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A methodology to extract temporal patterns of alarm sequences and operator actions from the log files of alarm 

management systems is proposed. Firstly, time-segments that are informative from the viewpoint of operator 

interventions are identified by the algorithm. These segments include series of alarms that initialize operator 

actions, sets of operator actions, and a period that potentially covers the effects of the corrective actions of the 

operators. In the second step of the methodology, the sets of operator actions that are frequently applied in the 

same situations are determined. For this purpose, the FP-Growth Algorithm, which is one of the fastest tools of 

frequent item-set mining and generates well-structured action trees that are not only suitable for the visualization 

of interventions but lend themselves to build association rules that could be directly applied in decision support 

systems, is utilized. Finally, multi-temporal sequence mining is applied to reveal what alarms led to the sets of 

operator actions and what were the effects of these interventions. The applicability of the methodology is 

illustrated by presenting results connected to the analysis of the delayed coker plant at the Danube Refinery of 

the MOL Group.  

1. Introduction 

Plant operators can become overloaded when they are continuously exposed to a large number of alarms. The 

fundamental question concerning control system design is whether or not providing more information results in 

better operational decisions (Dadashi et al., 2017). A properly designed and operated alarm system should 

assist the work of operators by indicating the presence of abnormal situations. Recently, the reduction in 

operator workload by the rationalization of the number of annunciated process alarms has become a highly 

studied area of research. To achieve this goal, mostly conventional techniques, like alarm limit deadbands 

(Adnan et al., 2011), delay-timers (Zang et al., 2015) or filtering (Izadi et al., 2009), have been applied. It is 

believed that the information inefficiency of alarms results in operators becoming overloaded (Dadashi et al., 

2017). The consequences of ignoring the complexity of human behaviour with regard to industrial safety and 

security have been discussed (Festag and Hartwig, 2016). According to our knowledge, only one publication 

has dealt with operator actions and alarm notifications together and addresses the problem concerning the effect 

of the action patterns of operators (Hu et al., 2016). 

The challenge discussed in the present paper is twofold: first, we highlight that the sequences of industrial 

alarms cannot be handled by themselves since the interactions of the operator continuously change the 

underlying processes and thus the evolution path of the alarms. Following this concept, a novel methodology 

for the determination of alarms or alarm patterns that require interactions by the operators and lead to the 

intervention of operators is presented. On the other hand, not only is the work of the operators influenced by the 

alarms, their actions affect the evaluation of alarm patterns as well. Therefore, different operating strategies are 

compared by the proposed analysis and are qualified based on their effectiveness, which can ensure a 

consistent and efficient operation based on the best operational practices. In this way, not only can the workload 
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of operators be reduced, but the production efficiency can be significantly improved, e.g. energy consumption 

can be reduced (Challis et al., 2017). 

 

 

Figure 1: The workflow of the methodology presented for the detection of frequently applied operator actions 

and their causal relationship to the occurring alarms. 

The structure of the paper follows our methodology illustrated in Figure 1. The applied algorithm is presented in 

the blue text boxes, while the questions to be answered by their application are illustrated in the associated 

white text boxes. Initially, the alarm and event-log database is segmented into event traces and action series, 

then operation periods for further investigation are selected. In Section 2, this process is discussed, while in 

Section 3 the details of the algorithms applied for the extraction of frequent operator actions are presented. In 

this section, it is also shown that what led to these operator action patterns and their effect on the process can 

be studied by multi-temporal analysis. 

2. The structure and segmentation of the alarm and event-log database 

In this section the structure of an industrial alarm and event-log database is described and the method for its 

segmentation proposed. Since frequent item-set and temporal pattern mining algorithms are utilized, a brief 

mathematical formalization of the temporal patterns of event databases is also provided. 

2.1 Structure of the alarm and event-log database 

Files of industrial alarms and event logs are usually composed of time-stamped events of alarms, operator 

actions, system messages and any further temporal information. Each event that occurs is labeled with a tag 

name. Every alarm and operator action can be considered as the states of the process. Each state (denoted by 

s) is represented by < 𝑝𝑣, 𝑎 > data couples, where 𝑝𝑣 compresses the tag name of the process variable and all 

the above-mentioned information, and 𝑎 is the attribute showing the type of action on the process variable, for 

example, low or high alarms in the case of alarms, or open or close in the case of operator actions. An event is 

the time interval in which the defined state occurs, denoted by 𝑒. Each event, 𝑒, of the database is represented 

by < 𝑠, 𝑠𝑡, 𝑒𝑡 > triplets, where 𝑠 is the state that occurs in the time interval between the start time, 𝑠𝑡, and the 

end time, 𝑒𝑡. It should be noted that the same attribute of a state can correspond to multiple events as well. This 

representation is applicable to both frequent item-set mining and pattern mining, which is the core concept of 

the present paper concerning the determination of operational practices. 

