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The aim of this paper is to enhance the results of the graphical approach for Heat Pump (HP) integration in non-

continuous processes. A nonlinear programming (NLP) formulation is developed which optimizes temperature 

levels of condensation, evaporation, and storage temperature layers in order to further reduce total annual cost 

(TAC) and greenhouse gas (GHG) emissions. In addition, the NLP formulation requires low computation time 

given the practical approach. By its application on an AMMIX butter production of a large dairy factory, it is 

shown, that the temperature differences in the condenser and evaporator are reduced sharply which improves 

the COP of the HP from 2.2 to 3.4. As a result, the TAC can be reduced by an additional 16,721 NZD/y and the 

GHG emissions by an additional 29 tCO2/y in comparison to the graphical approach. 

1. Introduction 

Within industrial sites the use of heat recovery (HR) is an effective method to reduce energy needs and improve 

efficiency. However, despite the continuous operation of the individual processes on the site, time dependency 

created by cleaning cycles, product change, shift work, etc. can result in a limitation of direct HR potential (Atkins 

et al., 2009). The result is effectively non-continuous process operation with changing process requirements. 

To overcome this challenge, the use of storage tanks as utility to allow the use of a Heat Pump (HP) to operate 

continuously despite the non-continuous process behavior is proposed.  

In contrast to complex mathematical programming approaches as in Becker and Maréchal (2012), a practical 

methodology developed in a previous paper (Stampfli et al., 2018) uses graphical Pinch Analysis techniques 

such as the Grand Composite Curve (GCC) and the Time Pinch Analysis (Wang and Smith, 1995) for industrial 

HP integration in non-continuous processes. This approach allowed the determination of the overall HP 

condensation and evaporation temperature levels through the developed COP Curves. The temperature 

differences in both the condenser, evaporator and the specific heat exchangers (HEXs) used to transfer heat 

from or to the process streams are constrained by a fixed minimum temperature difference. It is shown, that this 

approach leads to a minimum HP size and maximized thermal energy storage (TES) capacities. Nevertheless, 

the assumed temperature differences in condenser and evaporator tend to be too large.  

To help overcome the minimal temperature difference constraints and to find an economic optimum, in this 

paper a nonlinear programming (NLP) extension of the graphical approach which enhances the graphical 

results, is presented. Therefore, the total annual cost (TAC) is minimized using condensation, evaporation 

temperatures and the TES temperature levels as dependent optimization variables. To ensure, the practical 

applicability in terms of computation time and resources, the HP cycle is simplified as a Carnot cycle with a 

realistic Carnot efficiency. 

The resulting model is applied to the same dairy case study as the graphical approach, whereby HR between 

an anhydrous milk fat (AMF) production plant, a cream treatment (CT) plant and their cleaning-in-place (CIP) 
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system is analyzed and compared. The cost savings due to the integration of the HP-TES system are presented 

as well as the impact on greenhouse gas (GHG) emissions.  

2. Methodology 

This methodology extends the graphical approach for HP integration in non-continuous processes (Stampfli et 

al., 2018) with a NLP formulation which minimizes the TAC as a function of the HP, storage, HEX sizes, and the 

needed electricity demand of the HP. The superstructure of the model is shown in Figure 1. For a clear overview, 

optimization variables are represented in bold. The constant condensation Tco and evaporation Tev temperatures 

of the HP as well as the storage temperatures TH/C,h/c and the corresponding mass inventories of the storage 

layers MH/C,h/c,l, which are changing with time, are the optimization variables. As input variables, the matches 

between process streams (subscripts i: hot stream, j: cold stream, l: Time Slice (TS)) and HP-TES system, the 

corresponding heat flows Q̇i/j,l, and the supply and target temperatures Ti/j,l,S/T of the process streams are given 

from the results of the graphical approach and used as input data for the optimization. The model is formulated 

and optimized using open source software from COIN-OR (computational infrastructure for operations research) 

(Lougee-Heimer, 2003). As algebraic modelling language, the python package pyomo (python optimization 

modelling objects) (Hart et al., 2017) and as NLP solver, Ipopt (interior point optimizer) (Wächter and Biegler, 

2006) are used. 

