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An original approach to global optimization of continuous models is introduced. It belongs to the
class of homotopy continuation methods, but “only” requires non linear equation systems to be
solved. Unconstrained and non-linearly constrained optimization problems are specified nearly the
same way. They are solved by coupling a robust Newton formulation for under determined systems
and a heuristic estimating the global minimum value by means of the discrete Legendre-Fenchel
biconjugate of the criterion. For the time being, the main drawback of the method is the excessive
number of function evaluations near the global minimum. However, its success rate being very good
on test problems, such as the global optimization of Lennard-Jones atomic clusters, it should be
investigated further.

1. INTRODUCTION

Among the main classes of global optimization methods, reviewed for example in Floudas and
Gounaris (2009), homotopy continuation methods remain quite confidential within the CAPE
community. One reason is the difficulty to handle several optimization problems starting from a
“simple” one, and moving to the problem of interest.

This paper introduces a homotopy method, suitable for continuous models only, which solves global
optimization problems under non linear constraints. This original approach may be attractive
because, instead of tackling intermediate optimization problems, it requires “only” to apply a
Newton iterative scheme to non linear equation systems.

First, in part 2, we introduce the method principle by applying it to an unconstrained global
optimization problem. Then, in part 3, a generalization to the non-linearly constrained case is
detailed. Part 4 discusses the numerical challenges that had to be surpassed and the answers we
propose. Part 5 illustrates the benefits and drawbacks of this homotopy formulation by means of a
famous case study: the global optimization of Lennard-Jones atomic clusters.

2. UNCONSTRAINED GLOBAL OPTIMIZATION

Let us illustrate the method principle with the unconstrained global optimization of a continuous
criterion f(x), where x € R™. We assume that we know some global minimum underestimate A of
the criterion. Instead of solving the initial optimization problem min,cpm f(x), we are interested in
a parameterized non linear problem (P;): g, (x) = f(x) —A; = 0. For a given value of 4;, we
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compute a sequence of K Newton iterates x; 1, X;, = Ngai (xi,l),xi,3 = Ngai (xl-‘z), ... where Ngai isa
Newton operator associated to g;,. Among those Newton iterates, we consider only a subset
S ={e{12.. K} gli(xi,j) < 0}. At any Newton iterate x; j, where j belongs to S;, the criterion
value is less than 4;.

The principle is to build a strictly decreasing sequence of criterion values from S; subsets. First of

all, we try to exhibit some x, ; verifying ||Df(x0,1)||00 > . We define A9 = f(x01) and So = {1}.
The next subsets are built according to the following:

e If S; is not empty, pick an iterate x; ;- from S; according to some strategy. An obvious

strategy is to pick an iterate minimizing f. Whatever this strategy is, f (xi_ j*) = li* < A

o If ||Df(xy)-)

minimum of f;

o If||Df(x;;-)

associated to g3, (x) = gz(x) = f(x) — A = 0 to produce S;,1;

A"+

o IfS; is empty, consider the last non empty set S, and define 4;,; = .

o If|A;4; — Ag"| < & then consider that x,* approximates a global minimum of f;
o If |Ai41 — 44| = € then, from x;44¢ = x,*, compute the K first Newton iterates

<& then consider that x;" =x;; approximates a global

|OO

|Oo = ¢ then, from x;,49 = X; j=, compute the K first Newton iterates

associated to g, (x) = f(x) — 444 = 0 to produce S;4.

3. NON-LINEARLY CONSTRAINED GLOBAL OPTIMIZATION

The previous method can be easily extended to non-linearly constrained global minimization.
Equality constraints are added to non linear problems (P;). Inequality constraints are transformed
into equality constraints by introducing slack variables. Then, those equality constraints are added to
(P;) problems.

Once again we assume that we know some global minimum underestimate A of the criterion. Instead

of solving the initial optimization problem min,cgmf(x) under the constraints c(x) = 0, we are

fO) =4
c(x)

of A;, we compute a sequence of K Newton iterates x;q, X;» = Ngli (xm), Xi3 = NgAi (xiyz),

interested in a parameterized non linear problem (P;): g;,(x) = ( ) = 0. For a given value

where Ny, is a Newton operator associated to g;,. Among those Newton iterates, we consider only
1

asubset S; = {j € {1,2, ...,K};f(xi,j) -4 <0A c(xi_j) = 0}. At any Newton iterate x; j, Where j
belongs to S;, the criterion value is less than 4;.
The principle is to build a strictly decreasing sequence of criterion values from S; subsets. First of
all, we try to exhibit some x4, verifying ||Df(x0_1)||00 >N c(xoyl) = 0. We define 4, = f(xo_l)
and S, = {1}. The next subsets are built according to the following:
e If'5; is not empty, pick an iterate x; ;- from §; according to some strategy. f (xi_ j*) = Ai* <
A;.

