
 CHEMICAL ENGINEERING TRANSACTIONS  
 

VOL. 70, 2018 

A publication of 

 

The Italian Association 
of Chemical Engineering 
Online at www.aidic.it/cet 

Guest Editors: Timothy G. Walmsley, Petar S. Varbanov, Rongxin Su, Jiří J. Klemeš 
Copyright © 2018, AIDIC Servizi S.r.l. 

ISBN 978-88-95608-67-9; ISSN 2283-9216 

Robust Waste Transfer Station Planning by Stochastic 

Programming 

Jakub Kůdelaa,b*, Radovan Šomplákc, Vlastimír Nevrlýc, Tomáš Lipovskýc 

aInstitute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology – VUT Brno, Technická 2896/2 

 616 69 Brno, Czech Republic 
bInstitute of Automation and Computer Science, Faculty of Mechanical Engineering, Brno University of Technology – VUT 

 Brno, Technická 2896/2, 616 69 Brno, Czech Republic  
cInstitute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology – VUT Brno, Technická 

 2896/2, 616 69 Brno, Czech Republic  

 Jakub.Kudela@vutbr.cz 

Regarding the infrastructure planning in waste management, the future situation in the Czech Republic or in 

some other waste developing countries is unknown due to the undecided support from the government or the 

EU. Furthermore, the production of waste depends on many factors (e.g. separation rate) that are uncertain. 

The level of recycling will be influenced by technical progress while taking into account the compromise between 

maximum waste material recovery and the economic impact of the process. Nevertheless, it is important to plan 

the transportation infrastructure that will be able to support the realization of future projects/development. Such 

a feature might be the transfer station grid, which can decrease the total transportation costs/impact on the 

environment. The grid design should be robust with respect to all the possible technological solutions 

(establishment of waste treatment facilities). In this paper, the mathematical model for grid design of transfer 

stations is proposed. The model will be presented as a two-stage mixed-integer stochastic programming 

problem. The model will be tested through a case study on the current situation and possible legislation changes 

regarding waste management in the Czech Republic. The model scale will be on the micro-regional level 

proposing a robust transfer station grid design. The realization of these projects takes into consideration possible 

investments and decides about the capacity of the facility with regards to future government support and 

donations. The output in the form of recommendation will serve possible investors, municipalities and/or 

stakeholders from the field of waste management to plan more sustainable projects. 

1. Introduction 

Since the situation in waste management is unknown due to the undecided support to the particular technology 

system and treatment from the government or the EU, the planning of future infrastructure is not secured from 

the investment point of view. The state-of-the-art in the field of location and network flow problem is extensive. 

The paper by Klemeš et al. (2017) is worth mentioning, because they summarised the progress in the 

sustainability applications from the recent year. Another important result was published by Walmsley et al. 

(2017), where the network was utilised for the organic and dry fractions of municipal waste through the p-graph 

approach. Šomplák et al. (2017) analysed the current state of the waste handling, which is an important input 

for the simulations of future development. However, the all the previous planning is performed globally and for 

all subsystems at the same time. Some papers deal with sequential development and construction as in Eiselt 

and Marianov (2015). The individual decisions are not robust enough to comprise the unknown future 

development (the problems were not handled as multi-stage as in Hrabec et al. (2015)).  

This paper proposes a novel approach in the planning of transport infrastructure for efficient treatment of residual 

waste which is in line with all the possible cases of future development of waste management system. The 

future uncertainty (legislative development and support for different systems) in the treatment grid design is 

projected through the processing cost for different facilities at various locations. The computational approach 
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was designed to handle real-life tasks in reasonable time. In section 3, the case study is presented with the use 

of data from the Czech Republic. 

2. Problem Description 

2.1 Decisions, Layout and Inputs 

The problem consists of deciding where to construct the transfer stations, what should be their respective 

capacities and from which producer of waste to which waste-processing plant should the cargo be send, 

provided that some of the data are uncertain. This problem can be categorized as a two-stage stochastic facility 

location problem (Birge and Louveaux, 1997), where the so-called first-stage decision must be made prior to 

the realization of the uncertainty (this corresponds to the future construction of the transfer stations and their 

capacities). The second-stage decision then depends on the realization of the uncertainty (in this case, all the 

other decisions about transport and processing are second-stage). The uncertainty is modelled using a large 

number of possible realizations called scenarios. The more scenarios are considered, the better the model is, 

but the more difficult it is to solve. 

