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Unsustainable consumption and production patterns, together with industrialization and population growth, have 

increased the generation of municipal solid waste (MSW), causing several environmental problems. The 

European Waste Framework Directive (WFD) sets waste prevention, preparation for reuse and recycling as 

priority strategies. Nevertheless, still a great amount of MSW ends up in landfills and waste-to-energy (WtE) 

plants. WtE plants reduces waste volume and allows efficient recovery of energy, however, incineration results 

in various types of solid wastes, bottom, boiler and fly ashes (FA). Due to the concentration of dangerous 

substances, FA are treated by means of stabilisation/solidification (S/S), thermal treatments or combined 

treatments, to reduce their toxicity and to avoid negative impacts on the environment and human health. Among 

S/S alternatives, stabilisation with cement and carbonation are one of the most popular. To determine the 

environmental performance of these processes this paper conducted a life cycle assessment (LCA). The study 

evaluated FA stabilisation with cement and water and FA carbonation for 55 % and 100 % excess of CO2 in the 

flue gas at the outlet of the reactor, and pressures of 1, 5, 10, 15 and 20 bar. The results showed that the range 

of pressure between 3 and 4 bar, and 55 % excess of CO2 in the flue gas have an efficient performance. The 

comparison of FA carbonation and stabilization displayed that the latter has higher impacts than the alternative 

carbonation due mainly to the cement production and the reduction of lixiviation and CO2 capture in the ash.  

1. Introduction 

Unsustainable consumption and production patterns, together with industrialization and population growth, have 

increased the generation of municipal solid waste (MSW), causing several environmental problems. Our 

economic system is based on a linear model, assuming that resources are abundant, available, easy to source 

and cheap to dispose of. This unsustainable consumption and production pattern, together with industrialization 

and population growth have increased the generation of municipal solid waste (MSW), causing several 

environmental problems (Margallo et al., 2018). Current global MSW generation levels are approximately 1.3 x 

109 t/y, and are expected to increase to approximately 2.2 x 109 t/y by 2025 (Hoornweg and Bhada-Tata, 2012). 

In this sense, waste management is one of the most complex environmental challenges faced by modern 

societies. The European Waste Framework Directive (WFD) (EC, 2008) is promoting a more sustainable 

performance, reducing waste generation and connecting resource use and waste residuals (Tsai, 2016). WFD 

sets waste prevention, preparation for reuse and waste recycling as priority strategies. Nevertheless, recycling 

and reuse are not always suitable for all waste streams; and thus, a great amount of MSW ends up in landfills 

and waste-to-energy (WtE) plants, considered by European policies as last-resort options. WtE plants are one 

of the most robust waste treatments, which not only reduces waste volume, but also allows efficient recovery of 

energy (Margallo et al., 2014). However, incineration results in various types of solid wastes, primarily including 

bottom, boiler and fly ashes (Tsai, 2016). Fly ashes (FAs) represent only a few percent of the input waste. They 

are fine and are normally characterised by a high content of chlorides and significant amounts of dangerous 

substances, such as heavy metals or organic compounds. Due to its composition, FA must be treated in order 

to reduce its toxicity and to avoid negative impacts on the environment and human health. The application of a 

                                

 
 

 

 
   

                                                  
DOI: 10.3303/CET1870148 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please cite this article as: Margallo M., Cobo S., Munoz E., Fernandez A., Santos E., Dominguez-Ramos A., Aldaco R., Irabien A., 2018, Life 
cycle assessment of alternative processes to treat fly ash from waste incineration , Chemical Engineering Transactions, 70, 883-888  
DOI:10.3303/CET1870148   

883



 

certain treatment may have two approaches: ensure landfilling of FA in non-hazardous landfills or improve the 

possibilities of its valorisation (Margallo et al., 2015). Regarding the former, FA are often treated by means of 

separation processes, stabilisation/solidification (S/S), thermal treatments or combined treatments. Among S/S 

alternatives, stabilisation with cement and carbonation are one of the most popular. Stabilisation with cement 

involves the immobilisation of the hazardous components in a solid matrix. The energy consumption linked to 

cement production is a drawback of this technique. For that reason, carbonation could be an alternative 

treatment that enables the adsorption of the heavy metals present in the FA to the carbonates produced in the 

reaction of calcium. However, a deep analysis is required to determine the hotspots of the process and to 

compare its environmental performance. Several environmental tools are available, being life cycle assessment 

(LCA) widespread. LCA quantifies all the inputs and outputs of the material flows and assessing how these 

inputs and outputs impact the environment (Mah et al., 2017). Therefore, this tool allows to assess the potential 

environmental impacts and resources used throughout a product´s life-cycle (Margallo et al., 2013) and reveals 

cross-media issues (Laso et al., 2016). In this sense this work evaluated and compared the environmental 

performance of two FA treatments in order to propose improvement measures to the waste management sector. 