 
Figure 1: Superstructure of the HP-TES system 

2.1 Temperature constraints 

To ensure heat transfer between the process streams and the heat recovery loops (HRLs), the temperature 

levels of the layers (hot layer: h, cold layer: c) for the cold storage (C) have to be lower than the supply and 

target temperatures of the hot process streams which is given by 

𝑇𝑖,𝑙,𝑆 ≥ 𝑇𝐶,ℎ                      𝑇𝑖,𝑙,𝑇 ≥ 𝑇𝐶,𝑐                                                        ∀𝑖, ∀𝑙 (1) 

and the temperature levels of the hot storage (H) have to be higher than the supply and target temperatures of 

the cold process streams which is given by 

𝑇𝑗,𝑙,𝑆 ≤ 𝑇𝐻,ℎ                     𝑇𝑗,𝑙,𝑇 ≤ 𝑇𝐻,𝑐                                                        ∀𝑗, ∀𝑙 (2) 

Further, to ensure heat transfer between the HRLs and the HP, with 

𝑇𝑒𝑣 ≤ 𝑇𝐶,𝑐 ≤ 𝑇𝐶,ℎ  (3) 

the evaporation temperature Tev has to be lower than the temperatures of the cold storage and the condensation 

temperature Tco has to be higher than the hot storage temperatures which is given by 

𝑇𝐻,𝑐 ≤ 𝑇𝐻,ℎ ≤ 𝑇𝑐𝑜  (4) 
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2.2 Heat exchanger 

The needed HEX area between process streams and the HP-TES system is given by 

𝐴𝑖/𝑗 = max𝑙 (
�̇�𝑖/𝑗,𝑙

𝑈𝑖/𝑗 ⋅ LMTD𝑖/𝑗,𝑙
)                                                             ∀𝑖/𝑗 (5) 

where Ui/j is the overall heat transfer coefficient between process stream and storage media and LMTD is the 

corresponding logarithmic mean temperature difference. Due to the fact, that there is no variation in time for the 

condenser and evaporator, their areas are given by 

𝐴𝑐𝑜/𝑒𝑣 =
�̇�𝑐𝑜/𝑒𝑣

𝑈𝑐𝑜/𝑒𝑣 ⋅ LMTD𝑐𝑜/𝑒𝑣
 (6) 

For algorithmic robustness, the LMTD in each HEX is determined using the approximation from Chen (1987) 

which is given by 

LMTD ≈  (∆𝑇1 ⋅ ∆𝑇2 (
∆𝑇1 + ∆𝑇2

2
))

1
3

  (7) 

This approximation underestimates the LMTD slightly which results in an overestimated area. The temperature 

differences for matches between hot process streams and the HP-TES system are given by 

 ∆𝑇1 =  𝑇𝑖,𝑙,𝑆 − 𝑇𝐶,ℎ                     ∆𝑇2 =  𝑇𝑖,𝑙,𝑇 − 𝑇𝐶,𝑐                             ∀𝑖, ∀𝑙 (8) 

For the matches between cold process stream and the HP-TES system, the temperature differences are given 

by 

∆𝑇1 =  𝑇𝐻,ℎ − 𝑇𝑗,𝑙,𝑇                    ∆𝑇2 =  𝑇𝐻,𝑐 − 𝑇𝑗,𝑙,𝑆                             ∀𝑗, ∀𝑙 (9) 

The temperature differences in evaporator are given by 

∆𝑇1 =  𝑇𝐶,ℎ − 𝑇𝑒𝑣                      ∆𝑇2 =  𝑇𝐶,𝑐 − 𝑇𝑒𝑣 (10) 

and in the condenser given by 

∆𝑇1 =  𝑇𝑐𝑜 − 𝑇𝐻,ℎ                      ∆𝑇2 =  𝑇𝑐𝑜 − 𝑇𝐻,𝑐 (11) 

Thereby, the superheating in the evaporator as well as the de-superheating and subcooling in the condenser 

are not considered for the LMTD.  

