑ = ݇(ݐ) ቀݕ௦(ݐ) − ቁ (10) 0%(ݐ)ݕ ≤ (ݐ)ݑ ≤ 90% 

425



 

Figure 3: Piping and instrumentation diagram 

All measurements are taken with a sampling interval with a length of 10 s. We define a control interval ∆ݐ = ௗݐ ,ݏ	100 =  The receding horizon covers the length of three intervals. The initial parameter guess for the model .ݏ	3700
parameters as well as the initial values of the design variables for the receding horizon are set to  and ܷା 	்[6ܧ6.0		5ܧ7.0		4ܧ3.0		700.0		2.0]= = [݇,, ,௦]், with ݇,ݕ = [3.0		5.0		15.0]் and ݕ,௦ = [24.0		29.0		25.0]் °C, 

respectively. All computations were performed on a 32 bit Linux platform with an Intel® Core™ i7, 2.20 GHz and 
2.6 GB RAM. The PE and ED optimization problem were solved with Matlab using its Optimization Toolbox solver 
lsqnonlin (trust-region-reflective) and fmincon (sqp), respectively. For the integration of the DAE system presented 
in Eq. (1) and the generation of sensitivities we used the sDACl solver, for more details see Barz et al, 2011; Barz 
et al, 2012. 

4.1 System identification with CL-OMBRE 
In this section we present our conducted experiments and discuss the results of the experimental validation. First, 
an offline conventional open-loop system identification based on step responses (Exp. 1) was conducted (the ED 
problem in Eq. (3) was not solved). Here, six experiments were performed with a total of six random step-wise 
changes in the heater power (controller output). Then, the model parameters (see Eq. (10)) were estimated based 
on the gathered measurements. The results for offline open-loop experiments are given in Table 1. Note that 
while performing open-loop experiments, it is important to change the heater power up and down for the same 
number of steps. Due to the fact that we deal with a temperature controlled system, up and down steps are 
associated with the dynamics of heating and cooling processes, each of which have different time constants. If 
the number of steps are unevenly distributed then one of the process dynamics would predominate which would 
in turn result in a biased system identification. Second, two online closed-loop experiments (Exp. 2 and Exp. 3 in 
Table 1) with conventional ED based on step-wise changes of ܷ were realized (the ED problem in Eq. (3) was not 
again solved). The design variables ܷ were once randomly generated with a uniform distribution and used as 
initial set for both experiments. The results are shown in Table 1. It was not possible to identify all model 
parameters using this conventional ED. The number of identifiable parameters selected by the SsS algorithm was 
four out of five. Third, eight closed-loop optimum experiments based on the CL-OMBRE technique (Exp. 4 – Exp. 
11) were conducted. Here, both, PE and ED optimization problems as well as the SsS strategy were solved 
online. The only difference in these experiments is the way the ED is calculated. In contrast to the algorithm 
described in section 3, the only termination criterion which was used is the total experimental duration. All eight 
experiments were executed with the same initial values of design variables U୩. From these eight experiments we 
have performed a total of four experiments with A-criterion (Exp. 4 – Exp.7). For reference, the results of the Exp. 
5 are shown in Figure 4. In all four experiments, we could identify the whole parameter set. Furthermore, we have 
conducted two experiments with D-criterion (Exp.8 and Exp. 9) and two experiments with E-criterion (Exp. 10 and 
Exp. 11). All eight results are presented in Table 1. The parameter values within are normalized by their 
respective initial guess taken from section 4, with pത = pො p⁄ . Values in parenthesis denote non-active (non-
identifiable) parameters whereas the * represents an unreliably identified parameter (large standard deviation). 
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Figure 4: Results of the experiment Exp. 4 with A-optimal design. Here ܶ represents the operating point 

