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Our analysis is focused on the celebrated majority-rule model evolving on complex graphs. We prove
analytically the symmetric properties of the network model and derive the conditions with respect to the network
topology under which the symmetry breaks. We also address how the Equation-Free approach can be exploited
to bridge in a computational rigorous way the micro and macro scales of the dynamics of stochastic
individualistic neuronal models evolving on complex random graphs. In particular, we show how bifurcation
analysis can be performed bypassing the need to extract macroscopic models in a closed form. The analysis
targets on the majority rule model evolving on Regular Random (RRN), Erdés—Rényi, and Watts-Strogatz
(small-world) networks. We construct the coarse-grained bifurcation diagrams with respect to the switching
probability and we show how the connectivity distribution may result to symmetry breaking of the underlying
macroscopic dynamics.

1. INTRODUCTION

Symmetry breaking of majority rule dynamics has been associated to phenomena such as herd behaviour under
panic (Altshuler et al., 2005), the emergence of cooperation (Pacheco et al., 2009) dynamics and public opinion
formation (Ianni & Corradi, 2002). For individualistic/ stochastic models whose dynamics evolve on complex
networks, the extraction of closed coarse-grained models in the form of ordinary (ODEs) and/ or partial-integro-
differential (PIDEs) equations is not an easy task. Due to the stochastic, nonlinear nature, multi-scale character
and complexity of the network-deployed interactions, such equations are simply not available, or overwhelming
difficult to derive. Without the existence of such models, what is usually done for analysis purposes is simple
brute-force simulations: starting from different initial conditions run in time and average over many ensembles to
get the required statistics. Even if we try to exploit the tools of Statistical Mechanics in order to derive some
closures, these are just approximations that may introduce biases in the modelling and therefore in the analysis of
the actual emergent dynamics.

This imposes a major impediment in our ability to analyse in a rigorous way the system’s behaviour. In order to
systematically analyse the way symmetry breaking influences the emergent dynamics of the majority rule model
evolving on complex networks we exploit the Equation-Free framework (Kevrekidis et al., 2003) bypassing the
construction of explicit coarse-grained models. In particular, we construct the coarse-grained bifurcation
diagrams of the basic majority rule model, for Regular Random, Erdés—Rényi, and Watts-Strogatz (small-world)
networks (Newman, 2003) with respect to the switching probability and analyze the stability of the computed
stationary solutions.

The paper is organized as follows: in section 2, for the completeness of the presentation, we give a brief review
of some basic complex networks. In section 3 we describe the majority rule model while in section 4 we prove
analytically how the connectivity degree of regular random graphs governs the symmetry and the symmetry
breaking of the solutions of the corresponding mean field models. In section 5, we show how the Equation-Free
framework can be exploited to perform systems level tasks on heterogeneous networks. In section 6 we present
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the results of the numerical analysis, constructing the coarse-grained bifurcation diagrams of the majority rule
dynamics as these obtained by exploiting the Equation-free approach. We conclude in section 7.

2. A BRIEF REVIEW OF SOME BASIC COMPLEX NETWORKS

A network is described as a graph, i.e. a pair of a set G = (V, E), where V' is the set of vertices (or, as
otherwise called, nodes) and E is the set of the edges (or as otherwise called, links). A graph can be described
by an adjacency matrix A4 Z[a,-j], (i,j=1.2,.., N ) whose elements are defined as follows: if there is an link

between nodes i and j then set a; =1; otherwise set @; =0. If the network is unidirectional (which means
that node i is connected with node j and vice versa) then a, =a ;.

Usually, the properties of the networks are studied in terms of the following three basic measurements:

(A) The characteristic path length L, defined as the mean value of all the shortest paths between any two

nodes, i.e.
d... .
L :—z ) (D
N(N-1)
where d,,; is the shortest path between i and j nodes and N is the size of the network. The

characteristic path length L is a global property of a network indicating the average number of steps
needed to reach any two nodes.