2.3 Mass balance heat recovery loops 

The needed volumes of the cold and hot storage are given by 

𝑉𝐶/𝐻,𝑡𝑜𝑡  =  
𝑀𝐶/𝐻,ℎ,𝑙 + 𝑀𝐶/𝐻,𝑐,𝑙

𝜌𝑠𝑚
                                                              for 𝑙 = 1 (12) 

where MC/H,h/c are the mass inventories of the hot and cold layer of the corresponding storage. ρsm represents 

the density of the storage media. Due to the mass balance, the sum of both mass inventories has to be constant 

over time. Therefore, the storage volume can be determined using the mass inventories of the first TS. To 

calculate the mass inventories of the temperature layers at the end of each TS, the mass balance is applied as 

follows 

𝑀𝐶,ℎ,𝑙+1 =  𝑀𝐻,ℎ,𝑙 + ∑(𝑚𝑖,𝑙)

𝐼

𝑖=1

− 𝑚𝑒𝑣,𝑙                                                 ∀𝑙 (13) 

𝑀𝐶,𝑐,𝑙+1 =  𝑀𝐶,𝑐,𝑙 − ∑(𝑚𝑖,𝑙)

𝐼

𝑖=1

+ 𝑚𝑒𝑣,𝑙                                                  ∀𝑙 (14) 

𝑀𝐻,ℎ,𝑙+1 =  𝑀𝐻,ℎ,𝑙 − ∑(𝑚𝑗,𝑙)

𝐽

𝑗=1

+ 𝑚𝑐𝑜,𝑙                                                  ∀𝑙 (15) 
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𝑀𝐻,𝑐,𝑙+1 =  𝑀𝐻,𝑐,𝑙 + ∑(𝑚𝑗,𝑙)

𝐽

𝑗=1

− 𝑚𝑐𝑜,𝑙                                                 ∀𝑙 (16) 

Thereby, the mass inventories have to be bigger or equal to zero over time which is given by 

𝑀𝐻/𝐶,ℎ/𝑐,𝑙  ≥  0                                                                                            ∀𝑙 (17) 

The transferred mass due to the heat flow from or to the process streams is given for each TS by 

𝑚𝑖/𝑗,𝑙 =  
�̇�𝑖/𝑗,𝑙 ⋅ ∆𝑡𝑙

𝑐𝑝,𝑠𝑚 ⋅ (𝑇𝐶/𝐻,ℎ − 𝑇𝐶/𝐻,𝑐)
                                                         ∀𝑖/𝑗, ∀𝑙 (18) 

where cp,sm is the specific heat capacity of the storage media and Δtl the TS duration. The transferred mass 

through evaporator and condenser are given by 

𝑚𝑒𝑣/𝑐𝑜,𝑙 =  
∆𝑡𝑙

∑ ∆𝑡𝑙
𝐿
𝑙=1

⋅ ∑ ∑ 𝑚𝑖/𝑗,𝑙

𝐿

𝑙=1

𝐼/𝐽

𝑖/𝑗=1

= �̇�𝑒𝑣/𝑐𝑜 ⋅ ∆𝑡𝑙                          ∀𝑙 (18) 

2.4 Heat pump cycle 

The absorbed heat by the evaporator is defined by 

�̇�𝑎 =  �̇�𝑒𝑣 ⋅ 𝑐𝑝,𝑠𝑚 ⋅ (𝑇𝐶,ℎ − 𝑇𝐶,𝑐)                                                             ∀𝑙 (19) 

and the emitted heat from the condenser by 

�̇�𝑒 =  �̇�𝑐𝑜 ⋅ 𝑐𝑝,𝑠𝑚 ⋅ (𝑇𝐻,ℎ − 𝑇𝐻,𝑐)                                                            ∀𝑙 (20) 

