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In this paper, an extension to the α-reformulation (αR) technique, utilized in the α global optimization 
(αGO) algorithm, is presented. The algorithm can be used to solve any nonconvex mixed-integer nonlinear 
programming (MINLP) problem containing twice-differentiable functions to global optimality as a sequence 
of reformulated problems overestimating the feasible region of the nonconvex one in a convex extended 
variable space. In the algorithm, convex underestimators for nonconvex functions are obtained by adding 
quadratic spline functions overpowering the nonconvexities and subtracting a linearization of the added 
functions. Here, it is shown how it is possible to reduce the approximation error by utilizing a piecewise 
quadratic spline function defined on smaller subintervals and in the process increasing the efficiency of the 
method. This is illustrated by applying the new underestimator on some test problems.  

1. Introduction 

The αGO algorithm can be used to solve any MINLP problem containing nonconvex twice-differentiable 
functions to global optimality. In contrast to many other global optimization techniques, no branch and 
bound strategy is used, instead reformulated convex MINLP problems providing an increasing sequence of 
lower bounds for the original nonconvex problem is solved, cf. Lundell and Westerlund (2012a). No upper 
bounds are needed or considered in this method.  
The αGO method is based on the signomial global optimization (SGO) algorithm as presented in, e.g., 
Lundell et al. (2009) and Lundell and Westerlund (2012a), In the SGO algorithm, power and exponential 
transformations in combination with piecewise linear functions (PLFs) are used for convexifying nonconvex 
signomial functions. The result is a convex overestimation of the nonconvex problem in an extended varia-
ble space. By iteratively tightening the PLF approximations, the overestimation is reduced and the lower 
bound of the objective function is increased until the solution fulfills all constraints in the nonconvex prob-
lem, hence being the global optimum. The SGO algorithm also contains an optimization step for selecting 
the power and exponential transformations as detailed in Lundell and Westerlund (2007).  
The α reformulation (αR), on which the αGO algorithm is based, is a combination of the algorithmic frame-
work of the SGO algorithm and the αBB convex underestimator as described in, e.g., Floudas (2000). In 
the αBB underestimator a quadratic function  	 − ( − ),			 0,  (1) 

is added to a nonconvex function g(x) on the interval [ , ] to convexify it, in the process underestimating 
the function in the entire interval since α is positive. To guarantee convexity, the value of α should be large 
enough. However, a larger α-value results in a less tight convex underestimator, so ideally the smallest 
possible value should be selected. According to elementary convexity theory, for a univariate function the 
minimal α in the interval [ , ] is found by taking the second derivative of the proposed convex underesti-

mator ( ) + − ( − ),		i.e., ′′( ) + 	2  (2) 

and then searching for the minimum positive value α fulfilling  
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≥ − ( ),			∀ ∈ [ , ]. (3) 

In the multivariate case, the optimal value on α is more difficult to determine exactly and is generally re-
placed by a valid overestimation. The α-values should be such that they move the eigenvalues of the Hes-
sian matrix of g(x) into the right half of the complex plane, thus making the Hessian of the convexified 
function positive semidefinite, a requirement for convexity. Methods for determining α-values are described 
in Floudas (2000). In this paper the scaled Gerschgorin method, based on calculating the interval Hessian 
matrix and considering the worst-case scenario for the location of the eigenvalues, is used.  
In Meyer and Floudas (2005), an extended version of the αBB underestimator utilizing a quadratic spline 
function, was proposed and this underestimator is used for the reformulations in this paper. The spline 
underestimator has the benefit of allowing for different α-values in different parts of the domain considered. 
This paper is an extended version of the conference publication Lundell and Westerlund (2013), where the 
spline underestimator in a reformulation framework was extended by defining the splines on smaller subin-
tervals. 

