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Commercialization of emerging green technologies is essential to improving the sustainability of industrial 

processes. In practice, it is necessary to match funding sources (e.g., research and development grants, venture 

capital, etc.) with projects at different maturity levels. Because of inherent uncertainties that characterize and 

evaluate new technologies, the decision-making process is typically fraught with risk, which can be mitigated 

with the use of systematic decision support methods. In this work, an optimization model is developed for optimal 

allocation of funds to a portfolio of innovation projects based on the available funds and different levels of 

technology maturity. The model is based on source-sink formulation typically used in process integration 

applications. Each source is a fund of known size and can only be used for projects of a specified minimum 

return on investment (ROI) and minimum technological readiness level (TRL); each project has an estimated 

cost, TRL and an ROI range across techno-economic risk scenarios. The model is formulated as a bi-objective 

mixed integer linear programming (MILP) model, using the conservative and optimistic total portfolio ROI as 

dual objective functions. The methodology is demonstrated using a pedagogical case study. 

1. Introduction 

The development of new technologies is similar to a portfolio management problem (Cooper and Edgett, 2001). 

The general problem is complex due to temporal aspects and interdependencies among projects (Dickinson et 

al., 2001). In practice, the presence of multiple criteria (Morcos, 2007) and uncertainties in performance level 

(Aviso et al., 2017) further complicate decision-making. In practice, success rates are thus rather low (Li et al., 

2015). Research opportunities in technology portfolio management are described in detail by Meifort (2016). 

Technology Business Incubators (TBI) are entities established via tripartite partnerships involving academia, 

industry and government, which are intended to facilitate the emergence of Technology-Based Firms (TBFs) 

which rely on newly developed technology for the creation of new businesses (Mian et al., 2016). 

In practice, TBIs face the challenge of prioritizing technologies in their portfolio. These technologies compete 

for limited financial resources, which need to be allocated based on the expected benefits to investors. In 

addition to conventional financial metrics, the presence of new technologies has to be accounted for by TBI 

managers. Maturity of new technologies is often gauged using the well-established Technology Readiness Level 

(TRL) metric developed in the 1960s by the United States of America National Aeronautics and Space 

Administration (NASA) (Mankins, 2009). TRL uses a 9-point scale to rate technologies, as shown in Table 1. 

The TRL concept has been applied to the assessment of different sustainable technologies, such as negative 

emission technologies (McLaren, 2012), composite materials recycling technologies (Rybicka et al., 2016), and 

battery electric vehicle technologies (Andwari et al., 2017), among numerous others. Different modifications and 

extensions have also been proposed for the basic TRL concept. For example, Straub (2015) proposed a new 

TRL score of 10 to indicate extensive commercial experience with a mature technology. An analogous System 

Readiness Level (SRL) was proposed to account for interactions or interdependency in multi-component 

systems (Lemos and Chagas, 2016). 
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Table 1: The NASA TRL scale (Mankins, 2009) 

TRL Description 

1 Basic principles observed and reported 

2 Technology concept and/or application formulated 

3 Analytical and experimental critical function and/or characteristic proof of concept 

4 Component validation in a laboratory environment 

5 Component validation in a relevant environment 

6 System/subsystem model or prototype demonstration in a relevant environment 

7 System prototype demonstration in an operational environment 

8 Actual system completed and qualified through test and demonstration 

9 Actual system proven through successful mission operations 

 

Process Integration (PI) originally emerged as a systematic framework for thermal energy recovery in process 

plants. During the course of multiple decades of development and application, PI has diversified to address 

more general problems in industrial efficiency and sustainability, as documented in a definitive handbook 

containing many of the most significant contributions in this area (Klemeš, 2013). Similarly, scientific 

conferences have shaped the evolution of PI in recent years (Klemeš et al., 2017). The most important 

methodologies in PI are Pinch Analysis (PA) and Mathematical Programming (MP), which provide 

complementary problem-solving strategies based on their respective strengths and drawbacks. PA is a powerful 

approach to problem analysis and decomposition and provides insights that facilitate interpretation and 

communication; it has also been shown to be applicable to various non-conventional PI problems involving 

allocation of streams with measurable quality aspects (Tan et al., 2015). The earliest application of PA to support 

financial decisions was first proposed by Zhelev (2005). Bandyopadhyay et al. (2016) proposed a graphical 

approach for allocating funds from multiple sources to multiple projects with different levels of expected return 

on investment (ROI). This procedure was based on the Material Recovery Pinch Diagram (MRPD), whose 

applicability to a broad range of PI problems is described in greater detail by Foo (2012). Roychaudhuri et al. 