All closed-loop experiments took the same amount of time due to the online implementation of experiments. In all 
cases we used a P-controller. In contrast to the offline open-loop experiments, there was no need to wait for a 
steady state. Therefore, the closed-loop experiments are more time-efficient especially in online mode. Finally, we 
conducted two additional reference closed-loop experiments (Exp. 12 and Exp. 13) with random step-wise 
changes of ܷ (same conditions as in the online closed-loop (conventional) ED). Here, both, PE and ED 
optimization problems were not solved and only measured data was collected. The duration of this experiment 
was 3700 sec. So, we executed a total number of thirteen experiments, from which eleven models were identified. 
These experiments were executed at different seasons, which affected the temperature of the coolant stream and 
as a result impacted the process dynamics. This issue is recognizable in the results of the parameter identification 
but is negligible for our consideration.  
The analysis of Table 1 shows that all experiments with A-criterion (Exp. 4 – Exp. 7) and one experiment with D-
criterion (Exp. 8) were able to identify all parameters. For the open-loop (Exp. 1) as well as the unplanned closed-
loop experiments (Exp. 2 and Exp. 3) only a subset of the parameter space is identifiable (parameter pହ was not 
identified). In optimum closed-loop experiments with E-criterion we could identify four parameters in Exp. 10 and 
only three parameters in Exp. 11. In experiments Exp. 8 and Exp. 9 with D-criterion all parameters were identified. 
However, in Exp. 9 the fifth parameter was identified with a very high relative standard deviation of 59.55 %, 
which indicates, that identified value of pହ is unreliable.  
In order to validate the identified models obtained from the different identification methods discussed above, we 
reused the measurement data obtained from twelve closed-loop experiments. Each of these measured data sets 
was also used as a reference experiment for all the other models. We were then able to assess the adequacy of 
the models based on how good they were able to predict the outcome of these twelve experiments. The metric of 
the model prediction is determined by the mean residual (see Table 2). The mean residual is calculated as a 

weighted Lଵ norm 1 N୫⁄ ∙ ∑ ‖y୧୫ − y୧‖ଵౣ୧ୀଵ . In Table 2 values in bold denote the best models for each experiment. 
Here, the * represents the mean residual of the model obtained from its respective experiment. Due to the fact 
that a model was optimized through its own experiment, it is also the best approximation for its experiment. 
Therefore, we ignore the mean residuals with the * for the sake of comparison. The analysis of Table 2 shows that 
closed-loop optimal ED leads to better performance. Furthermore, the models with A- and D-criterion were more 
successful in providing the best experimental approximation in comparison to the E-criterion. For reference, 
results of the model prediction of the experiment Exp. 12 for Model 1, Model 2 and Model 5 are shown in Figure 5, 
where y୭୮ denotes the operating point of the process. As we can see in Table 2, models M2 and M3 achieved 

from closed-loop conventional design have a lower quality in comparison to the open-loop conventional ED. This 
is due to the poor experimental conditions provided by closed-loop conventional experiments.  
To summarize, the CL-OMBRE strategy was not only able to improve the accuracy of model parameters in 
comparison to conventional methods, but it reduced the necessary effort measured as experimental time by a 
factor of three. 
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Figure 5: Model predictions versus measurements for Exp. 12 using parameter vectors from experiments Exp. 1 
(open-loop conventional ED), Exp. 2 (closed-loop conventional ED) and Exp. 5 (CL-OMBRE) 

Table 1: Normalized parameters and ݐௗobtained from closed-loop and open-loop experiments  

Experiment 
number 

Variables ̅መଵ ̅መଶ ̅መଷ ̅መସ ̅መହ 
 ,ௗݐ
[h] 

Exp. 1 Offline open-loop (conventional ED) 0.1 0.58 0.53 0.59 (0.0034) 3.1 
Exp. 2 Online closed-loop (conventional ED) 0.12 0.71 0.6 0.28 (0.00) 1.03 
Exp. 3 Online closed-loop (conventional ED) 0.14 0.91 0.75 0.31 (0.00) 1.03 
Exp. 4 CL-OMBRE with A-criterion 0.1 0.52 0.6 0.36 0.37 1.03 
Exp. 5 CL-OMBRE with A-criterion 0.1 0.55 0.6 0.39 0.17 1.03 
Exp. 6 CL-OMBRE with A-criterion 0.1 0.56 0.64 0.4 0.43 1.03 
Exp. 7 CL-OMBRE with A-criterion 0.11 0.6 0.69 0.49 0.28 1.03 
Exp. 8 CL-OMBRE with D-criterion 0.1 0.56 0.68 0.48 0.48 1.03 
Exp. 9 CL-OMBRE with D-criterion 0.13 0.69 0.75 0.62 0.07* 1.03 
Exp. 10 CL-OMBRE with E-criterion 0.14 0.74 0.75 0.57 (0.00) 1.03 
Exp. 11 CL-OMBRE with E-criterion 0.11 0.69 0.77 (0.00) (0.00) 1.03 