The HP cycle is simplified by the use of the definition of the COP  

COP  =  𝜁 ⋅
𝑇𝑐𝑜

𝑇𝑐𝑜 − 𝑇𝑒𝑣
=  

�̇�𝑒

𝑃𝑒𝑙
                                                                     ∀𝑙 (21) 

where ζ is a realistic Carnot efficiency. With the energy balance of the HP system as given by 

�̇�𝑒   =   �̇�𝑎 + 𝑃𝑒𝑙   ⋅ 𝜂𝑑𝑟𝑖𝑣𝑒 =   �̇�𝑎 + 𝑃𝑖 (22) 

the electricity demand Pel and the corresponding input power into the refrigerant Pi for the HP system is 

determined.  

2.5  Economics and emissions 

The Objective function of the optimization represents the minimization of the TAC which is given by 

TAC  =
𝑖 (1+𝑖)𝑛

(1+𝑖)𝑛−1
⋅   ∑ (𝐹𝐸 ⋅  

IPMEI2

IPMEI1
 ⋅  MPICE) + 𝐶𝑜𝑝,𝑎   with   MPICE   =   𝐶𝐸,0 + 𝐶𝐸,1 𝑄𝑓𝐸,𝑑,1 + 𝐶𝐸,2 𝑄𝑓𝐸,𝑑,2

𝐸   (23) 

Whereby i is the interest rate and n is the investment period. By the use of Lang factors FE (Lang, 1948) 

installation, piping, control system, building, site preparation, and service facility cost of the corresponding 

equipment E are included. With the plant, machinery, equipment group index (IPMEI) of the capital goods price 

index (CGPI) (Stats NZ, 2017), the main plant item cost (MIPC) is corrected in terms of inflation and deflation. 

Corresponding equipment coefficients (CE, fE,d) for given capacities Q are listed in Stampfli et al. (2018). The 

operating cost is given by  

𝐶𝑜𝑝,𝑎   = 𝑃𝑒𝑙 ⋅ ∑(∆𝑡𝑙) ⋅ 𝑑 ⋅ 𝑐𝑒𝑙

𝐿

𝑙=1

 (24) 

where cel is the specific electricity cost. The number of days per year is given by d = 365. Further by 

CO2e  = 𝑃𝑒𝑙 ⋅ ∑(∆𝑡𝑙) ⋅ 𝑑 ⋅ 𝜉𝑒𝑙

𝐿

𝑙=1

 (25) 

the annual GHG emissions are determined. Thereby, ξel is the specific CO2e-emissions.  

3. Dairy factory case study 

The methodology is applied to an AMMIX butter production of a large dairy factory that includes, an AMF 

production plant, a CT plant, and their CIP system. The input data, which are the selected matches between 
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process streams and HP-TES system of the graphical approach is listed in Table 1. Further details to the process 

can be found in Stampfli et al. (2018).  

Table 1: Matches between process streams and HP-TES system from the graphical approach. 

4.  Results and discussion 

In Table 2, the resulting temperature levels for the HP-TES system for the graphical method and the NLP 

enhancement are displayed. It can be seen, that the temperature lift is reduced by 18.95 K and thus the COP is 

improved from 2.2 to 3.4. Thereby, the temperature levels of the storage layers are only slightly adjusted. The 

temperature difference in the cold storage is increased by 0.19 K and in the hot storage reduced by 0.21 K. Due 

to this, the needed volume and the resulting cost is reduced for the cold storage yet increased for the hot storage, 

as shown in Table 3. The capacities of the needed equipment and the corresponding capital cost are displayed. 