(B) The density of cliques (Watts and Strogatz, 1998; Albert and Barabasi, 2002). Shortly speaking, a clique
is a complete subgraph within a graph. An effective way to measure the “cliqueness” of a network is

through the clustering coefficient ¢, of the node ;. This is defined as follows: let k,. be the degree of

node i, i..e. the number of edges connected to node i . If the number of possible edges between the kl

kk —1
neighbours (or the total number of possible triangles) of node i is % and the number of edges

that really exist is £, (i.e. the number of existing triangles), then the clustering coefficient ¢, is defined
as
2F,

“TH ®

The clustering coefficient C of the whole network is defined as the mean value of the clustering
coefficients ¢, of every node.

(C) The degree distribution P(k) which gives the fraction of nodes with exactly k£ edges connected to it.

Characteristic examples of almost symmetric-around the mean value of the degrees-distributions are the
Erdés—Rényi and Watts and Strogatz type networks; scale-fee networks are characterized from power-
law distributions (Albert & Barabasi, 2002; Newman, 2003).

Networks are usually separated into four major categories (Strogatz, 2001): (a) regular, (b) random, (c) small-

world and (d) scale-free. Lattices, usually with four or eight neighbours for each node and rings, with the same
connectivity degree for each node are characteristic representatives of regular networks. Regular networks are
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characterized by both big mean lengths and clustering coefficients contrary to the randomly connected graphs,
such as RRN and the Erd6s—Rényi, which are characterized by small values for both quantities (Newman, 2003).
Over the last years it has been demonstrated that regularity or complete randomness are not characteristic of real-
world networks. On the other hand, small-world and scale-free networks pertain to the structure of many
problems ranging from neuroscience and epidemiology to the social sciences, internet and communication
(Strogatz, 2001). Here, our analysis is focused on three celebrated types of networks, namely RRN, the Erd6s—
Rényi (ER) and Watts and Strogatz (WS) networks. The Erdés—Rényi networks (Albert and Barabasi, 2002) are
constructed in the following simple way: in a population of N nodes it is assumed that each node can be

connected with the other N —1 nodes with a probability p . This means that a node has an equal probability,
say p , to be connected with every other node in the network. This type of network exhibits three distinct phases:

(i) for relatively small values of the connection probability p( p < %) the network consists of many isolated

1
subgraphs, (ii) for p > W there is a giant cluster and (iii) for p > lnTN almost the whole network is complete

(Albert and Barabasi, 2002). The degree distribution follows the binomial law reading:
N -1 e
P(k)=( A Jp"(l—p)N o 3)

This distribution is symmetric around the mean value k of the degrees which is given by % =pN.As N > ©

the binomial distribution can be approximated by the Poisson distribution

P(k)= @ @

The mean length follows the law L ~ 111111]; and the clustering coefficient is given by C = p = %

In their seminal paper, Watts and Strogatz, (1998), constructed a graph which can interpolate between a regular
and a random one. It can be shown, that this type of network is characterized by the “small- world” property
according to which the smallest path between two nodes is very short despite the large scale property of the
underlying topology. This phenomenon is also known as the “six degrees of separation”. These networks
combine the small world property (small characteristic path length) appearing in random graphs, with high
clustering coefficient appearing in regular lattices.

In order to construct the network, Watts and Strogatz used a “rewiring” algorithm which can be described as
follows: start with a ring network with K neighbours per node ( K /2 left and right) (N >> K >> In N ); with

probability p cut the existent edge between a node and its first nearest neighbour (in a clock or counter clock

wise sense) and rewire the edge with a random selected node. Self-connections or duplicate connections are not
allowed. Repeat this process for every node regarding the first nearest neighbours. Repeat the same procedure
for the second nearest neighbours etc. For p =0 the initial ring is invariant, while for p =1 the network is

completely random. For the intermediate values 0 < p <1 the network interplays between a regular and a

N 3
random network. When p — 0, then L~ ﬁ and C =~ Z (which are typical values of a ring) and when p -1,

