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Peru generated in 2014 a total of 7.5 million metric tons of municipal solid waste (MSW). Of these, 47 % of 

residues ended up in open dumpsites and only 21 % were sent to controlled landfills. Efforts must be made to 

conduct a change from open dumpsites to sanitary landfills, reaching an adequate and sustainable waste 

management system. This study aims at meeting this challenge by means of the Life Cycle Assessment (LCA) 

methodology. In particular, the objective of this study is to develop a life cycle model that will allow the estimation 

of environmental impacts linked to waste landfilling in Peru, and to compare in further studies alternatives to 

determine a more environmentally sustainable solution. The model is flexible in order to be adapted to the three 

main geo-climatic regions in Peru: the hyper-arid coast, the Andean Highlands and the Amazon Rainforest. The 

life cycle model was developed with the EASETECH software, taking into account the phases of construction, 

operation and end-of-life the Peruvian landfills. The main parameters of this model include waste composition 

and the characteristics and treatment of the leachate and landfill gas, taking into consideration local parameters 

such as temperature, humidity and precipitation intensity. The model lays the foundation stone to determine the 

main hotspots in Peruvian sanitary landfills. This information will allow achieving an adequate and sustainable 

waste management by proposing improvement measures to help stakeholders in the decision-making process. 

1. Introduction 

Waste management is a sector that, through time, has required increasing attention. However, huge differences 

regarding waste generation, composition and management are found between developed and developing 

countries (Laurent et al., 2014). From a global waste production of 1.3 billion metric tons per year, Organization 

for Economic Co-operation and Development (OECD) nations make up close to half of the world’s waste, c.a. 

673,200 thousand metric tons in 2016 (OECD, 2017). This is consistent with the premise that the higher income 

level, the higher waste generation. For waste management, the trend is that while developed countries seek 

more integrated and sustainable waste management systems (Laurent et al., 2014), emerging nations are still 

basically fighting to switch from the disposal of residues in open dumpsites to disposing of them in controlled 

landfills (Guerrero et al., 2013). This is the situation in most Latin American and Caribbean (LAC) countries. In 

the particular case of Peru, in year 2014 a total of 7.5 million metric tons of municipal solid waste (MSW) were 

generated. Of these, 47 % of residues ended up in open dumpsites and only 21 % were sent to controlled 

landfills. Regarding the remaining fraction, 17 % was recycled, 12 % was openly burned, 3 % spilled into any 

water source and the final 1 % had another unknown destination (MINAM, 2017). As the Peruvian waste 

management situation is a well-known problem by the government, all along the last decade there has been an 

intended compromise from it to improve the situation. In this sense, the development of an adequate waste 

management system will be facilitated by the use of environmental tools, such as Life Cycle Assessment (LCA). 

LCA quantifies the environmental benefits and impacts of production processes (Laso et al., 2016), helping 

organizations to perform their activities in the most environmental friendly way along the whole value chain 

(Margallo et al., 2016) and performing the green economy transition (Mah et al., 2017). This methodology has 
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been widely applied to the management of the Municipal Solid Waste (MSW) sector, in particular, in Europe and 

Asia, mainly in Italy, UK, Germany and China (Margallo et al. 2018). However, there is a lack of studies in LAC 

and it is important to address that European case studies may not be representative of the LAC scenario due to 

their technological and geo-climatic conditions (Henriksen et al., 2017). Therefore, this study aims at filling this 

gap, developing a life cycle model to estimate the environmental impacts of waste landfilling in Peru. The model 

will be flexible in order to be adapted to the three main geo-climatic regions in Peru: the hyper-arid coast, the 

Andean Highlands and the Amazon Rainforest. 

2. Waste management in Peru 

Landfilling is the most common treatment method in Peru and many LAC countries (MINAN, 2017). However, 
there are huge differences between sanitary landfills, controlled landfills and open dumpsites. A sanitary landfill 
comprises spreading and compaction of waste on a waterproof bed, daily coverage and an adequate 
management of leachate and gases, whereas a controlled landfill does not have the infrastructure of a sanitary 
landfill, but some control measures. In contrast, in open dumpsites (referred to in the region as “botaderos”) 
waste is disposed of without any control and protection to the environment and thus, the chemical and biological 
contaminants in wastes will find their way back to humans to affect health and quality of life (Rushbrook, 1999). 
Between 2012 and 2013 it was denoted approximately 105 open dumpsites in 177 municipalities of Peru with 
more than 10,000 inhabitants, excluding the areas of Metropolitan Lima and Callao. Figure 1a shows the location 
of the 20 most critical open dumpsites. Three of them, located in La Libertad (“El Milagro”), Ancash (“Coishco”) 
and Puno (“Chilla”), treat 34 % (1450 metric tons) of the total waste disposed in these 20 open dumpsites 
(OEFA, 2014). Efforts are being made to conduct a change from open dumpsites to sanitary landfills (Figure 
1b). 