The methodology is presented through the analysis of the delayed coker plant at the Danube Refinery of the 

MOL Group. An insight into how the intensity of alarms and operator actions varies with time in the case of the 

25 most frequent tags is given in Figure 2. In the figure, all the numbers, tag names and identifiers are masked 

due to confidentiality. During the preprocessing of the event-log database, the operator actions were assumed 

to be point-like events without any temporal extension, while alarms lasted from their annunciation to their 

associated return to normal records. An approximately 4-month-long operational period was analyzed with more 

than 2000 process tag names so that our example of application can be considered as a realistic and challenging 

case study.  
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2.2 Segmentation of the alarm and event-log database 

Since the operator action patterns and their anticipation and consequential alarms are our main concerns, the 

alarm and event-log database was filtered for the segments containing operator actions.  

 

 
(a) The intensity of alarm announcements 

 
(b) The intensity of operator actions 

Figure 2: The intensity of alarm announcements (a) and operator actions (b) over a selected time period. The 

number of alarm announcements and operator actions in the case of the 25 most frequent tags are illustrated. 

A schematic representation of the segmentation of the process into event traces is presented in Figure 3. Time 

is represented by the horizontal line, while the event series with and without operator actions is illustrated by 

the yellow and blue bars, respectively. The segmentation starts with the detection of well-separated segments 

of operator actions which are divided into periods that are not comprised of operator actions for longer than a 

defined segmentation window. To investigate the events that lead to the intervention of operators and to see 

the effect of these actions, a trace window based on the time constant of the process was set (green arrow in 

Figure 3.). Therefore, the time needed for a fault to develop and trigger operator actions and the time required 

for the corrective actions to drive back the process to its proper operation zone are covered by the window. 

Based on the expert knowledge of process engineers, to detect causal relationships between alarms and 

operator actions 240 seconds and 60 seconds seemed to be a preferable segmentation window and trace 

window for the definition of event traces, respectively. All the events of the alarm and event-log database that 

fall within the time constraint of the trace window are used to build an event trace in our investigations (red arrow 

in Figure 3.). Inside these event traces, sets of originally point-like operator actions that follow each other closely 

(within the action series window) are assumed to be one action series based on one intuition of the operator 

(yellow arrow in Figure 3.). A reaction time of approximately 20 seconds for chemical process operators was 

suggested (Buddaraju, 2011). Therefore, a ten-second-long action series window was defined which assumes 

that actions within this period can be considered as the results of the same stimulus. Based on this assumption 

these operator actions were aggregated into operator action series and their frequent itemsets were analyzed. 

Consequently, the remaining periods that do not contain operator actions are referred to as alarm series. It 

should be noted that according to the presented approach multiple action and alarm series can be contained in 

a single event trace, where the time difference between the operator actions inside the action series is less than 

the action series window, and between the action series is less than the segmentation window.  

 

 

Figure 3: The segmentation of an alarm and event-log database into event traces of alarms and operator actions. 
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With the presented segmentation approach, more than 5,000 event traces with almost 10,000 operator action 

series were derived. The originally huge database could be significantly reduced to more informative segments, 

which is more convenient for further investigations of ours. 

2.3 Multi-temporal representation of alarm and operator action sequences 

The event traces were generated to extract frequently occurring temporal patterns within them. An illustrative 

representation of the alarms and operator actions of an exemplary event trace is presented in Figure 4. Time is 

represented by the horizontal axis, while the states of the process are denoted by the rows of the vertical axis. 

