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Model-based dynamic optimization is an effective tool for control and optimization of chemical processes, 

especially during transitions in operation. This study considers the dynamic optimization of load transitions. Poor 

operating point transition strategy can increase the quantity of off-spec product coming with financial loss, and 

also can increase the risk of malfunctions. A novel methodology for operating point transition optimization is 

applied to a vacuum distillation column unit in which concentration of cumene-hydroperoxide intermediate 

occurs. Optimization task is based on Open Platform Communication (OPC) between a commercial process 

simulator (Aspen HYSYS) and MATLAB. Nonlinear Optimization with Mesh Adaptive Direct Search algorithm 

(NOMAD) is applied to solve the task. Load of the distillation column is decreased from 100% to 90% taking into 

account the time of transition, amount of off-spec product and energy consumption. Different objective functions 

result definitely different transition strategies, therefore the right choice of this function is crucial step in this 

process. The results show that the proposed optimization methodology can be applied efficiently based on a 

complex simulator of the technology. 

1. Introduction 

In industrial chemical processes operating point transition can be weekly due to any change in desired product, 

different required load of processes or raw materials quality. During the operating point transition, the product 

might not meet the quality requirements, which causes financial loss, or the technology can quit from the 

controllable zone and a hazard situation can occur, which risks the life of process operators. A well-defined 

strategy on how to change operating point can help to avoid loss and decrease the risk of malfunctions during 

transitions. Modern chemical processes become more complex via the number of connections between the 

technological units, therefore the effect of any change in parameters cannot be determined with the necessary 

precision. Wang et al. (2017) developed a real-time optimization and control framework tested on an industrial 

ethylbenzene dehydrogenation process model described by Partial Differential Algebraic Equations.  

Nowadays the requirements for more and more accurate simulators are already high, therefore taking into 

account the thermodynamic of the real system is key component in building an adequate simulator. Commercial 

process simulators are applied worldwide to solve problems related to an industrial technology or in research 

and development procedure of a none existed ones. Aspen HYSYS (or other commercial process simulators 

(PS)) can be applied for such a problem using a communication bridge between PS and MATLAB, which 

simplifies the model building part of the task. Open Platform Communication (OPC) can create a connection 

between Aspen HYSYS and MATLAB therefore a commercial PS based optimization can be performed.  

Dynamic process simulators (DPS) should be applied to analyze the transient behavior of technologies. DPS 

apply mathematics and first principles (thermodynamics, transport phenomena, etc.) to make an adequate and 

reliable representation of industrial chemical processes. Operator Training Simulator (OTS) Market Research 

(2017) shows that there is an increasing demand on OTS systems in the world, which is a good basis for 

transition optimization. Sritharan et al. (2017) developed an adequate OTS for ethylene plant and tested for 

start-up, shutdown and malfunction events.  

Perez et al. (2002) suggested to apply inversion-based approach to switch between operating points, where the 

system dynamics is inverted to find the input that exactly tracks a single output trajectory. Common problem is 

optimal grade transition, where the objective function is usually defined in terms of the amount of off-spec 
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product, product quality specifications, grade changeover time and process safety constraints (Chatzidoukas et 

al., 2003). McAuley and MacGregor (1992) showed that the calculated optimal transition strategy was strongly 

dependent on the objective function and the presence of constraints.  

Building an adequate dynamic process simulator of any technology is a complex and difficult task in itself. The 

transition optimization problems are mostly based on simplified simulators applied to define the optimal 

parameters of transition and only a few works can be found in which PS were applied in such a task. In this work 

we would like to show how commercial process simulators can help to solve the transition problems. The 

operating point transition of a vacuum distillation column of a phenol production technology is investigated, in 

which the concentration of cumene-hydroperoxide intermediate is realized (Schmidt, 2005). The simulator of 

the column is developed in Aspen HYSYS environment. 

The operating point transition was defined here as a nonlinear optimization task with constraint. Nonlinear 

Optimization with MADS algorithm (NOMAD) algorithm was applied to solve the optimization problem and the 

optimization task was solved in MATLAB program (Le Digabel, 2011). 

2. Case study 

Phenol production from cumene takes two reactions steps. The first step is oxidation of cumene to cumene-

hydroperoxide (CHP) with 25-30 % conversion, where air is bubbled through liquid cumene in oxidation reactors. 

Phenol comes from cleavage of CHP, but in the previous step the diluted CHP has to be concentrated. The 

concentration of CHP (to ~ 60 w%) is done in vacuum distillation column, where the bottom product is the 

concentrated CHP, and cumene comes as a distillate. The second reaction is CHP cleavage under acidic 

conditions to produce phenol as product and acetone as co-product in continuous tank reactor (Schmidt, 2005). 

The developed process simulator of vacuum distillation column is shown in Figure 1. DPS include 

hydrodynamics and also hydrostatic calculations which help to develop an adequate simulator of the process 

unit.  