2. The reformulation technique 

The type of MINLP problem considered in this paper is of the following form: 
  minimize	 ( ),  subject	to	 ( ) + ( )( ) ≤ 	  (4) 	 = [ , , … , ] , ∈ [ , ].	
 
where f is a linear or convex nonlinear objective function. The inequality constraints h ≤ 0 are composed of 
twice-differentiable nonconvex functions g and convex functions q. The variables in x may be integer- or 
real-valued and are assumed to be bounded by appropriate explicit lower and upper bounds. Equality 
constraints are relaxed to corresponding positive and negative inequality constraints. A nonconvex objec-
tive function is replaced by a variable μ and an additional constraint f(x) – μ ≤ 0 is included. Thus all non-
convexities are located in the constraints of the problem.  
A convex overestimation of the feasible region of the nonconvex problem in Eq. (4) is obtained by replac-
ing the nonconvex functions in the constraints with convex underestimators. The convex relaxation tech-
nique is a two-step process, where firstly all functions are convexified by adding functions S convex 
enough to overpower any nonconvexities to the nonconvex functions. Secondly, the nonconvex functions 
are underestimated by subtracting a PLF from each S. For the m-th nonconvex constraint this can be for-
mulated as ℎ ( ) = ℎ ( ) +	 , ( ) − , . (5) 

If ,  is convex and ,  is given by a PLF of it, their difference is , − , ≤ 0. Thus the inequality con-
straint ℎ ( ) +	 , ( ) − , ≤ 0,     where     , = PLF , ( ) , (6) 

will be both a convexified and relaxed constraint. 
When replacing the original nonconvex constraints with those in Eq. (6), the result is a convex relaxed 
MINLP problem in an extended variable space containing the original variables, the variables	  as well as 
the variables required for the PLFs. Also, the feasible region of this reformulated problem will contain that 
of the original nonconvex one.  
Initially in Skjäl et al. (2011), the form ( ) 	=  was proposed for the convexification step. However, in 
Lundell et al. (2013), the spline version of the αBB underestimator from Meyer and Floudas (2005) was 
also utilized in the framework. The spline underestimator is a smooth convex piecewise polynomial func-
tion of the form 

( ) , + , + , , if	 ∈ , , , ,, + , + , , if	 ∈ , , , ,									⋮ 						⋮, + , + , , if	 ∈ , , , , (7) 

 
where , , ,  and ,  are parameters valid in the k-th breakpoint interval of the PLFs of variable , i.e., [ , , , ], in a specific constraint. The convexity requirement is guaranteed by sufficiently large , -
values, and the continuity and smoothness of the underestimator is given by the parameters ,  and , . 
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The α-values are calculated for example using the methods presented in Floudas (2000), and the β- and γ-
values using the expressions in Meyer and Floudas (2005). In contrast to using the function ( ) 	=  for 
convexification, the spline underestimator allows for selecting different α-values in different parts of the 
domain for the variable. Since α may be zero in convex intervals, the spline function would be linear on 
such intervals, and the convex underestimator coinciding with the original function, i.e., there would be no 
underestimation error. Especially when considering nonconvex objective functions, this can greatly reduce 
the iterations required for finding the global optimum. 

3. The αGO algorithm 

The αGO algorithm is an extension of the SGO algorithm, as described in, e.g., Lundell et al. (2009) and 
Lundell and Westerlund (2012a), where the applicable problem type, in addition to signomial functions, 
now include all nonconvex twice-differentiable functions. In the original SGO algorithm, single-variable 
power and exponential transformation schemes were used to reformulate nonconvex signomial (including 
posynomial and polynomial) functions. In the αGO algorithm however, the signomials are regarded as any 
other twice-differentiable nonconvex function, so no additional transformation schemes are required except 
for the αR. In Lundell et al. (2013), the αSGO algorithm was introduced, combining the two reformulation 
techniques. Since it is then possible to transform nonconvex signomials using both the αR as well as the 
power and exponential transformation schemes, a preprocessing step, selecting an optimized set of trans-
formations for convexifying a given problem, was proposed in Lundell and Westerlund (2012b).  
As mentioned earlier, the SGO, αGO and αSGO algorithms share a common framework, where a se-
quence of reformulated MINLP problems are solved until the global solution to the nonconvex problem is 
found as the solution to the final subproblem. In each iteration, the overestimation of the feasible region is 
reduced (in the original variables) by adding breakpoints to the PLFs. Thus the approximation error in the 
linearization is reduced, as is the overestimation of the feasible region of the reformulated problem. Since 
the overestimation of the feasible region have a large direct impact on the solution time and number of 
iterations required, naturally tighter convex underestimators result in a more efficient solution process. This 
justifies the technique for refining the spline underestimator described in the next section. 
It is possible to use the αR technique with or without an iterative procedure such as the αGO algorithm by 
initially adding a sufficient amount of breakpoints to all PLFs and just solving one or only a few reformulat-
ed MINLPs giving the global optimal solution to a specified tolerance. This may be an option for problems 
with only a few nonconvex functions of a few variables, however, it is often not a viable strategy for medi-
um or large sized problems, since the complexity of the reformulated problem will be too high to be solved 
within a reasonable time-limit. 