According to the description of the alarm and event-log database, the alarms are temporal events represented 

by the bars of 𝑠1−3, where the length of the given event is indicated by the horizontal length of the bars. The 

operator actions are point-like in time, represented by the dotted lines of 𝑠4−5. In order to reveal frequently 

occurring operation patterns of the process, a time window is required. The length of time in which two events 

are considered to be directly consequential is set by the value of this time window. Given two events, 𝑒1 and 𝑒2, 

with the time intervals (𝑠𝑡1, 𝑒𝑡1) and (𝑠𝑡2, 𝑒𝑡2), respectively, a temporal connection between them can be defined 

using the following temporal predicates: 𝐸, 𝐵, 𝐷 and 𝑂 which stand for the 𝑒𝑞𝑢𝑎𝑙, 𝑏𝑒𝑓𝑜𝑟𝑒, 𝑑𝑢𝑟𝑖𝑛𝑔 and 𝑜𝑣𝑒𝑟𝑙𝑎𝑝, 

respectively.  

By using these temporal predicates, temporal instances can be defined as 𝜑 ≔ 𝑒1

𝑅
⇒ 𝑒2, where 𝑅 𝜖 {𝐸, 𝐵, 𝐷, 𝑂}, 

for example, in the case of the events of Figure 4: 𝑒1

𝑂
⇒ 𝑒2, 𝑒2

𝐵
⇒ 𝑒6. A pattern of 𝑘 + 1 states connected by 𝑘 

temporal predicates, is referred to as a 𝑘-length temporal pattern (the number of temporal predicates is 𝑘) and 

is denoted by 𝛷𝑘. Assuming a temporal pattern, e.g. 𝛷 ≔ 𝑠𝑖

𝑅
⇒ 𝑠𝑗, and a temporal instance of events, 𝜑 ≔ 𝑒𝑖𝑝

𝑅
⇒ 𝑒𝑗𝑞, where the events 𝑒𝑖𝑝 and 𝑒𝑗𝑞 are related to 𝑠𝑖 and 𝑠𝑗, respectively, then the temporal pattern 𝛷 is referred 

to as being supported by the temporal instance 𝜑. By following this concept, the probability of a state can be 

determined, assuming that its probability is proportional to the support of the 𝑘 = 0-length sequence as 

presented in Eq (1), where 𝑠𝑢𝑝𝑝(𝑠𝑖) represents the number of supporting events of each state:  

𝑃(𝑠𝑖) ≃ 𝑠𝑢𝑝𝑝(𝑠𝑖) (1) 

According to the present approach, to characterize the frequency of occurrences of the given state, the support 

of the pattern, which is the number of temporal instances normalized by the number of temporal instances of 

the most frequent state, is introduced: 

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝛷) = 𝑠𝑢𝑝𝑝(𝛷)/|𝐸| (2) 

where |𝐸| = 𝑚𝑎𝑥𝑗=1,2,…,𝑁(|𝐸𝑗|), 𝑁 stands for the number of states in our database, 𝐸𝑗 is the set of events 

supporting the state 𝑠𝑗, and |𝐸𝑗| represents the number of events in 𝐸𝑗. For further explanation and a detailed 

description of the frequent temporal sequence mining algorithm utilized see (Dörgő and Abonyi, 2018). 

3. Detection of frequent operational strategies and their temporal causality to the process 

The aim of this section is to discover how the operators interact with the process through the analysis of the 

operator actions and action series. First, the detection of frequently applied operator actions is described, and 

then the causal relationship between alarms and a frequently applied action pair investigated. 

 

 

Figure 4: The multi-temporal representation of events. The states are denoted by the rows of the vertical axis. 

The alarms and operator actions are represented by the vertical bars and dotted lines, respectively. 
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3.1 The detection of frequently applied corrective actions 

The incoming alarms of an industrial system are mainly characterized by the physics of the underlying 

processes, which provide the opportunity for the determination of frequently occurring alarm patterns. However, 

in the case of operator actions, not only the hectic attitude of each operator, but the presence of actions given 

by multiple operators can accumulate in random action patterns as well. However, it can be assumed that the 

corrective actions triggered by a malfunction do not change in a completely random fashion, just the order of 

execution can be interchanged, providing the opportunity to identify the set of frequently applied operator 

actions. To find such action sets, a frequent itemset mining algorithm was applied, referred to as the FP-Growth 

Algorithm (Han et al., 2000). The core idea of the algorithm is the utilization of the frequent-pattern tree (FP-

tree) data structure, which is a highly efficient and transparent solution for the representation of association 

rules. In the following, the structure of the FP-tree and the methodology behind the algorithm focusing on its 

application in the mining of frequently occurring action sets in action series is discussed. 

