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Increasing emissions of greenhouse gases (GHGs) have been identified as the main contributor to global 

warming and climate change. Carbon dioxide (CO2) is the primary anthropogenic GHG. Carbon capture and 

storage (CCS) is widely recognized as a key mitigation technology that can significantly reduce CO2 emissions 

during combustion. It involves capturing CO2 from large stationary sources and subsequently storing it in various 

reservoirs such as depleted oil or gas reservoirs, saline aquifers and deep unmineable coal seams. In this work, 

a finite-scenario based two-stage stochastic mixed integer linear programming (MILP) model is developed for 

planning the retrofit of power plants with carbon capture (CC) technology and the subsequent CO2 source-sink 

matching in CCS supply chains under uncertainty. This model can be used to select appropriate sources, 

capture technologies and sinks and maximize the amount of captured and stored CO2 under the presence of 

uncertainty. Furthermore, to control risk at the optimal deployment of CCS systems, probabilistic financial risk 

metric is incorporated into the model. A case study is used to demonstrate the application of the proposed 

model. The computational results show that after risk management, risk of the expectation amount of captured 

and stored CO2 is reduced. 

1. Introduction 

Increasing greenhouse gas emissions (GHG) is considered as one of the main reasons for global warming. 

Carbon dioxide (CO2) is the most dominant human-influenced greenhouse gas, whose total emissions have 

increased from about 22.7 billion t to about 35.3 billion t/y (56 % higher) between 1990 till 2013 (Van der Hoeven, 

2014). Carbon capture and storage (CCS) is one of the technologies that contribute to the decrease in GHG 

emissions. It involves a two-step procedure: first, capture CO2 via physical or chemical process from the flue 

gas; then, compress and transport the captured CO2 into various sinks including saline aquifers, inaccessible 

coal deposits and depleted oil or gas reservoirs, provided that these sinks are suitable for storage based on 

geological surveys of geochemical, seismic risk or other physical consideration (Holloway, 2007). Thus, CCS is 

able to mitigate climate impacts by preventing CO2 from releasing into atmosphere. In practice, CCS systems 

will face uncertainties which may come from social, economic, environmental, and political factors. 

Recently, extensive researches have been developed to aid in planning the commercial deployment of CCS. 

Pinch-based (Tan et al., 2009) approaches became useful and provided significant insights into CO2 allocation 

network. Pinch analysis approaches also addressed multi-regional CCS systems with geographic clustering 

(Diamante et al., 2014). Mathematical programming approaches were used to determine the best source-sink 

matching for CCS networks in detail using continuous-time (Tan et al., 2012) and discrete-time (Tan et al., 2013) 

approaches. A unified MILP model was proposed to address selection of CO2 sources and source-sink matching 

(Lee et al., 2014). As for the infrastructure aspect, a SimCCS model was developed to match sources and sinks 

(Middleton et al., 2009). A hierarchical and multi-scale framework was developed to design a CO2 capture and 

storage and a capture and utilization supply chain networks (Hasan et al., 2015). Risk management for CO2 

networks were developed by addressing the uncertainties in the available data using fuzzy optimization (Tapia 

and Tan, 2014) and robust programming (He et al., 2012). Design under uncertainty of CCS infrastructure 
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considering cost, environmental impact, and preference on risk was also studied (Lee et al., 2017). Analytic 

hierarchy process data envelopment analysis was developed to select oil and gas reservoirs (Tapia et al., 2017). 

In previous work, the CC retrofit planning and source-sink matching were commonly studied separately even 

there is strong interaction between the two systems. And it has been demonstrated that uncertainties confronted 

in CCS systems may affect both the CO2 emissions reduction target and network topology. This study proposes 

a two-stage stochastic mixed-integer linear programming (MILP) model to achieve the optimal retrofit planning 

of power plants with CC technology and CO2 source-sink matching in CCS supply chains with considering 

uncertainties in sink physical constraints and investment limit. To control risk at the optimal deployment of CCS 

systems, probabilistic financial risk metric is incorporated into the model, which is used to represent the decision 

maker’s tolerance of risk. 