4. Refining the spline underestimator 

Since the intervals used in the definition of the spline underestimators in Eq. (7) are not connected to those 
in the PLF approximations of  in Eq. (6), it is possible to improve the underestimator by defining the 
splines over finer intervals. The justification is that when considering smaller intervals, smaller -values 
may be obtained due to the function being convex in the interval (resulting in α = 0) or since the techniques 
for obtaining the α-values may give tighter bounds on the parameters due to, e.g., interval arithmetic calcu-
lations. An initial partitioning can be done once, and after this, the spline underestimator itself will not be 
recalculated in subsequent αGO iterations. The default strategy is to calculate the spline underestimator in 
those intervals defined by the breakpoints in the PLFs, requiring the splines to be recalculated as new 
breakpoints are added in each iteration. Note however that it is often not enough to calculate the splines to 
any accuracy to find the global optimum. Instead it is the tightening of the PLFs by adding more break-
points that guarantees convergence to the global optimum, and thus the approximation of the spline func-
tion S will be updated normally by adding additional breakpoints to the PLFs.  
Note that, when regarding nonconvex functions that are nonseparable with respect to the variables, the 
splines must be calculated in hypercubes corresponding to the discretization steps for all variables, and 
therefore the calculation of the parameters α for the splines are computationally quite costly if a too large 
number of subintervals are considered. For example, if considering a nonconvex function of two variables 
with 256 intervals each, the refinement grid will consist of a total of 256 × 256 = 65,536 regions. Therefore, 
there is a practical limit on how fine the partitioning of the spline parameters should be. 
If it is possible to separate the nonconvex functions with respect to the involved variables, individual spline 
functions can also be used for the individual parts. This can be beneficial for complex multivariate noncon-
vex functions as it simplifies the calculation of the α’s. However, additional transformation variables  are 
needed although some of the variables used in the PLFs may be reused. Different number of partitions 
may also be used for different variables. 
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4.1 An algorithm for calculating the splines 
To calculate the splines in N-dimensional subregions the following enumeration algorithm from Westerlund 
et al. (1995) can be used. The algorithm proceeds through all different combinations of spline intervals for 
the variables involved in the nonconvex function, only saving the maximum α-value for each interval for 
each variable. The variables involved in the function g(x1,…,xI) are numbered with the index i = {1,2,…,I} 
and the corresponding breakpoint intervals for the variable xi are numbered with ki = {1,2,…,Ki}. The k-th 
interval for variable xi is then denoted by [·]i,k. The resulting α-value for xi in the k-th interval is α(i,k). 
 

 
1. Set the index vector n(i) = 1 for all i = {1,2,…,I}. For all valid values, this vector corresponds to a 

N-dimensional subregion of the domain of the function.  
2. Calculate the minimal α-values for each variable xi in the subregion [·]1,n(1)× [·]2,n(2)×…× [·]I,n(I), cor-

responding to the index vector n, and save the value for the i-th variabel to α(i,n(i)). 
3. Set i = I, i.e., the total number of variables.  
4. If n(i) + 1 > Ki 

a. Set n(i) = 1 and i = i – 1. 
b. If i > 1 go to 4 else (i = 0) go to 5. 