Further, the HEX LMTDs are shown in brackets in the capacity column. 

Table 2: Resulting temperature levels for the graphical method and the NLP enhancement. 

Approach Tco (°C) Tev (°C) TC,h (°C) TC,c (°C) TH,h (°C) TH,c (°C) 

Graphical method 46.26 -4.56 8.00 2.94 38.76 30.00 

NLP enhancement 36.23 4.36 10.06 4.81 35.64 27.09 

Table 3: Comparison of HP-TES system using the graphical approach and the NLP enhancement. The 

resulting LMTDs are shown in brackets in the capacity column. 

Equipment  Capacity unit Capacity ([Q])  Capital cost (NZD) 

  Graphical method NLP enhancement  Graphical method NLP enhancement 

Compressor Pi (kW) 35 22.8  256,829 180,075 

Motor Pel (kW) 39 25.4  23,218 16,454 

Evaporator A (m2) 3.4      (10.53 K) 16.7    (1.99 K)  6,589 15,385 

Condenser A (m2) 5.3      (11.32 K) 20.3    (2.97 K)  7,877 17,794 

Cold TES V (m3) 136 112.1  28,807 25,648 

Hot TES V (m3) 133 136.0  28,359 28,777 

Total HP-TES   351,679 284,133 

HEX C1 A (m2) 57.0    (10.38 K) 83.2    (7.11 K)  42,091 59,387 

HEX H1 A (m2) 41.9    (6.16 K) 61.8    (4.17 K)  32,062 45,220 

HEX H2 A (m2) 9.7      (11.50 K) 11.7    (9.52 K)  10,738 12,064 

HEX C2 A (m2) 0.6      (11.04 K) 0.9      (7.56 K)  4,768 4,962 

HEX C3 A (m2) 1.6      (10.33 K) 2.5      (6.71 K)  5,438 6,025 

HEX C4 A (m2) 0.8      (11.04 K) 1.2      (7.56 K)  4,906 5,163 

HEX H3 A (m2) 0.4      (12.03 K) 0.5      (10.07 K)  4,602 4,651 

Total HEX A (m2) 81.2 160.7  104,605 137,472 

Total capital cost    456,284 421,605 

 

Stream  TS2 (8 -10 h)  TS3 (10-15.5 h)  TS4 (15.5-17.5 h) 

 TS (°C) TT (°C) Q̇ (kW)  TS (°C) TT (°C) Q̇ (kW)  TS (°C) TT (°C) Q̇ (kW) 

C1: Cream heating (AMF) - - -  15.4 31.7 236.7  15.4 31.7 236.7 

H1: Buttermilk cooling (AMF) - - -  15.4 8 103.1  15.4 8 103.1 

H2: Trd. cream cooling (CT) 18.5 15.5 44.4  18.5 15.5 44.4  - - - 

C2: Pre rinse water (CIP) 20 27.6 7  20 26.6 6.1  20 27.6 7 

C3: Alkaline solution (CIP) 20 29.3 17  20 28.1 14.9  20 29.3 17 

C4: Nitric acid (CIP) 20 27.6 9.3  20 26.6 8.2  20 27.6 9.3 

H3: Post rinse water (CIP) 20 15 4.6  20 15 2.1  20 15 4.6 
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The reduction of the temperature lift is attributable to the smaller LMTDs in the condenser and evaporator. As a 

result, the COP is increased and thus, the compressor power and its cost, which has the highest impact on the 

capital cost of the system, is reduced by around 70,000 NZD. Due to the high film heat transfer coefficients of 

the refrigerant caused by the phase transition in the condenser and evaporator (5,000 W/(m2K)), the LMTD is 

reduced sharply with just a slight increase in HEX area. Generally, the LMTDs in the HEX are reduced and as 

a result, the area increased for the HEX between process streams and the HP-TES system. Nevertheless, in 

total, the capital cost for the HP-TES system and the HEXs is further reduced by 7.6 %. Due to the reduced 

electricity consumption, the annual operating cost can be further reduced by 16,721 NZD/y to 96,877 NZD/y. 