2. Problem Statement 

The formal problem statement addressed in this paper is as follows. The objective is to maximize the amount of 

captured and stored CO2 by planning retrofit of power plants and matching CO2 sources with sinks and minimize 

the risk level at the optimal deployment of CCS systems. 

• The CCS system is assumed to be comprised of i CO2 sources, j CO2 sinks and the planning horizon 

consists of t time intervals. Each time interval is represented by Δt. The planning horizon spans the operating 

lives of all CO2 sources and sinks in the system. 

• Each CO2 source has a captured CO2 flow rate depending on the CC technology used. The start and end 

of the operating life of each source (Yit) is predefined. 

• Each CO2 sink is characterized by an upper limit for both CO2 injection rate and storage capacity, as 

determined by its physical characteristics. The earliest time of availability of each sink (Yjt) is also specified. 

• It is assumed that any given CO2 source i may be connected to only one CO2 sink j (i.e., no branching is 

allowed); however, a CO2 sink j may be linked to multiple CO2 sources. 

• The fixed CO2 removal and energy loss ratio as well as a fixed relative or dimensionless cost of each capture 

technology k are given. 

• The uncertainties arise from the sink characters and the investment limit Γ. The corresponding probability 

distribution of each scenario ps is given. 

3. Model formulation 

For the case of uncertainties described by probability distributions, a stochastic two-stage MILP model is 

formulated. This model requires that data be specified for CO2 sources and sinks, CC technologies, 

compensatory power generation and probability distributions for each scenario. With these input data, the model 

is able to determine an optimal CO2 allocation network maximizing the amount of CO2 captured and stored 

within the given system. 
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The idea behind Eq(1) is that the decision maker wants to maximize the expected amount of captured and 

stored CO2. Eq(2) is to minimize the financial risk at a given target Ω. Eq.(3) includes a goal programming weight 

ρ in the objective function to obtain a trade-off between expectation and risk controlled by the decision maker. 

Yit and Yjt denote the operation time for source i and sink j respectively. 
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For Eq(4)-(5), ACSs is the amount of captured and sored CO2 and ACEs is the additional emissions from 

compensatory power plants needed to compensate for CC energy losses. Eq.(6)-(10) are used to calculate the 

captured CO2 flow rate Fijts. yijts is a binary variable that denotes the operation time in scenario s. 
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The physical constraints are given by Eq(11)-(12), where Fj and Qj denote the limit of injection rate and capacity 

of sink j. For each CO2 source to be captured, only one technology and only one sink can be chosen as given 

by Eq(13)-(15). Eq(16) defines the forbidden (Tik=0) and allowable (Tik=1) matches between technologies and 

sources. zij is a first-stage binary variable that denotes the connection between source i and sink j. xik is a first-

stage binary variable that denotes the selection of capture technology k of source i. 
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Eq(17)-(18) are used to determine the power losses pits. The power generation cost cits can be calculated using 

Eq(19)-(20). Eq(21) limits the investment cost of the system, which means that after retrofitting, the cost cannot 

exceed a dimensionless value Γ. 

4. Case Study 

In this section, the proposed model is demonstrated through a hypothetical but realistic case study. The case 

study is adapted from Tan et al. (2009). It consists of 6 power plants as CO2 sources, 3 geological reservoirs as 
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CO2 sinks. The planning horizon of the carbon capture and storage systems is 50 years. The minimum viable 

duration of CCS for each plant is assumed to be 20 years. The source and sink data are shown in Table 1 and 

Table 2, respectively. Two CC retrofit technologies are considered in this case study, namely flue gas scrubbing 

(FGS) and oxy-fuel combustion (OFC). Plants 3 and 6 are unsuitable for the OFC option. The CO2 removal 

ratios of FGS and OFC are assumed to be 0.8 and 0.9, respectively and the relative power losses are 0.2 and 

0.25, respectively. Due to the energy losses of CC retrofit, compensatory power is required. The emission factor 

f is assumed as 0.001 Mt/(MW·y). The unit electricity produced by retrofitted plants is 60 % more expensive 

than that produced by the unmodified plants; likewise the unit generated by the compensatory plants is 40 % 

more expensive than unmodified plants. The objective is to maximize the amount of captured and stored CO2 

without increasing the overall electricity cost by more than 30 %, i.e.   = 1.3 (In BASE scenario the overall 

investment is no more than 1.3 times of the unmodified plants). Three uncertainty scenarios of injection rate, 

storage capacity and investment at LOW, BASE and HIGH are investigated. LOW and HIGH scenarios are 0.8 

and 1.2 times of the BASE one. The probability of corresponding scenario is assumed to be 25 %, 50 % and 25 

%. Based on these assumptions, we can generate a total of 3 × 3 × 3 = 27 scenarios. The scenarios are shown 

in Figure 1.  