 

Figure 1: (a) Location of critical open dumpsites and (b) sanitary landfills in Peru in 2017 

3. Environmental assessment 

3.1 Literature review 

LCA of a waste management system is divided in the same stages as the LCA of a product. The main difference 

between the LCA of a product and of waste resides in defining the cradle and grave approach. Whilst it shares 

the same grave as individual products, the lifecycle of waste does not share the same cradle (Margallo, 2014). 

Moreover, whereas product-based LCA usually follows a single product from cradle-to-grave, a waste-LCA will 

assess the handling of several waste fractions from end-of-life to grave or remanufacturing. Generic LCA tools 

are not designed for the modelling of a reference flow consisting of a mix of materials (Clavreul et al., 2014). To 

take into account these very heterogeneous reference flows, several “add-on” models have been developed 

from the 2000s. Among all of them, the Technical University of Denmark (DTU) launched EASETECH, an 

upgrade of the EASEWASTE model developed in 2004, which provides inventories of waste management 

technologies to users for LCA modelling (EASETECH, 2017). This software allows modeling a range of different 

environmental technologies from a systems perspective, using a toolbox of processes. For each flow the user 

can define the collection system, transport mode and treatment in a defined number of processes (Clavreul et 

al., 2014). Since 2014, this software has been widely applied in LCA studies summarized in Table 1. 

 
Sanitary Landfills in Perú 

1. Cajamarca 
2. Chicama 
3. Carhuaz 
4. Independencia 
5. Cajacay 

6. Zapallal 
7. Modelo del Callao 
8. Huaycoloro 
9. Portillo Grande 
10. Ica 

11. Quebrada Honda 
12. Llata 
13. Ambo 
14. Pozuzo 
15. Oxapampa 

16. Santa Cruz 
17. Pampaya 
18. Yauli 
19. Ccochaccasa 
20. Cangallo 

21. Coracora 
22. Huaya 
23. San Miguel 
24. Chuquibambilla 
25. Anco Huallo 

26. Huancarama 
27. Anta 
28. Nauta 
29. El Treinta 

a) b) 
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Table 1: Review of LCA studies on waste management using EASETECH model. MSW: municipal solid 

waste; BA: bottom ash; FW: food waste; CDR: construction and demolition residues 

Authors Year County Type of waste Description 

Hadzic et al.  2017 Croatia MSW Comparison of landfill combining mechanical separation of 

recyclable fractions of mixed MSW 

Syeda et al. 2017 Pakistan MSW Comparison of open dumpsite with a biogasification plant  

Bisinella et al.  2017 Denmark MSW Quantification of the influence and uncertainty on LCA results 

associated with selection of waste composition data 

Liu et al.  2017 China MSW Analysis of five scenarios based on landfilling and incineration 

Grzesik and 

Malinowski 

2017 Poland Mixed MSW Assessment of mechanical-biological treatment (MBT) 

Grzesik and 

Malinowski 

2017 Poland RDF Analysis of RDF production from mixed MSW, in a MBT plant  

Grzesik  2017 Poland mixed waste Comparison of incineration and landfilling 

Benavente et al.  2017 Spain Olive mill 

wastes 

Analysis of hydrothermal carbonization to treat olive mill 

wastes  

Manfredi and 

Cristobal 

2016 Europe FW Environmental and economic analysis of management 

European FW  

Di Gianfilippo et 

al.  

2016 Italy Incineration BA Evaluation of BA landfilling/ recycling as a filler for road sub 

bases 

Vergara et al.  2016 Colombia MSW Analysis of alternative scenarios to formalize the recycling 

sector 

Berge et al.  2015 USA FW and CDR  Evaluation of hydrothermal carbonization of food wastes 

Butera et al.  2015 Denmark CDR Modelling of CDR management  

Carlsson et al. 2015  FW Determination of the influence of FW pre-treatment efficiency  

Jain et al. 2014 USA MSW Assessment of end-use management options for materials 

deposited and mined from an unlined landfill 

Yang et al.  2014 China MSW Analysis of construction and operation of MSW sanitary 

landfills 

Starostina et al.  2014 Russia MSW Study MSW system landfilling 

 

 

Figure 2: (a) System boundaries and (b) flow diagram of the operational stage 

Table 2: Model characteristics 

Model variables Description 

Landfill gas (LFG) generation First order decay model (USEPA, 1998, 2005; IPCC, 2006) 

LFG collection, burning No 

Energy generation No 

Leachate treatment Recirculation 

Daily and cell coverage  Clay, geotextiles and geo-membranes of HDPE 

3.2 Model description and results 

The life cycle model (Table 2) was developed with EASETECH (EASETECH, 2017), which suggests to include 

construction, operation and end-of-life phases. Based on this assumption, the system boundaries (Figure 2a) 