(2017) extended this graphical method and demonstrated its applicability to funding industrial energy 

conservation projects. A mixed integer linear programming (MILP) model based on these previous 

developments was proposed recently by Roychaudhuri and Bandyopadhyay (2018). 

In this paper, a bi-objective MILP model is developed for allocating financial resources from multiple funds 

(sources) to multiple innovation projects (sinks). For both sources and sinks, quality restrictions are defined by 

ROI and TRL. The rest of the paper is organized as follows. A formal problem statement is given in Section 2. 

The model formulation is given in Section 3 and is applied to a representative case study in Section 4. 

Conclusions and further prospects for research are given in Section 5. 

 

 

Figure 1: Superstructure for the fund allocation problem  
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2. Formal problem statement 

For this problem, the corresponding superstructure is shown in Figure 1. The formal problem is as follows: 

• Given M funds (sources), each with a defined size, as well as a minimum TRL and ROI requirement; 

• Given N independent innovation projects (sinks), each with a defined funding requirement, as well as TRL 

and lower/upper bounds for ROI; 

• The problem is to allocate financial resources from the M funds to the N sinks in order to achieve the best 

ROI, while ensuring that the TRL and ROI restrictions are met. 

3. Model formulation 

The bi-objective MILP model is formulated as follows: 

max j ROIjU Pj bj (1) 

max j ROIjL Pj bj (2) 

subject to:  

j rij  Fi                               i (3) 

i rij = Pj bj                           j (4) 

j ROIjL rij  FROIi j rij        i (5) 

rij  M bij                              i, j (6) 

bij  {0, 1}                           i, j (7) 

bij  (TRLj /FTRLi)               i, j (8) 

bj  {0, 1}                             j (9) 

where the model parameters are as follows: ROIiU is the optimistic estimate of ROI of project i; ROIiL is the 

pessimistic estimate of ROI of project i; Fi is the size of fund i; Pj is the cost of project j; FROIi is the minimum 

ROI threshold for the use of fund i; M is an arbitrary large number; TRLj is the TRL of project j; FTRLi is the 

minimum TRL threshold of fund i; and the model variables are as follows: rij is the allocation of financial resources 

from fund i to project j; bj is the binary decision whether or not to fund project j; and bij is the binary decision 

whether or not to allocate financial resources from fund i to project j.    

The objective functions are to maximize the optimistic and pessimistic portfolio ROIs (Eq(1) and Eq(2)). These 

objectives represent attitudes of risk-seeking and risk-averse decision makers, and the use of distinct objective 

functions is based on the Partitioned Multi-objective Risk Method (PMRM), which treats different levels of risk 

separately to ensure that information on probability extremes are not lost in the decision-making process (Santos 

and Haimes, 2004). Eq(3) ensures that the total utilization of any given fund does not exceed its size, while 

Eq(4) ensures that the allocated funds are sufficient to meet the cost of any selected project. The average 

pessimistic ROI for all projects supported by any given fund should be at least equal to its specified minimum 

ROI threshold (Eq(5)).  Eq(6) and Eq(7) relate each flow of financial resource to a corresponding binary variable, 

while Eq(8) ensures that allocations are only allowed when the project TRL exceeds the fund’s TRL minimum 

threshold. The TRL constraint may be visualized as in a manner similar to the “staircase” composite curves 

proposed for water integration problems by Dhole et al. (1996). Eq(9) defines the binary variable for project 

selection. The MILP model can be easily solved to global optimality using commercial software such as LINGO. 

To deal with the two objective functions, the Pareto front can be traced using the -constraint method. 

4. Illustrative case study 

This case study focuses on new technologies for processing residual biomass from the palm oil industry. This 

agro-industrial sector is an important part of the economy of many developing countries, particularly leading 

producers such as Malaysia and Indonesia in Southeast Asia. Utilization of the abundant residual biomass from 

palm oil mills offers the potential of creating further economic growth, while also improving the sustainability 
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profile of the entire industry (Ng et al., 2012). However, doing so will require the development and commercial 

deployment of biomass processing and utilization technologies.  

A hypothetical but plausible scenario is presented here with funding sources as shown in Table 2, and projects 

as shown in Table 3. The ROI values are given in terms of cumulative returns over project lives of 20 y. Note 

from this data that the TRL levels are related to the gap between the optimistic and pessimistic ROI estimates. 