Table 1: Source data for case study 

Plant/Source Power Pi (MW) Emissions EMi (Mt) Time of operation (y) 

1 Coal 120 0-30 

2 Coal 200 0-40 

3 Coal 62.5 5-30 

4 Coal 240 10-40 

5 Natural gas 200 0-40 

6 Natural gas 120 10-50 

Table 2: Sink data for case study 

Sink Injection limit (Mt/y) Start time (y) Maximum storage (Mt) 

MA 0 0 200 

MB 10 10 400 

MC 15 15 250 

4.1 Stochastic model without risk management 

To manage the risk for the above-described problem, the stochastic model was solved first, obtaining the 

solution that maximizes the expected amount of stored CO2, without taking risk into account. The objective is 

the net expected stored CO2 quantity, which is calculated by Eq(1). It means that the net expected stored CO2 

quantity is the difference between the captured and stored amount of CO2 and the additional emissions from 

new power plants needed to compensate for CC energy losses. In this case study, there are 27 scenarios as 

shown in Figure 1. The optimal planning results for the systems are obtained by solving the stochastic 

programming with 27 scenarios. The maximum expectation amount of stored CO2 is found at 551.57 Mt. The 

risk curve of this solution is shown in Figure 2a. Easily found that the risk at optimal solution 551.57 Mt is about 

40 %. It means that under the uncertainties described above, solutions without considering risk may fail to store 

551.57 Mt CO2 with a probability of 40 %. 

4.2 Stochastic model with risk management 

As discussed above, a major limitation of the stochastic model is that it considers “expected outcomes” of the 

problem objective without explicitly taking into account its variability. To reduce risk level of the deployment of 

CCS systems, the risk objective described in Eq(2) is incorporated into the stochastic programming model and 

get the objective as given by Eq.(3). Goal programming weight ρ in Eq(3) is used to obtain solutions where the 

relative importance of expectation and risk are controlled by the decision maker, controlling the shape of the 

risk curve. Here 551.57 Mt (optimal solution of the stochastic model) is chosen as the target and the 27 scenarios 

are also used for the calculation. The comparison of stored CO2 probability distribution for the results before 

and after risk management is given in Figure 2b.  
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Figure 1: Scenario generation for the model 

  
 (a) (b) 

Figure 2: (a) Risk curve of the stochastic model. (b) Risk curve of the risk management model 

1211



As shown, the optimal solution of stochastic programming model features about 40 % probability that total 

amount of captured and stored CO2 is lower than 551.7 Mt, whereas after risk management (the dash line), the 

risk at 551.57 Mt is only 26 %. It means that the risk of storing low amount of CO2 has been significantly reduced 

after risk management, although the expected total stored CO2 has decreased a little. Compared with the results 

of the stochastic model and risk management model, it can be found that the stochastic programming model 

with risk management is capable to reduce the risk level against uncertainty. It is found that uncertain 

parameters significantly affect not only the CCS allocation network configuration but also the operating 

conditions. The results show that the modeling of uncertainties is critical in the deployment of CCS systems. 

5. Conclusions 

This paper presents a methodology for the optimal design of carbon capture and storage system considering 

sink physical and investment limit uncertainty. It takes into consideration of the uncertainty that systems may 

confront. The effectiveness of the method is validated by a case study. The model is solved without considering 

risk and then incorporates risk management with stochastic programming models. Compared with the results of 

the stochastic model and risk management model, it can be found that the stochastic programming model with 

risk management is capable to reduce the risk level from 40 % to 26 % against uncertainty. Future work includes 

the extension of the current model to consider the uncertainty of carbon tax and to consider all the implications 

of uncertainty on the CCS allocation network. 
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