The tree consists of a root with the subtrees of nodes representing the operator actions. Each node of this tree 

consists of four fields: the action-name for the identification of the action that the node represents, the support 

count to register the number of action series represented by the portion of the path that reaches this node, the 

node-link to the next node in the FP-tree which represents the same operator action, and the parent-link to the 

parent node. The inputs of the FP-Growth Algorithm are the event-log database, in the present context the list 

of unique actions in each action series, and the support threshold, that is the minimum number of action series 

in which the given event occurs for it to be considered as a frequently occurring action analogous to the measure 

presented in Section 2.3 for multi-temporal patterns. The resultant FP-tree is constructed in two runs over the 

dataset: in the first, the support of each action in the input database is calculated by the algorithm (the number 

of action series in which the action occurs), which discards the infrequent actions based on the given support 

threshold and generates a support-descending list of frequent actions. In the second run, each action series is 

revisited by the algorithm sorting the frequent actions according to the determined support-descending list and 

attaching the listed actions of the particular action series to the tree starting from its root: either by incrementing 

the support count of an existing node or by creating a new node with its count initialized to one. 

The FP-Growth Algorithm helps to identify the operator actions that frequently occur in action series and 

provides an easily interpretable visualization of association rules. Based on the results of the FP-Growth 

Algorithm, frequent actions can be selected for further investigations and the anticipated and following alarms 

of the action series that contain the selected actions examined. 

The results of the mining of the defined action series of the alarm and event-log database of the analysed 

delayed coker plant are presented in Figure 5. On each node, the code of the tag name is written together with 

its percentage of occurrence in the action series separated by a colon. The structure is a transparent 

representation of association rules: by following the nodes starting from the root of the tree, the percentage of 

occurrences of the operator actions represented by the visited nodes can be determined. Consider the bottom 

subtree for an exemplary interpretation: 17.06 % of the action series contained operator actions with tag 271 

and 9.21 % of the action series contained the tags 271 and 675 altogether. By following this approach, each 

subtree can be easily interpreted. 

 

Figure 5: The FP-tree structure of frequent operator actions. The operator actions are represented by the nodes 

with the tag of the operator action and its percentage of occurrence separated by a colon. 
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3.2 Causal relationship between alarms and operator actions 

Instead of the enormous task of analyzing the circumstances of all the operator interventions, which would 

eventually lead to less informative patterns, a relatively frequently applied action pair based on the FP-tree in 

Figure 5, namely the action pair 271-675, was selected. By filtering the action series containing both of these 

actions, the multi-temporal patterns of alarms and operator actions (with 0.5 % of the support threshold) were 

generated, and the ones containing one item of the action pair selected. In this way nine different temporal 

connections between operator actions and two between operator actions and alarms were determined. In the 

case of longer patterns, operator actions which are performed by multiple presses in a row could be detected. 

This occurs, when an operator sets the new parameters step by step pressing the control panel multiple times 

in a short time period. This result provides the opportunity to analyse the causal relationship between alarms 

and operator actions with the incorporation of expert knowledge, and defines logic for automatization and 

decision support systems based on the conclusions of the analysis. 

4. Conclusions 

Although numerous publications have focused on frequently occurring patterns of alarms, the investigation of 

operator actions has scarcely been studied in the field of alarm management studies. In the present article, it is 

highlighted that alarm occurrences cannot be investigated by themselves since alarms and operator actions are 

in a close causal relationship with each other. The methodology presented in this paper provides a heuristic 

approach for the segmentation of alarm and event-log databases to obtain the event traces of operator 

interactions. Since operator interactions can follow random patterns, instead of temporal patterns only the co-

occurrence of operator actions using the FP-Growth Algorithm were analysed, and how transparent the 

visualisation of the resultant association rules demonstrated. Furthermore, with the aggregation of the 

investigated action series into a single-process event, a multi-temporal frequent sequence mining algorithm was 

applied to reveal what alarm sequences led to the intervention of operators and what the effect of these actions 

was. The effectiveness of the proposed methodology is demonstrated through the analysis of the alarm and 

event-log database of the delayed coker plant at the Danube Refinery of the MOL Group. To stimulate further 

research, the resultant Python and MATLAB codes of the proposed alarm and event-log analysis algorithms are 

readily available from the website of the authors (www.abonyilab.com). 
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