@) If ||Df(xw*)
minimum of f;
(@) If”Df(xu*)

associated to g, (x) = gz(x) = (

<& then consider that x;" =x;; approximates a global

|OO

|Oo = ¢ then, from x;,49 = X; j=, compute the K first Newton iterates

fe) -4

c(x) ) = 0 to produce S;1;
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. . Ao+
o IfS; is empty, consider the last non empty set S, and define 4;,; = a2+ -,

o If|A;4; — Ag"| < & then consider that x,* approximates a global minimum of f;

o If |Ai41 — 44| = € then, from x;44¢ = x,*, compute the K first Newton iterates

fOO) = A
c(x)

associated to g, (x) = ( ) = 0 to produce S; ;.

To summarize, the non linearly constrained global optimization algorithm differs from the
unconstrained global optimization procedure only in the following points:

1. Aninitial guess x,, has to be found on the constraints variety;

2. Homotopy functions g,, incorporate the residuals associated to the equality constraints.
ga; 1s a vectorial function, defined from R™ to R", where n <m (criterion value is
optimized within a constraints variety not restricted to a single point). Consequently
Dg,,(x), derivative of g;, at x, is an n by m matrix. The number of variables m is equal to
the number of state variables in the initial optimization problem formulation plus the
number of slack variables, that is to say the number of inequality constraints;

3. §; subsets definition is modified to take constraints validation into account. One should
notice that any of the selected points in the S; subsets is a feasible point.

4. NUMERICAL CHALLENGES AND ANSWERS

The homotopy method introduced here seems to be easier to implement than other homotopy
continuation methods. First, it can be viewed as a Newton homotopy, which is simple and efficient
(Yakoubsohn, 2003). Second, instead of tackling intermediate optimization problems, it requires
“only” to apply a Newton iterative scheme to a family of non linear equation systems. However,
some numerical and software challenges have to be tackled.

4.1 Under determined non linear systems
The first numerical challenge comes from the fact that the non linear systems are under determined,

with more variables than equations. Consequently, a generalized Newton formulation, adopted from
Dedieu (20006), is required. Assuming F is the residual function to nullify, the generalized Newton
operator associated to F in the surjective case is defined by Np(u) = u — [DF (w)]*. F(u), where
[DF (u)]? stands for the Moore-Penrose pseudo-inverse of the Jacobian matrix of F at u.

When F takes its value in R (unconstrained global optimization), the generalized Newton operator

__F»
DF(u)-DF(u) " DF ().

associated to F is Ng(u) = u
Dedieu (2006) demonstrated that the generalized Newton operator in the surjective case behaves
like a projection on the sub-variety {u € R™; F(u) = 0}. In practice, this theoretical result proves
that, provided that the first Newton iterate satisfies the constraints, the next ones will do so.
Consequently, the homotopy method we introduce here is a feasible path optimization method, well
adapted to the context of chemical engineering where models are defined only within bounded
domains.

In the case of non-linearly constrained global optimization, the generalized Newton operator
evaluation involves the calculation of a Moore-Penrose pseudo-inverse. The IMSL® numerical
library is partially in charge of the Moore-Penrose pseudo-inverse calculations. It provides the

singular value decomposition of the Jacobian matrix DF(u), more precisely the singular value
DF(u)

decomposition of the normalized matrix ————
[IDF(Wlleo

. Then, the pseudo-inverse is obtained from this
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singular value decomposition after dropping the less significant singular values. For each matrix A,

the accuracy of the numerical approximation AT of the Moore-Penrose pseudo-inverse obtained this
[|[a-a-aF-a|

14l o
very accurate but, because this calculation is based today on a CPU-time costly singular value
decomposition, its efficiency should be improved. The method recently introduced by Natsikis
(2011) for calculating the Moore-Penrose pseudo-inverse may be a good alternative for conciliating
both accuracy and performance.

way may be checked by evaluating the relative error 2 The pseudo-inverse matrices are

4.2 Global minimum underestimate
The second numerical challenge is related to finding a good underestimate of the global minimum.

Obviously, most of the time, a good approximation of the global minimum is not available when
starting the method. So, instead of using a single global minimum underestimate A, as stated in parts
2 and 3, a first refinement is to use a sequence of global minimum underestimates (L)i, each one

being predicted from the criterion values already computed (Aj*)j. When 1; prediction is based only

on the last two criterion values A;* and A;_", a strategy may be to try to decrease the criterion value
twice more than previously done. In such a case, 4; = 1;" — 2(1;_" — Ai*). To initiate the process,

Ao is set to a numerical value representing —co. Assuming S; is not empty, A, issetto A, =1, —
2(Ag — A19).