The TAC for the process design with included HP-TES system is reduced to 405,206 NZD/y which is now 

16,963 NZD/y lower than the TAC for the process design without HP-TES system. The graphical method 

reduced the CO2e-emissions by 117 tCO2/y (27.0 % reduction) and by applying the NLP enhancement method 

presented here further reduced the CO2e-emissions by an additional 29 tCO2/y (6.6 % reduction) to an overall 

total CO2e-emissions of 294 tCO2/y. 

The computation duration was about 0.5 s on a notebook with an i7 Dual Core processor and 16 GB RAM. 

Therefore, the model is not expensive in forms of computation time and resources.  

5. Conclusions 

With the NLP enhancement, the results of the graphical approach are further improved by the reduction of TAC 

and GHG emissions. Thereby, the temperature differences in the HEX are reduced by tendency. In particular, 

the temperature differences in condenser and evaporator are reduced due to the high film heat transfer 

coefficients during the phase transition of the refrigerant. This leads to an improvement of the COP which causes 

a reduction in TAC and GHG emissions. The temperature differences in the storage tanks remain small after 

the optimization. This leads to large storage tanks, which could probably be improved by the use of latent 

storages instead of sensible stratified storages. In order to provide an exact statement, the resulting cost for 

latent storage including the phase change material require further analysis. 

The developed NLP formulation is able to enhance the results of the graphical method and can be applied in 

practice with short computing time and low resource requirements. However, the matches between process 

stream and HP-TES system are based on relaxed pinch rules. To verify the selection of the matches, a mixed 

integer optimization should be formulated. Thereby, the temperature levels of the condenser and evaporator are 

no longer limited by the selected matches and thus, the solution space is less constrained. 

Acknowledgments 

This research project is financially supported by the Swiss Innovation Agency Innosuisse and is part of the Swiss 

Competence Center for Energy Research SCCER EIP. 

References 

Atkins M.J., Walmsley M.R.W., Neale J.R., 2009, The challenge of integrating non-continuous processes – milk 

powder plant case study, Chemical Engineering Transactions, 18, 445-450. 

Becker H.C., Maréchal F., 2012, Targeting industrial heat pump integration in multi-period problems, Computer 

Aided Chemical Engineering, 31, 415-419. 

Chen J.J.J., 1987, Comments on Improvements on a replacement for the logarithmic mean, Chemical 

Engineering Science, 42(10), 2488-2489. 

Hart W.E., Laird C.D., Watson J.-P., Woodruff D.L., Hackebeil G.A., Nicholson B.L., Siirola J.D., 2017, Pyomo 

– optimization modelling in python. Second Edition, Vol. 67, Springer. 

Lang H.J., 1948, Simplified approach to preliminary cost estimates, Chemical Engineering, 55(6), 112-113 

Lougee-Heimer R., 2003, The common optimization interface for optimizations research: Promoting open-

source software in the operations research community, IBM Journal of Research and Development, 47(1), 

57-66. 

Stampfli J.A., Atkins M.J., Olsen D.G., Wellig B., Walmsley M.R.W., Neale J.R., 2018, Industrial heat pump 

integration in non-continuous processes using thermal energy storages as utility – a graphical approach, 

Chemical Engineering Transactions, 70, 901-906. 

Stats NZ, 2017, Price index by item – plant, machinery and equipment <www.stats.govt.nz/infoshare/> accessed 

20.11.2017. 

Wächter A., Biegler L.T., 2006, On the implementation of an interior-point filter line-search algorithm for large-

scale nonlinear programming, Mathematical Programming, 106(1), 25-57. 

Wang Y.P., Smith R., 1995, Time Pinch Analysis, Chemical Engineering Research & Design, 73(8), 905-914. 

1794