InN K
then L %ln—K and C %F (which are typical values of a random network). Nevertheless, there is a broad
n
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and C>C,

ndom » Tesulting to highly clustered networks but with a

band of values for p where L=~ Ly, ...

small characteristic path (Watts and Strogatz, 1998). The degree distribution of a WS network exhibits the
following distribution

TwK) K /2 ( K/2)k—K/2—n
Plic)= 1= p) pkr2n\P -pK /2 5
N B T ©

where k > K /2, where f (k, K ): min{k -K/2,K/ 2} and p is the rewiring probability, K is the number

of the initial neighbors for every node, corresponding to p = 0 (K /2 into left and right).
Scale-free property characterizes the structure of many real-world networks including biological systems and the
world wide web (Newman, 2003; Strogatz, 2001). Such networks are usually characterized by power law degree

distributions i.e. P(k)=ck™, or on a logarithmic scale: In P (k) =Inc—-yInk. Such networks are created
through the “rich get richer” preferential connection algorithm (Albert and Barabasi, 2002).

3. THE MAJORITY RULE MODEL

ccl”

Each neuron is labeled as i (i =1,2,..., N ), and its state gets two values: the value if is it activated and the
value “0” if it is not. We describe the state of the i — 4 neuron in time ¢ with the function a,(¢) e {0,1}. Let A(/)

be the set of the neighbors (i.e. the neurons connected to i — & neuron, with self loop included). Also consider
the summation

o,(t)= a,(t)

JjeA i)

which gives the number of activated neighbors of the 7 -t4 neuron. At each time step each neuron interacts with
its neighboring neurons, and changes its state-value according to the following stochastic way (Kozma et al.,
2005; Spiliotis and Siettos, 2011):

k +1

i

1. An inactive neuron becomes activated with probability ¢, if o, (t) < (k, is the degree of

k +1
the i—thneuron). If o, (t) > ’2 the neuron becomes activated with probability 1 —¢& .

k +1

1

k,
2. An activated neuron becomes inactive with probability &, if the o, (t) > ’2 f o, (t) <

the neuron becomes inactivate with probability 1—¢ .
& takes values in the interval (0,0.5) .

4. SYMMETRY AND SYMMETRY BREAKING OF THE MAJORITY RULE MODEL EVOLVING
ON COMPLETE RANDOM NETWORKS WITH CONSTANT CONNECTIVITY

Let’s start by assuming a complete network with constant, odd, connectivity degreek =5 (self loop is included).
Let d, be the density of activate individuals at time 7, defined as:

dt — act (6)

According to the mean field perspective, the time evolution of the density is given according to the following
equation
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d.,=f(d,) 7

In the case of a constant degree distribution, say equal to five, the right-hand side of eq. (10) can be also written
as

f(d.&)=(1-e)f(d)+ o,(d) ®
where

fi(d)=d’ +5d* (1-d)+10d* (1-d)’, f,(d)=10d*(1-d) +5d(1-d)" +(1-d)’

For different values of the parameter & the fixed points of equation (1) are given by solving the fixed point map
d=f(d.e)=d- f(d,e)=0=G(d,e)=0 ©)

where G(d,&)=d - f(d.&) .
It can be shown that for a network with constant, odd degree distributionk =2/—1. Then the fixed point

. . . . . . 1
equation (9) for a constant & has symmetric solutions with respect to the horizontal line d = B (figure 1A).

For a complete network with arbitrary even k =2/ constant connectivity degree, the time evolution of the
density reads

dt+l = fZI (d,,é‘)

with

Il ) 2/-1 2] . )
Fyld,e) (1 sz" d) ”Z(i Jd”" (1-d)

i=0 i=l

The above equation can be written as

14020)~(- )1 0) )] ] -

where ;. (d)= z(f’jdﬂ (1= and fyad)- 2[2’}1 01— d)

i=0 i=l

o 1 :
The two parts f; 5, (d) N (d) are symmetric with respect to d = 3 However due to the perturbation term

20 i . :
£ / d'(1-d) the function f;,(d,&)loses its symmetry (figure 1B).
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Fig. 1. Bifurcation diagram of the density of activated neurons with respect to the activation probability & A.
constructed under the mean field approximation for a RRN with constant degree distribution equal to 5, B.
constructed under the mean field approximation for a RRN with constant degree distribution equal to eight.
There is a symmetry breaking of the Pitchfork Bifurcation. Dotted lines correspond to unstable solutions, while
solid ones to stable stationary solutions.