This first refinement is not always efficient for leaving the basins of attraction of local minima. We
have to incorporate some global knowledge to the previous prediction which is based only on the
local behavior of the criterion. So, the second refinement consists of estimating a convex hull of the
criterion by applying twice the Legendre-Fenchel transform to it. Let’s remind that the Legendre-

Fenchel transform of a function f is the function f* defined by f*(k) = sz;p{k -x — f(x)}. A very

important property of the double Legendre-Fenchel transform f** of f is the following one: f** is
the convex envelope of f. Unfortunately, calculating the Legendre-Fenchel bi-conjugate f** from
the analytical expression of the criterion f may be harder than the initial global optimization
problem: instead of one optimization problem, one has to solve two parameterized optimization
problems! In practice, instead of working with the continuous Legendre-Fenchel transform, a
discrete Legendre-Fenchel transform may be defined, the bi-conjugate of the criterion function
being estimated only at points where the criterion has already been calculated. Instead of calculating

su;
the conjugate f* of a real function f from f*(x) = yp{x -y — f(y)}, a discrete Legendre-Fenchel

transform f~ is evaluated over a set of points {x;, x5, ..., X} for which previous criterion evaluations

{f(x)), f(x3), ..., f(xx)} are available. More precisely, for any x, in {x;,%,, .., xx}, f (Xx) =
max

I {xx - x; — f(x))}. One can easily show that the discrete Legendre-Fenchel bi-conjugate still has
an interesting property from our point of view: f* is a convex function over the convex envelope of
{x(, %, ..., X}, which underestimates f at any point of {x;,x,,...,xx}. Corrias (1996) presents
results about convergence of the discrete Legendre-Fenchel transform to the continuous Legendre-
Fenchel transform. According to those results, we can hope that K € Erlun K}f “*(x; ) may give a
good estimate of the criterion minimum value over the convex span of {x;,x,,..,Xg}, i.e.
min “(x) ~ min

ke{l, ...,K}f X ¥ x € span(xy, x5, ..
2(A_" = A;") is replaced by the following one:

- , . « min .

/11 =min [2(/11_ - /11' );k c {1’ ,K}f (xk)]'

%) f(x). So, the first prediction formula 4; =
AR
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In practice, such a prediction leads to an underestimation of any minimum, either local or global.
For local minima, this strategy is adequate; but, when reaching the basin of attraction of the global
minimum, it leads to unnecessary criterion evaluations because we are looking for points x; ;

satisfying f (xl-‘]-) —A; £ 0 without success, until A; becomes slightly greater than the global
minimum.

With respect to the software implementation of the underestimator, the Legendre-Fenchel transform
can be factorized in unidimensional transforms so that its discrete formulation can be calculated in a
very efficient way, as detailed in Lucet (1996 and 1997).

4.3 Symbolic-numeric calculations
From the software point of view the challenge is to produce a piece of code able to obtain

automatically from the problem specification min,cgmf(x), and for any value of A;:
o the g;, functions and their analytical derivatives Dgy,;

e the numerical values of [Dg Ai(u)]Tmatrices;
e anumerical approximation of the Legendre-Fenchel bi-conjugate g;,”* from some values of
gll"

Those symbolic-numeric calculations could have been achieved by some existing computer algebra
system. The features provided by our in-house environment eXMSL, a symbolic and numerical
calculation system (Alloula et al., 2009), proved to be very adequate to mix the symbolic processing
steps and the numerical evaluations associated to this optimization method.

The residual functions g, are obtained automatically from the initial formulation, using slack
variables when constraints are inequalities. From any residual function g, eXMSL derives
automatically the corresponding Jacobian matrix. The criterion expression can be made of symbols,
numbers and function evaluations, either explicit or implicit. When no implicit function is involved
in the criterion expression, eXMSL computes an explicit and analytical expression of Dgy,. When
implicit functions appear in the criterion expression, eXMSL computes an implicit and analytical
expression of Dgy,, which can be evaluated at any point by means of the implicit function theorem.

The numerical evaluations are handled by external software or coded inside eXMSL. The IMSL®
numerical library is in charge of the singular value decompositions used in the Moore-Penrose
pseudo-inverse calculations. The discrete Legendre-Fenchel transform has been coded by ourselves.