Operational stage
a) b)

Waste
composition

Landfill gas 
generation

Leachate
generation

and treatment

Gas collection
system

Venting

Oxidation
daily cover

Oxidation
intermediate

cover

Oxidation in 
final cover
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included raw material acquisition, landfill construction, transport and supply of materials, energy consumption 

and the release of pollutants in the three stages. Table 2 shows some technical characteristics of the model. As 

the main function of the system is to treat MSW, the functional unit (FU) was one metric ton of waste disposed 

of at the landfill to which all the inputs and outputs will be referred to. Primary data were collected from 

questionnaires supplied by different sanitary landfills. For secondary data the EASETECH software 

(EASETECH, 2017), the Ecoinvent database v3.3 (Ecoinvent, 2016) and bibliographic data were used. 

3.2.1 Operational stage 

Waste composition and the characteristics and treatment of the leachate and landfill gas (LFG) are the main 

parameters of operational step (Figure 2b), taking into consideration local parameters such as temperature, 

humidity and precipitation intensity. Table 3 shows the average waste composition in Peru (MINAM, 2017).  

Table 3: Waste composition 

Waste streams Average composition (%)  Lower limit composition (%) Upper limit composition (%) 

Organic mater 52.2 % 50.6 % 61.0 % 

Wood and pruning waste 2.30 % 0.30 % 4.80 % 

Paper and cardboard 8.10 % 3.90 % 15.0 % 

Glass 3.10 % 1.30 % 4.60 % 

Plastics 9.80 % 5.35 % 14.1 % 

Beverage carton 0.20 % 0.10 % 1.38 % 

Metals 2.60 % 0.70 % 3.49 % 

Textiles 1.90 % 0.60 % 2.45 % 

Others 19.8 % 13.7 % 22.5 % 

 

 

Figure 3: Global Warming Potential (kg of CO2 eq./ t waste) in landfill gas generation for 20 years 

However, waste generation and composition vary according to socioeconomic aspects, climatic, geographical 

and cultural conditions, the existence of waste planning systems or food habits (Taghipour et al., 2016). 

Moreover, rural areas and low income countries are likely to have a greater amount of vegetable, fruit and 

garden waste than inner city areas and high income countries ((White et al. 1997). These variations are visible 

in the three geo-climatic regions of Peru, which will have influence on both leachate and LFG generation. When 

speaking of landfilling, the location of the facility is critical in terms of waste degradation (Henriksen et al., 2017). 

Figure 3 shows global warming impact taking into account the lower, upper and average waste composition and 

the climatic conditions of the country. Total emissions generated in 100 years varies according to climatic 

conditions from 1350 to 1378 kg CO2 eq./ t waste. These results confirm that landfills located in areas with warm 

tropical weathers and with a high organic matter content will have a higher generation of LFG and leachate, as 

temperature affects directly the anaerobic decomposition rates of waste, as well as other parameters (Machado, 

2009). This happens as the LFG generation follows a first order decay model. The rate used in this equation 

fluctuated throughout the different modeled scenarios due to variations in geo-climatic conditions. Moreover, 

Figure 3 denoted that the highest emissions of greenhouse gases are produced in the 5 first years after waste 

disposal, getting after a steady state that is reached earlier for the upper limit waste composition.  

Leachate was modelled having in mind local conditions, such as humidity, temperature and precipitation 

intensity. However, due to inability of measuring site-specific composition of both leachate and LFG, 
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bibliographic data from the EASETECH software was used (Olesen and Damgaard 2014). 

3.2.2 Capital goods of the landfill 

Certain studies exclude capital goods because they present a low contribution to environmental impacts 

(Brogaard et al., 2013). However, in this study capital goods such as infrastructure and machinery were 

quantified and assigned to the FU according to their lifespan, the landfill’s lifetime and the amount of residues 

intended to perceive during the whole landfill’s life. Nevertheless, because of their low contribution to the whole 

impact (0.17 %), these elements were modelled using the Ecoinvent database v3.3 (Ecoinvent, 2016). 

4. Conclusions 

The removal of open dumpsites and the improvement of sanitary landfills are some of the challenges that Peru 

should meet in the not too distant future. This study develops a life cycle model to evaluate the environmental 

performance of the current sanitary landfills based on the technological and geo-climatic conditions of Peru. The 

model includes as key parameters waste composition, characteristics and treatment of the leachate and landfill 

gas, as well as temperature, humidity and precipitation intensity. These parameters can be adapted to the three 

geo-climatic regions of the country. The model lays the foundation stone to determine the main hot spots of the 

Peruvian sanitary landfills. Based on these results, further studies will be focusses on the comparison of several 

waste alternatives. This information will allow achieving an adequate and sustainable waste management 

strategy by proposing improvement measures to help stakeholders in the decision-making process. 
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