5. THE EQUATION-FREE APPROACH

The Equation-free approach can be used to bypass the need for extracting explicit continuum models in closed
form (Makeev et al., 2002; Gear et al., 2002; Kevrekidis et al., 2003; Siettos et al., 2003). The main assumption
of the framework is that macroscopic models in principle exist and close in terms of a few coarse-grained
variables, which are usually the first moments of the underlying microscopic distributions; all the other higher-
order moments become very-fast in the macroscopic time, functionals of the lower-order ones. What the
methodology does, is to provide these closures “on demand” in a strict computational manner. A caricature of
the method is described in the following steps:

(a) Choose the coarse-grained statistics, say X, for describing the emergent behavior of the system and an
appropriate representation for them (for example the mean value of the underlying evolving distribution).
(b) Choose an appropriate lifting operator 4 that maps X to a detailed distribution U on the network. (For

example, x could make random state assignments over the networks which are consistent with the densities).
(c) Prescribe a continuum initial condition at a time 7, , say, X, .

(d) Transform this initial condition through lifting to N, consistent individual-based realizations U LTHX,
(e) Evolve these N, realizations for a desired time 7, generating the U f? where = kT .

(f) Obtain the restrictions x, = XU .

The above steps, constitute the so called coarse timestepper, which, given an initial coarse-grained state of the

system X, at time 7, reports the result of the integration of the model over the network after a given time-
horizon T (at timet ), i.e.

=@, (x, ,p),where®,: R"XR" — R" having X, as initial condition.

L1
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6. NUMERICAL ANALYSIS RESULTS

The numerical analysis was obtained using networks of N =10000 neurons. We performed a coarse-grained
analysis for RRN, Erdds—Rényi, Watts-Strogatz (small-world) networks. The bifurcation diagrams, with respect
to the activation probability parameter & , were constructed exploiting the Equation-free framework as described
in the previous section. For our illustrations, our coarse-grained variable was the density d of the active
individuals. At time ¢,, we created N, different distribution realizations consistent with the macroscopic

variable d denoting the density of activated neurons. The coarse timestepper is constructed as the map:

d,, =,.(d,e) (10)

1+1
The derived coarse-grained bifurcation diagrams are depicted in figures 2 and 3. These are obtained using the
detailed stochastic majority-rule simulator as a black-box timestepper and wrapping around it the Newton-
Raphson iterative procedure in order to find the fixed points of the map (10). In the figures, dotted lines
correspond to unstable solutions, while solid ones to stable stationary solutions. Figure 2 illustrates the coarse-
grained bifurcation diagram when the underlying structure follows an Erdés—Rényi topology constructed using a
with connectivity probability p = 0.0008 . Figure 3 shows the derived coarse-grained bifurcation diagram in the

case of a Watts-Strogatz network constructed with a rewiring probability p = 0.2 starting from a ring lattice

with eight neighbours per node (four left and four right). As it is shown in figures 2, 3 the heterogeneity in the
connectivity distribution results to a symmetry breaking of the stationary solutions.
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Figure 2: Coarse-grained bifurcation diagram of the density of activated neurons vs. & for an Erddés—Rényi
network constructed using p = 0.0008.
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Fig. 3: Coarse-grained bifurcation diagram of the density of activated neurons vs. & for a Watts-Strogatz
network constructed with a rewiring probability p = 0.2 starting from a ring lattice with eight neighbours per
node (four left and four right).
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