Else 
a. Set n(i) = n(i) + 1. 
b. Calculate the α-values in the subregion [·]1,n(1)× [·]2,n(2)×…× [·]I,n(I) and save the i-th value 

to α’(i, n(i)). If α’(i,n(i)) > α(i,n(i)) save the new value α’(i,n(i)) to α(i,n(i)) for all i. 
c. Go to 3. 

5. Return the vector α. 

 
 
Note that this algorithm can be easily parallelized by calculating the α-values in even parts of the N-
dimensional hypercube on different threads or processors. For example, for a variable xi the intervals ki = 
{1,…, Ki / 2} are calculated on one thread and ki = {Ki / 2 + 1, …, Ki} on the other. 
 
 

4.2 A univariate example 
To illustrate the refinement procedure, the reformulation technique is now applied to the function  ℎ( ) = sin + 10⁄ ,						 	 ∈ [0,15],  (8) 

assumed to be present in a problem of the type in Eq. (4). A plot of the function is shown in Figure 1. The 
nonconvex function is replaced with the convex underestimator ℎ( ) + ( ) − , where  is a spline func-
tion defined as in Eq. (7), and  is a PLF of . If defined on one and two intervals, the spline function will be ( ) = 	8.5	 − 127.5	       and      ( ) = 4.75	 + 85.3125	 , 0 ≤ ≤ 7.5,8.5	 − 141.563	 + 210.938, 7.5 < ≤ 15, (9) 

respectively. So, if the spline is defined on one interval only, we get a variant of the original αBB underes-
timator, but if instead two intervals are used, a smaller value for α can be used in the first interval, resulting 
in a tighter underestimator. In Figure 1, the spline functions and their approximations, in the case when the 
PLF-linearizations are performed in four intervals, are illustrated for different refinement levels of the spline 
functions. An illustration of the α-values obtained if smaller subintervals are considered for the spline is 
provided in Figure 2. In the case of only one interval, the largest α-value most be used on the entire inter-
val to guarantee convexity. However, if smaller intervals are considered, different values for the parameter 
can be utilized. In intervals where the function is convex even zero values are allowed, resulting in the 
convex underestimator coinciding with the original function, i.e., no underestimation error occurs. In Figure 
3, it is illustrated how the underestimator changes as additional breakpoints are added to the PLF approx-
imations.  
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Figure 1: Left: The nonconvex function h(x). Right: The spline functions (solid) and their linearizations 
(dashed) when the α-values are calculated on one (furthest down), two, 10 and 50 equal subintervals re-
spectively. Five breakpoints are used in each PLF. 
 
 

 
 

 

Figure 2: The α-values in the different parts of the domain, when calculating them on finer intervals using 
the scaled Gerschgorin method. In the initial figure, the same value is used in the whole domain [0,15], 
but as the grid is made finer, smaller values can be used in the separate intervals. Note the α-values 
equal to zero in intervals where the function h(x) is convex. 

 

  

Figure 3: The nonconvex function h(x) as well as the resulting convex underestimators calculated on one 
(thick), two (grey), 10 (thin) and 50 (dashed) subintervals of equal length with no additional breakpoints 
(top, left), one additional breakpoint (top, right), three additional breakpoints (bottom, left) and seven addi-
tional breakpoints (bottom, right) in the PLFs. Note that the breakpoints used in the PLFs are independent 
of those in the splines. 
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4.3 A bivariate example 
 
Now, we consider the following nonconvex MINLP problem: 
 minimize	 ( , ) = (2	 − 4) + ( − 13 2⁄ )   subject	to	 ℎ( , ) = cos + sin − 3⁄( , ) + 2⁄ − 5 2⁄( ) ≤ 0,	 (4) 	 2 ≤ ≤ 4, 2 ≤ ≤ 8, ∈ ℝ, ∈ ℤ.
 