2. Life cycle assessment methodology 

LCA methodology was applied according to the ISO 14040 (ISO, 2006) to evaluate the treatment of FA. This 

methodology is based on a four-phase process: i) definition of goal and scope; ii) life cycle inventory (LCI); iii) 

life cycle impact assessment (LCIA) and iv) interpretation (Margallo et al., 2014). 

2.1 Goal and scope 

Goal and scope definition is one of the most important phases of the LCA methodology, because the choices 

made at this stage influence the entire study (De Marco et al., 2017). The goal of this study is to evaluate the 

treatment of FA  from a WtE plant located in Cantabria Region (North of Spain). The plant produced in 2014 

4,655 Mt of FA (GOBCANT, 2016). The amount of FA was selected as functional unit in order to compare the 

efficiency of the solidification and carbonation treatments. Figures 1a and 1b depict the flow diagram of FA 

carbonation (scenario a) and FA stabilisation (scenario b).  

 

Figure 1: Flowsheet of A) FA carbonation (scenario a) and B) FA stabilisation (scenario b) 

The analysis was structured in two blocks: i) the comparison of FA carbonation at different pressures and excess 
of CO2 in flue gas and ii) the comparison of the FA carbonation and stabilisation processes. Regarding 
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carbonation, to determine the reactor dimensions, the following scenarios were studied: 55 % and 100 % excess 
of CO2 in the flue gas at the outlet of the reactor, and pressures of 1, 5, 10, 15 and 20 bar. The comparison of 
FA carbonation and stabilization has to be done based on the same function. The combustion process of natural 
gas is considered a part of the life cycle of the FA carbonation and thus, the environmental impacts related to 
the generated electricity are considered as a secondary function of the system. 

2.2 Life cycle inventory 

The life cycle inventory is one of the most effort-consuming steps and consists on the collection and 
interpretation of the data necessary for the environmental assessment of the observed system (Iannone et al., 
2014). Input and output data are based on experimental data, calculations and bibliographic sources (Biellen et 

al., 2014). Secondary data were taken from other databases such as PE International (PE International, 2017) 

or IPCC (IPCC, 2006). LCI was calculated for different pressures and excess of CO2 in the flue gas with respect 

to the CO2 that reacted in the experimental set-up. Figure 2 shows that for the 55 % and 100 % CO2 excess, a 

similar diameter (and height) is obtained, while for the 10 % excess, the dimensions are noticeably higher. The 

results highlight that the higher pressure, the less reactor volume is necessary and, therefore, the required 

diameter (and height) is smaller. This gradient is particularly high for pressures below 5 bar. Thus, the LCA was 

performed for a pressure range between 1 and 5 bar, and a CO2 excess of 55 and 100 %, in order to understand 

the trade-off between these variables. Table 1 and 2 summarised the life cycle inventory of FA carbonation and 

stabilization, respectively. 

 

Figure 2. Variation of diameter of the reactor with pressure and composition of flue gas 

Table 1: Life cycle inventory of carbonation (5 bar / 55 % excess of CO2 in the flue gas) 

 Flows Amount Units Data source 

Inputs Fly ashes 1.00 t FA GOBCANT (2016) 

Energy    

 Compression 2.40E-02 kWh/t FA Own calculations 

 Stirring 281 Kwh/ FA Own calculations 

Natural gas 241 t/ t FA Own calculations 

Water 6,000 l/ t FA Own calculations 

Outputs Treated ashes 7.00 t/ t FA Own calculations 

Flue gas 4.39  Own calculations 

Table 2: Life cycle inventory of FA stabilisation 

 Flows Amount Units Data source 

Inputs Fly ashes 1.00 t FA GOBCANT (2016) 

Cement 0.30 t/ t FA Biellen et al. (2014) 

Water 389 l/ t FA Biellen et al. (2014) 

Outputs Stabilised ashes 1.69 T/ t FA Biellen et al. (2014) 
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2.3 Life cycle impact assessment 

The life cycle impact assessment stage was conducted with the LCA software GaBi 6 (PE International, 2017). 