 
Table 2: Mean residual  

Model 
num-
ber 

 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10 Exp 11 Exp 12 Exp 13 

M1 open-loop 
conventional 

2,70 3,45 1,07 0,85 0,87 1,37 0,96 1,94 2,98 3,19 1,27 2,26 

M2 closed-loop 
conventional 

2,47* 2,90 1,93 1,49 1,60 1,46 1,65 1,50 2,17 2,43 1,56 1,57 

M3 closed-loop 
conventional 

3,23 2,68* 3,85 3,07 3,37 2,99 3,02 1,76 1,65 3,17 3,06 1,52 

M4 A-criterion 2,89 3,84 0,61* 1,10 0,93 1,92 0,88 2,59 3,75 3,23 1,18 2,85 
M5 A-criterion  2,67 3,48 0,83 0,58* 0,54 1,10 0,70 1,88 2,93 2,89 1,01 2,19 
M6 A-criterion  2,72 3,59 0,75 0,65 0,49* 1,16 0,60 1,96 3,06 2,85 0,95 2,30 
M7 A-criterion  2,76 3,42 1,38 0,79 0,82 0,65* 0,80 1,27 2,31 2,69 1,13 1,71 
M8 D-criterion  2,93 3,75 0,82 0,79 0,59 1,18 0,55* 1,97 3,10 3,01 1,01 2,36 
M9 D-criterion  3,08 3,19 2,77 1,95 2,21 1,57 1,94 0,64* 1,22 3,10 2,12 1,01
M10 E-criterion 3,31 3,00 3,47 2,62 2,93 2,37 2,57 0,89 0,91* 3,34 2,68 1,09
M11 E-criterion  2,63 3,12 2,13 1,78 1,80 1,70 1,75 1,66 2,36 2,41* 1,59 1,63 
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4.2 Application of the CL-OMBRE strategy to tune a PI-controller 
In the previous section, we have identified a model by using the CL-OMBRE technique, So, in this section we use 

one of the identified models to tune a PI-controller (controller parameter ݇ܿ, ܶ݅)  in order to compare our strategy 
with a conventional method. For this purpose we calculated the controller parameters by minimizing the integrated 
absolute error (IAE) constrained by a maximum overshoot of 2 %. min,் න ஶ							ݐ݀|(ݐ)ܧ|

 														 																															 with (ݐ)ܧ = (ݐ)ݕ − (ݐ)ݕ (ݐ)௦ݕ − (ݐ)௦ݕ(ݐ)௦ݕ ≤ 0.02											 																															  

(8)

Results of the controller tuning based on model obtained from open-loop and closed-loop experiments are 
presented in Figure 6. The experimental data of the controller performance confirms that the model obtained from 
the CL-OMBRE technique describes the process behavior sufficiently and we were able to tune a controller which 
is able to comply with operating requirements (overshooting below 2 %). In contrast, the model obtained from 
open-loop experiments shows poor conformity with process behavior. Moreover, the overshooting exceeded 
operating requirements with a rate of 5 %. 

5. Discussion  

The CL-OMBRE technique has been presented, which allows online system identification through closed-loop 
experiments. In the presented method, design variables are represented by a set-point and a controller gain and 
are directly adjustable. The P-controller used in the CL-OMBRE strategy acts as a watchdog to ensure that the 
defined restrictions are kept during the whole experiment. The CL-OMBRE technique has been validated 
experimentally for a temperature control system and has shown to be more efficient than a conventional open-
loop method. The accuracy of the model parameters is also improved. We have also validated the performance of 
our algorithm in several experiments with different ED criteria. The A-optimum design has proved to be the best 
choice for the studied system in terms of the number of identifiable parameters, model quality and calculation 
effort. Finally, the proposed procedure shows its high potential for a significant reduction of the experimental effort 
for system identification in comparison to the conventional open-loop method (66% savings in experiment time) 
and in turn for a reduction of experimental costs. For the presented case study, it could be shown that the closed-
loop system based on optimum ED was stable and safety restrictions were kept during online identification.  
In the applied closed loop identification technique, the controller gain  is responsible for keeping the stability of the 
system and track optimally computed set-point changes. Thus, the CL-OMBRE method can be potentially 

 

Figure 6: Step responses using PI-settings obtained through the CL-OMBRE and open-loop strategy for process 
models gained from experiments Exp.1 and Exp. 4.  
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improved by considering stability conditions and safety restrictions directly in the ED problem formulation, e.g. by 
formulating additional safety related constraints for state variables and restricting all roots of the characteristic 
equation of the closed-loop system dynamics to negative real parts.  
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