For mature technologies, ROI can be predicted more precisely, while for less mature ones, there is greater 

degree of uncertainty and the potential to fund less mature technologies is reduced by risk aversion among the 

managers of the different funds. 

Table 2: Fund data for case study 

Fund type Available amount (USD) Minimum TRL threshold Minimum ROI threshold (%) 

Government grant 8,000,000 4 20 

Industry funding 10,000,000 7 125 

Crowd funding 6,000,000 6 130 

Angel investor funding 2,000,000 6 135 

Table 3: Project data for case study 

Project Cost (USD) TRL Optimistic ROI (%) Pessimistic ROI (%) 

Integrated biogas and 

wastewater treatment 

system 

6,250,000 5 140 125 

Biomass-fired power 

plant 

5,500,000 8 150 120 

Dried long fiber plant 1,500,000 9 220 200 

Biofertilizer plant 3,750,000 9 370 330 

Palm pellet plant 2,000,000 9 200 180 

Biochemical process 

plant 

7,500,000 4 180 100 

 

Solving the bi-objective MILP model using the -constraint method gives two Pareto-optimal solutions shown in 

Figure 2 that correspond to the maximization of the optimistic and pessimistic ROIs. Optimizing the model based 

on Eq(1) gives an optimal optimistic ROI of USD 42.925 M, with the funding allocation as shown in Table 4. For 

this solution, the pessimistic ROI is USD 33.075 M. This value represents the worst-case result for an optimistic 

decision-maker. On the other hand, optimizing the model based on Eq(2) gives an optimal pessimistic ROI of 

USD 33.388 M, for which the funding allocation is shown in Table 5. The corresponding optimistic (best-case) 

ROI for this solution is USD 38.175 M.  

Table 4: Funding allocation in USD based on optimistic ROI 

Project Government grant Industry funding Crowd funding Angel investor 

funding 

Integrated biogas and 

wastewater treatment 

system 

    

Biomass-fired power 

plant 

 3,000,000 2,500,000  

Dried long fiber plant   1,500,000  

Biofertilizer plant  1,750,000  2,000,000 

Palm pellet plant   2,000,0000  

Biochemical process 

plant 

7,500,000    
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Table 5: Funding allocation in USD based on pessimistic ROI 

Project Government grant Industry funding Crowd funding Angel investor 

funding 

Integrated biogas and 

wastewater treatment 

system 

6,250,000    

Biomass-fired power 

plant 

 3,000,000 2,500,000  

Dried long fibber plant   1,500,000  

Biofertilizer plant  1,750,000  2,000,000 

Palm pellet plant   2,000,0000  

Biochemical process 

plant 

    

 

 

Figure 2: Pareto optimal solutions to the case study  

Comparison of the two solutions shows that four projects (i.e., the biomass-fired power plant, dried long fibber 

plant, biofertilizer plant, and palm pellet plant) are all funded in the same manner via industry funding, crowd 

funding and angel investor funding. The two solutions differ only in the allocation of the government grant to 

either the first project (the integrated biogas and wastewater treatment system) or the sixth one (the biochemical 

process plant). Both of these projects do not have sufficiently high TRL to be supported by the other funding 

schemes. However, due to the grant limitations, it is not possible for these two relatively immature projects to 

be funded simultaneously, so the model is forced to select one of them for implementation. Depending on the 

degree of risk aversion of the TBI manager, the fund may be allocated to maximize either the best-case or worst-

case solution. The risk-averse solution ensures a pessimistic ROI that is guaranteed to be USD 0.313 million 

higher than the alternative; however, this result comes at the expense of the optimistic ROI being USD 4.75 

million less than is possible from a more risk-tolerant attitude. 

5. Conclusions 

A source-sink model has been developed for the optimal allocation of financial resources to fund the 

development of a technology portfolio. The model formulation is based on source-sink models used extensively 

in PI applications for resource conservation problems; it also considers TRL and inherent uncertainties in ROI. 

A case study on biomass processing technologies is used to illustrate the practical application of the model for 

providing decision support for innovation management. The model itself is static and does not account for 

interactions among the technology options; more detailed restrictions on fund use are also not considered here. 

Future work can focus on further generalizations of the model to relax these simplifying assumptions. Alternative 

solution approaches based on other PI tools such as PA or P-graph can also be explored. 
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