The environmental impact categories used for this study are described in Table 3. These impact categories 

have been chosen because i) climate change is a pressing issue nowadays, ii) abiotic depletion potential and 

total freshwater consumption allow putting into perspective the scarcity of raw materials and water in order to 

minimise resource consumption, and iii) ecotoxicity takes into account the detrimental consequences of the 

processes on the ecosystem, which are the reason FA cannot be directly landfilled. 

Table 3: Impact categories of the LCA study 

Impact category  LCIA method Units Data source 

Global Warming Potential (GWP) IPCC kg CO2 – Equiv. IPCC (2013) 

Abiotic Depletion potential (ADP) CML 2001 kg Sb – Equiv. Guinèe et al. (2001) 

Total Freshwater Consumption (TFC) 
Swiss Ecoscarcity kg water 

Frischknetcht et al. 

(2006) 

Ecotoxicity (Ecotox.) 

USEtox 

Comparative Toxic 

Units for ecotoxicity 

effects (CTUe) 

Rosenbaum et al. (2008) 

3. Results 

Figure 3 shows the environmental performance of the FA carbonation for different pressures and the two studied 

scenarios: 55 % and 100 % excess of flue gas for each selected impact category.  

 

 

Figure 3. Variation of diameter of the reactor with pressure and composition of flue gas for the impacts categories 

a) global warming potential, b) abiotic depletion potential, c) total fresh water consumption and d) ecotoxicity 

In Figure 3, each represented point reflects a different reactor volume. In general terms, when the pressure 

increases, a higher equilibrium concentration is obtained and, therefore, the required reactor dimensions are 

smaller. Since the power of stirring depends on the agitator diameter, and this, in turn, is conditioned by the 

reactor diameter, which is raised to the fifth, as the flue gas pressure increases, less energy is required for 

agitation. The total energy of the process is equal to the sum of the energy required for compression and stirring, 

being the latter significantly higher than the former. As a consequence, the total energy consumption decreases 

as the pressure of the flue gas increases. Thus, the environmental impacts of the carbonation process decrease 

as the pressure increases. Regarding the contribution of each process, most of the activities associated with 
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energy generation contribute substantially to all the impact categories. Nevertheless, the consumption of water 

(process water: almost 70 %) is the main contributor to the environmental impact in the total freshwater 

consumption category. Figure 4 compares the results of FA carbonation (scenario a) and stabilization (scenario 

b) for each selected impact category. It can be clearly seen that the main way to treat FA (stabilisation) has 

higher impacts than the alternative technique (carbonation), due mainly to the reduction of lixiviation and CO2 

capture in the ash. Moreover, energy demand for cement production is the main contributor of FA stabilization. 

In fact, cement manufacturing is responsible for nearly 80 % of the overall abiotic depletion indicator. 

 

 

Figure 4. Comparison of environmental impact of FA carbonation (scenario a) (5 bar and 55% excess of CO2 in 

the flue gas) and FA stabilisation (scenario b) 

4. Conclusions 

This work conducted a quantitative environmental assessment of two treatments for the FA from MSW 

incineration (stabilisation and carbonation) in Cantabria (Spain).  

FA stabilization resulted as the least environmental friendly treatment. The emergent technique of carbonation 

presents improvements in the chemical properties of FA and a new future use in the industry. This process 

allows reducing the riskiness of the waste and the discharge volume. Additionally, as for the avoided burdens, 

the FA carbonation process achieves to reduce the environmental impacts due to the fact that the generation of 

electricity from natural gas combustion can replace the required electricity in the process itself.  

Regarding the operational conditions, several pressures and CO2 excesses were studied to evaluate the 

influence of them on the reactor dimensions. It can be concluded that on the one hand, the range of pressure 

between 3 and 4 bar, and on the other hand, 55 % excess of CO2 in the flue gas provide an efficient result. As 

the results have revealed, for pressures higher than 3 bar, the environmental impacts decrease minimally, that 

is, there is not a significant difference among the choice of 3, 4 or 5 bar. So, this minimum pressure allows 

reducing the energy of compression. Furthermore, the choice of 55 % excess of CO2 in the flue gas is due to 

the fact that with this CO2 excess and this range of pressures, less impacts are obtained in GWP and ecotoxicity 

while similar values are achieved in abiotic depletion and the total freshwater consumption. To sum up, this 

choice is not the best option for all the environmental impacts. Nevertheless, it allows achieving a balance 

between the environmental impacts, the total used energy and a reasonable reactor volume. 
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