The objective function f is convex. The nonconvex constraint consist of a nonconvex function g(x1,x2) and 
a convex function q(x1). The variable x1 is real and x2 is integer. Since the nonconvex function is a non-
separable function of two variables we consider it as a whole, and reformulate it using the quadratic spline 
underestimator described in Section 4. The result is the following problem: 	minimize	 ( 1, 2) = (2	 1 − 4)2 + ( 2 − 13 2⁄ )2	 	subject	to	 cos + sin − 3⁄ + 2⁄ − 5 2⁄ + ( ) + ( ) − − ≤ 0,	= PLF ( ) ,		 = PLF ( ) ,					 2 ≤ ≤ 4, 2 ≤ ≤ 8, ∈ ℝ, ∈ ℤ.  
 
The reformulated problem is convex in the extended variable space consisting of the original variables x1 
and x2, as well as those variables needed for the PLFs. The nonconvex function h(x1,x2) and the integer-
relaxed feasible region of h(x1,x2) ≤ 0 are shown in Figure 4. 
To illustrate the benefits of defining the spline underestimator on smaller subintervals, a comparison when 
solving the problem using the αGO algorithm is given for the cases of two and 32 subintervals. The algo-
rithm is implemented in the General Algebraic Modeling System (GAMS), where the reformulated prob-
lems were solved using the convex MINLP solver alphaECP. The computer used had a quad core Intel i7 
2.8 GHz processor. Since the function h(x1,x2) is nonseparable, the splines will be calculated on 2 × 2 = 4 
and 32 × 32 = 1,024 regions respectively in the two cases. The spline calculations are performed once, 
i.e., the spline function itself is not updated in subsequent iterations. The times for calculating the splines is 
0.9 s and 1.2 s in the two cases including initialization and calculation of the splines using Wolfram Math-
ematica. However, if we would calculate the splines on 1,024 subintervals for each variable, 1,048,576 
regions would need to be calculated, which takes over 180 s. Increasing the partitioning above 32 for each 
variable does not seem to have a significant impact on the solution time of the problems in the individual 
iterations in GAMS.  
In Figures 5 and 6, the iterative procedure of the αGO algorithm is exemplified for partitioning levels two 
and 32. In the first case, seven iterations are required for obtaining the global solution. In the second case, 
however, only four iterations are required due to the fact that the spline underestimators S1 and S2, as well 
as their linearizations Ŝ1 and Ŝ1 are much tighter than in the first case. This leads to a smaller overestima-
tion of the feasible region of the reformulated problem in the second case in each iteration.  A comparison 
of solving the problem to global optimality with different levels of partitioning is given in Figure 7. 
 
 

 
 
Figure 4. Left: The function in the nonconvex constraint h(x1,x2). Right: The integer-relaxed feasible region 
of the constraint h(x1,x2) ≤ 0 (gray region) as well as the contour of the objective function f(x1,x2).  
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Figure 5. An illustration of the reformulated problems in each iteration of the αGO algorithm when calculat-
ing the splines on 2 × 2 = 4 subregions. The first two columns show the spline functions and their lineariza-
tions, the third column the piecewise convex underestimator and the fourth the overestimation of the feasi-
ble region in the reformulated problem, as well as the solution point of the reformulated problem in each 
iteration. 
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Figure 6. An illustration of the reformulated problems in each iteration of the αGO algorithm when calculat-
ing the splines on 32 × 32 = 1,024 subregions. The first two columns show the spline functions and their 
linearizations, the third column the piecewise convex underestimator and the fourth the overestimation of 
the feasible region in the reformulated problem, as well as the solution point of the reformulated problem in 
each iteration. 
 
 
 

 
 