5. APPLICATION TO GLOBAL OPTIMIZATION OF LENNARD-JONES ATOMIC
CLUSTERS

The global optimization of Lennard-Jones atomic clusters is a classical test problem for global
optimization methods. The problem description can be found in Daven (1996). Briefly speaking, the
problem is defined as finding the coordinates in R3 of a system of N atoms leading to a potential
energy minimum. The main difficulty in solving this problem arises from the fact that the objective
function is a non-convex and highly nonlinear function with an exponentially increasing number of
local minima with N.

The strategy described in this paper, and coded within eXMSL, was applied to clusters up to 100

atoms. The initial guess was always randomly selected without any a priori knowledge, making the
problems harder to solve. The number of degrees of freedom, which is 3N initially, is decreased to

15



Selected Papers of ICheaP-10, Florence 8-11 May, 2011

3N — 6 without loss of generality, by assuming that one of the N atoms stays at the origin point O, a
second one stays on the x axis, and a third one stays on the Oxy plane (x; = 0,y, = 0,2z, =0,y, =
0,z, = 0,z3 = 0). Our results were compared with the best minima reported in http:/www-
wales.ch.cam.ac.uk/~jon/structures/LJ/tables.150.html (Web site consulted on October, 3, 2011).

With an unconstrained formulation of the problem, we retrieved the best criterion values given
within the literature only when the number of atoms was less than 20. The success rate decreases
with N, being 80% for N = 6, and vanishing to 0% around N = 15.

In order to check the method validity on non-linearly constrained problems, we stated that all the
inter-particle distances were greater than 0.6187 (Vinko, 2005). For a cluster of N atoms, this results
in N(N — 1)/2 constraints. With this constrained formulation of the problem, we retrieved all the
best criterion values given within the literature for 3 < N < 100. The success rate increases with N,
being 70% for N = 6, and reaching 100% when N = 30. Combined with the equation f(x) — A =
0, constraints on the inter-particle distances provide a good path for the homotopy method to reach a
global minimum. When N is quite small, the feasible domain defined by “the inter-particle distances
are to be greater than 0.6187” is important when compared to the whole variable space (for N = 6,
the inter-particle distances at the global minimizer are close to 0.995531). When N > 30, the
feasible domain defined by “the inter-particle distances are to be greater than 0.6187” is small when
compared to the whole variable space. Then, the main difficulty becomes finding an initial point
belonging to the constraint variety. This problem consists of solving an under determined non linear
system of 1+ N(N —1)/2 equations and (3N — 6) + N(N — 1)/2 variables. The generalized
Newton formulation, cited previously, was applied successfully, even for initial guesses without any
physical meaning.

6. CONCLUSION AND FURTHER WORK

This paper introduces a deterministic method for global optimization. Applied to non-linearly
constrained continuous models, this homotopy method produces a feasible path along which the
criterion value decreases. Points of the homotopy curve come from a Newton process where a
generalized Newton operator tries to keep iterates on the constraint variety. Two benefits are
associated with such a feasible path optimization:

e the variables remain in the validity domain of the (thermodynamic) models;

e the search space being limited to the constraint variety, the probability for the algorithm to

reach and stay at a non global minimum is reduced.

This method was applied successfully to a collection of test problems. Unfortunately, for the time
being, the number of function evaluations remains large, mainly because of a costly bisection
process: the homotopy parameter A; is successively increased or decreased, depending on whether
some x;; verifying f (xi, J-) < 4; is found or not. For the method to be not only robust, but also
efficient, the bisection strategy has to be improved. Two ways are investigated:
e  find the “best” bisection parameter value to be applied when some x; ; verifying f (xl-, J-) <
A; is found. From this study, the discrete Legendre-Fenchel transform appears to be a good
tool for approximating a local convex underestimator from some previous criterion
evaluations. The closer this convex hull is to the criterion representative surface, the better
is the prediction of the next homotopy parameter value;
e find the “best” bisection parameter value to be applied when some x; ; verifying f (xl-, J-) <
A; is not found. Until now, this bisection parameter is set to 0.5. Its value may be related to

16



Selected Papers of ICheaP-10, Florence 8-11 May, 2011

Aa*—f(xi.j)
Aa* =2
expected.

, ratio between the criterion decrease we obtain and the criterion decrease we

A generalization of this optimization method to mixed integer non linear programming is being
considered. Such an extension seems justified by two facts:
e  discrete variables could be considered as continuous ones by adding constraints in order to
restrict their allowed values;
e any iterate is a sub-optimal point for which discrete variable values make sense, because
they satisfy the associated constraints (feasible-path method).
The trim-loss problem, described in Harjunkoski (1998), and to which a wide range of optimization
methods have already been applied, has been chosen as a benchmark for the generalization of the
homotopy method presented in this paper.
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