Possibly the most important data regarding this problem is the road network partly depicted in Figure 1 (and 

described by an incidence matrix in the mathematical model). This network had 24,770 arcs (roads) connecting 

the 6,258 nodes (waste producers and waste-processing plants). 

The second important piece of data are the locations of the waste producers, the waste-processing plants and 

the possible locations for transfer stations – some of these are depicted in Figure 1. There are 6,258 places 

producing waste, 44 waste-processing plants (where 15 correspond to foreign facilities – potential export of 

waste abroad) and 116 possible places for the transfer stations (these sets were not mutually exclusive). 

 

 

Figure 1: A map showing the producers of waste (blue dots) and the places processing waste (red dots). The 

road network (black lines) and the possible transfer stations (black rings) are shown on two separate parts. 

To be able to differentiate between the transportation of waste that does or does not use the transfer stations, 

a separate road network was computed – for each possible transfer station was found the shortest path to each 
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waste-processing plant. In this pre-processing step, 5,075 shortest path optimisation problems were solved, 

resulting in the additional network with 5,075 arcs (omitting the ones that started and ended at the same place). 

The transfer of waste when using the transfer stations is assumed 3 times cheaper than the regular one. Each 

of the possible transfer stations can be constructed with 6 different capacities (higher capacities have higher 

construction costs, but the unit cost decreases). Combining this with the 116 locations results in 696 binary first-

stage decisions. The second-stage decisions are the flows on the arcs of the two networks and the amounts of 

waste processes at the plants, in total 29,889.  

The uncertain parameter that is considered in the model is the cost for processing the waste at the 44 different 

plants, which correspond with the legislation development and local conditions (such as the demand for heat, 

etc.). The number of scenarios for this model was set to 1,000 and so the model has almost 30 M variables. 

2.2 Mathematical Model 

The notation that is used to develop the mathematical model is described in Table 1. 

Table 1: The notation 

Type  Symbol Description 

Sets s ∈ S Set of scenarios 

 j ∈ J Set of nodes (cities) 

 i ∈ I ⊂  J Set of possible transfer stations 

 t ∈ T Set of possible transfer station capacities 

Parameters A1 The first incidence matrix (Figure 1) 

 A2 The second incidence matrix (from pre-processing) 

 c1 Transfer costs, without the transfer stations (on A1) 

 c2 Transfer costs, using transfer stations (on A2) 

 p
s
 Probability of a scenario s 

 ei,t Cost of a construction of a transfer station at location i, with capacity 

t 

 ki,t Capacity of a transfer station at location i, with capacity t 

 fj,s Cost of processing waste at node j, scenario s 

 rj Production of waste at node j 

 qj Waste processing capacity of node j 

Variables di,t Decision on building the transfer station at location i, with capacity t; 

binary, first-stage  

 x1,s Flows on A1 in scenario s; continuous, second-stage 

 x2,s Flows on A2 in scenario s; continuous, second-stage 

 y
j,s Amount of processed waste in node j, scenario s; continuous, 

second-stage 

 

To simplify the notation, some subscripts were hidden, meaning that the appropriate parameters/variables were 

stacked to form a vector of a fitting size (and the associated equalities/inequalities are meant for each element 

in the vector). The objective function given by Eq(1) minimizes the expected waste transportation and 

processing costs and the building cost for building the transfer plants: 

minimize ∑ ei,t

i∈I, t ∈T

di,t + ∑ p
s
(c1

Tx1,s

s∈S

+ c2
Tx2,s +  fs

T
y

s
) (1) 

The constraints then take the following form: 

A1x1,s + A2x2,s + y
s

=  r, ∀ s ∈ S, (2) 

y
s

≤  q, ∀ s ∈ S, (3) 

∑ x2,s

flows from i∈I

 ≤  ∑ ki,t

t ∈T

di,t, ∀ s ∈ S,∀ i ∈ I, (4) 

∑ di,t

t ∈T

≤ 1, ∀ i ∈ I, (5) 
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x1,s , x2,s , y
s

 ≥ 0, ∀ s ∈ S, (6) 

di,t  ∈ {0,1}, ∀ i ∈ I, ∀ t ∈ T. (7) 

The constraint Eq(2) is the conservation of waste – at each node and for each scenario, the amount produced 

must be equal the amount transported (by one of the two possibilities) plus the amount processed. The 

constraint Eq(3) is an upper bound on the amount of waste that can be processed at a given node. The constraint 

Eq(4) guarantees that the amount transferred using the transfer station i is less than the installed capacity of 

that transfer station. The constraint Eq(5) ensures that at most one of the possible capacities is installed at 

location i. The last two constraints Eq(6) and Eq(7) are the nonnegativity and integrality constraint, respectively. 