Figure 7. A comparison of the impact on the number of spline partitions on the solution time of the problem 
in Section 4.3. Note that the scale on the y-axis is logarithmic. 
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4.4 Some test problems 
In this section, the refinement technique is applied to three nonconvex test problems from Floudas and 
Pardalos (1999) and the results are given in Table 1. Note that these problems are the same as in the 
paper Lundell and Westerlund (2013), however an error in the implementation gave the wrong results 
there. The αGO algorithm is used to solve the problems, and the spline calculations are performed once, 
i.e., the spline function itself is not updated in subsequent iterations. The computer used for the compari-
sons had a quad core Intel i7 2.8 GHz processor. The spline calculations were done with the scaled 
Gerschgorin method implemented in Wolfram Mathematica and for solving the reformulated MINLP prob-
lems, the GAMS/SBB solver was used. Refining the splines further gave tighter lower bounds in the first 
αGO iteration of all the problems, as is clear from the results, and often also less iterations were required 
to solve the problem to optimum when increasing the refinement level. A drawback is, however, that the 
calculations of the parameters for the splines become computationally more demanding as the refinement 
grid is increased. This is especially evident in problems of more than one variable, where the variables are 
nonseparable, since the number of boxes the parameters need to be calculated in the product of the num-
ber of subintervals for all variables. Therefore, there is a trade-off between the number of subintervals and 
the resulting number of αGO iterations as can be seen in Table 1. The increase in grid points for the 
splines did not seem to affect the solution time of the reformulated MINLP problem significantly as also can 
be seen from the table. 
 
 
 
Table 1:  Results from the comparisons described in Section 4.4. Initial LB is the solution to the MINLP 
problem in the first iteration. The times for calculating the α-, β- and γ-values in the spline (with Wolfram 
Mathematica), solving the MINLP subproblems with GAMS/SBB (including compilation), as well as the 
total solution times are given. The instances were solved to the global optimal solution indicated for each 
problem. However, for Problem 8.2.6 the instances indicated with (-) were prematurely terminated at a 
time-limit of 3,600 s. 

 
 

Spline 
intervals 

Problem 8.2.1 Problem 8.2.2 
αGO 
iters 

Initial  
LB 

Spline 
time (s) 

GAMS
time (s)

Total 
time (s)

αGO 
iters 

Initial 
LB 

Spline 
time (s) 

GAMS 
time (s) 

Total 
time (s)

1 12 -15.8 0.9 15.2 17.2 53 -762.2 1.0 93.7 95.8 
2 12 -13.6 0.9 12.0 14.0 47 -539.0 1.0 66.9 69.0 
4 8 -6.2 1.0 6.3 8.4 32 -271.4 1.0 33.3 35.3 
8 7 -4.7 1.0 3.8 5.8 29 -170.8 1.0 27.5 29.6 

16 6 -4.1 1.0 3.0 5.1 20 -95.9 1.0 15.2 17.2 
32 6 -3.9 1.2 3.1 5.4 10 -51.3 1.0 5.0 7.1 
64 6 -3.7 1.7 3.3 6.0 8 -32.0 1.0 4.2 6.3 
128 6 -3.7 3.7 3.1 7.9 8 -26.2 1.0 3.6 5.8 
256 6 -3.6 11.9 3.1 16.1 7 -23.8 1.1 3.1 5.4 
512 6 -3.6 43.7 3.3 48.0 7 -22.7 1.4 3.1 5.5 

Variables Reals: 2, 2 transformed Reals: 1, 1 transformed 
Glob.opt. -2.02 -1.08 

 

 
Spline 

intervals 

Problem 8.2.6
αGO 
iters 

Initial 
LB 

Spline 
time (s)

GAMS
time (s)

Total 
time (s)

1 - -2.2E7 0.9 - - 
2 - -4.2E6 1.0 - - 
4 - -4.2E5 1.0 - - 
8 - -1.3E5 1.0 - - 

16 - -1.6E4 1.1 - - 
32 36 -7.0E3 1.3 3577.7 3580.1
64 23 -2.3E3 2.4 193.6 197.0 
128 13 -1.0E3 6.4 39.9 47.3 
256 11 -6.1E2 21.4 22.8 45.2 
512 10 -4.5E2 82.1 20.3 103.4 

Variables Reals: 2, 2 transformed  
Glob.opt. -10.09 
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5. Conclusions 

In this paper, it was shown how the solution process of the αGO algorithm could be improved by defining 
the spline convex underestimator on a finer grid than the regular iteratively added breakpoints used in the 
algorithm. The technique works very well for functions where the nonconvex functions are separable. For 
nonseparable functions however, the refinement grid cannot be too fine since the computational effort 
required to calculate the spline underestimator increases. Therefore, the trade-off between the number of 
subintervals and the resulting number of αGO iterations need to be considered. 
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