The only constraints that do not depend on the scenarios are Eq(5) and Eq(7). The total number of constraints 

that depend on scenarios is 36,307, meaning that the model has over 36 M constraints. 

3. Implementation and Results 

3.1 Algorithms and Software 

The model was solved using the Benders decomposition scheme described in (Kůdela et al., 2017a) enhanced 

by the warm-start cuts developed in (Kůdela et al., 2017b). It was programmed in the high-performance dynamic 

language JULIA (Bezanson et al., 2017) with the JuMP package for mathematical optimization (Dunning et al., 

2017). In this scheme, the first stage problem was solved using the branch-and-cut method for mixed-integer 

problems, calling the CPLEX 12.6.3 solver. The MIP gap parameter was set at 1.5 %. The individual 

subproblems in the second stage were solved by the primal-dual simplex method, calling the GUROBI 7.5 

solver. This combination of solvers and algorithms achieved the best overall performance – this scheme reached 

the 1.5 % optimality gap for the problem formulation with 1,000 scenarios within 24 h. These computations were 

carried out on an ordinary computer (3.2 GHz i5-4460 CPU, 16 GB RAM). 

 
Figure 2: A map showing the results for one of the scenarios – thick black rings correspond to the selected 

places for transfer stations, red lines are flows from these transfer stations, black lines are regular flows. 

Another suitable solution strategy could be a heuristic based on genetic algorithms as in (Kůdela and Popela, 

2015) or differential evolution as in (Viktorin et al., 2016). All of these strategies can utilize parallel computing to 

accelerate the execution.  
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3.2 A Summary of the Results 

The results of the computation are best summarized in Figure 2 and Figure 3. Of the 116 possible locations, 71 

were chosen as optimal places for the transfer stations. One scenario of optimal flows and the optimal places 

for the transfer stations is depicted in Figure 2 (the optimal places are the same for all scenarios, the flows are 

different).  

The optimal expected cost was 260.14 M EUR and the expected total distance travelled by all vehicles was 8.23 

M km, assuming that the regular flows are serviced by vehicles with capacity 10 t and the flows from transfer 

stations are serviced by vehicles with capacity 24 t (all fully loaded). 

The histograms in Figure 3 represent the results for the 1,000 generated scenarios and show in detail the impact 

of building the transfer stations. The expected costs are 8 % lower on average when building the transfer 

stations, the costs for transportation alone are 21 % lower. The expected total distance travelled by all vehicles 

is reduced by 9 % on average when building the transfer stations. However, this quantity has a much higher 

variance and, in some scenarios, is worse than the situation with no transfer stations. This inconvenience stems 

from the objective focusing only on costs – if some form of trade-off between costs and total distance was added 

to the objective function, the results would be more favourable towards lower total distance (at the price of 

increased costs). This might represent the situation when taking into account the environmental aspects is more 

important than the overall cost. 

 

 

Figure 3: Histograms of optimal cost and total distance travelled – the red one is using the transfer stations, the 

blue one is not. 

4. Conclusions 

In this paper, the mathematical model for grid design of transfer stations is proposed. The planning was modelled 

by a two-stage mixed-integer stochastic programming problem. The uncertainty is included in the cost of 

treatment, which corresponds to the possible future development of legislation and government support. An 

approach was tested through a case study on the current situation and possible legislation changes regarding 

waste management in the Czech Republic. It was scaled on the micro-regional level where the network had 

24,770 roads connecting the 6,258 waste producers and treatment plants. With these features, the robust 

transfer station grid design was proposed. The realization of these projects takes into consideration possible 

investments and decides also about the capacity of the facility.  

The output is in the form of recommendation for possible investors, municipalities and/or stakeholders from the 

field of waste management. The optimal solution with the 1.5 % gap was to design 71 sustainable projects, while 

the total expected cost was 260.14 M EUR and the expected total distance travelled by all vehicles was 8.23 M 

km. The possible extension for the proposed model would lead to consider the environmental aspect as the 

additional criterion or to calculate with the uncertain future waste production of the municipalities. 
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