 

 

Figure 1: Process simulator of the investigated vacuum distillation column (Aspen HYSYS) 

The operation of T-100 vacuum column is controlled by tuned PI controllers. FIC-100 controls the flow rate of 

feed cumene-CHP mixture. LIC-300 and LIC-301 controls the level in the reflux drum and reboiler by opening 

the outlet valve. The temperature of reboiler is controlled in cascade, where the secondary controller (slave) is 

TIC-300, and the primary controller (master) is XIC-100. Concentration of CHP in FTP_1 stream is measured 

and controlled by XIC-100. TIC-100 controls the tray temperature by reflux flow rate. The pressure of condensate 

tank is controlled via PIC-301 by cooling the condensate tank with cooling water. 
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Usually in a process simulator does not include any optimization module, or only simple optimization problems 

can be solved performing sensitivity analysis. However, in MATLAB there is a huge choice of efficient 

optimization algorithms which can be used in transition optimization. Aspen OTS Framework can create an OPC 

server, and can create a connection between MATLAB and Aspen HYSYS. OPC connection allows the online 

modification of the operating parameters, and all collected data can be efficiently analyzed in MATLAB.  

3. Operating point transition 

In industrial chemical processes operating point transition can be weekly task involved several risks and financial 

loss. Analyzing the dynamics of operating point transitions can help to decrease the amount of off-spec product 

and minimize the energy consumption and the required time to switch between operating points. Analyzing 

continuous processes with one-spec product the operating points of the plant can be defined with different load 

of the plant.  

In this work an optimization task was performed based on the simulator of vacuum column, where the flow rate 

of feed was decreased (i.e. the setpoint of FIC-100) by ten percent in steps. Figure 2 shows the operating point 

transition, where F is the feed rate, and t is time. Searching variables in the optimization task are number of 

steps in feed rate during operating point transition (n), time of the specific internal step (tx), and the internal 

setpoints (Fx).  

 

 

Figure 2: Operating point transition 

Three different strategies for operating point transition have been performed to get reference, where the number 

of steps and time of internal steps were changed. Internal load setpoints were calculated and collected in Table 

1 which includes the parameters of operating point transition functions and also the time of transition phase 

(TTP), invested energy of transition (IET), and the amount of off-grade product (OGP). The product is off-grade 

if the weight CHP concentration does not remain in 60±0.3% range.  

The internal setpoints were calculated with eq. 1-3, where SP is setpoint, SPop0 is initial setpoint, SPop,new is the 

new setpoint, and pi is the ratio off the ith internal step. 

𝑆𝑃𝑖 = 𝑆𝑃𝑜𝑝0 − ∑ 𝑝𝑖𝑚

𝑖

𝑖=1

 (1) 

𝑚 = 𝑆𝑃𝑜𝑝0 − 𝑆𝑃𝑜𝑝,𝑛𝑒𝑤 (2) 

∑ 𝑝𝑖 = 1

𝑛

𝑖=1

 (3) 
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Table 1: Parameters of reference operating point transitions 

No. n tx [min] p1 p2 p3 p4 p5 TTP [min] IET [MJ] OGP [kg] 

1 1 0 1 0 0 0 0 16.62 3.32 1210 

2 2 13.3 0.5 0.5 0 0 0 23.00 1.67 1737 

3 5 3.33 0.2 0.2 0.2 0.2 0.2 22.70 0.68 1519 

Figure 3 shows how the different strategies influence the product (CHP) concentration, flow rate of product, and 

the required energy. Different strategies lead to fully different transition trajectories, producing different amount 

of off-grade product and requiring different invested energy stream.  

 

 

Figure 3: Different strategies of operating point transition 

Objective function influences the optimal transition strategy, therefore four objective functions are applied to 

determine the optimal strategy. In first case (Eq(4)) the time of transition phase (TTP) was minimalized, in 

second case (Eq(5)) the invested energy of transition was minimalized. Invested energy flow of transition was 

calculated with Eq(6), where Qi means the energy flow through condenser and reboiler, Qi,0 means the energy 

flow through condenser and reboiler in steady-state of starting operating point. In the third case the amount of 

off-grade product was minimalized (Eq(7)), and in the fourth case the combination of first and second objective 

function was applied (Eq(8)). 

𝑜𝑓1 = 𝑇𝑇𝑃 (4) 

𝑜𝑓2 = ∫ ∑ ∆𝑄𝑖 𝑑𝑡  𝑤ℎ𝑒𝑟𝑒   ∆𝑄𝑖 > 0  𝑎𝑛𝑑 𝑖 = {𝑐𝑜𝑛𝑑, 𝑟𝑒𝑏}  (5) 

∆𝑄𝑖 = 𝑄𝑖 − 𝑄𝑖,0   𝑤ℎ𝑒𝑟𝑒 𝑖 = {𝑐𝑜𝑛𝑑, 𝑟𝑒𝑏} (6) 

𝑜𝑓3 = ∫ �̇�𝑜𝑓𝑓−𝑔𝑟𝑎𝑑𝑒𝑑𝑡 (7) 

𝑜𝑓4 = 𝑇𝑇𝑃 + ∫ ∑ ∆𝑄
𝑖

𝑑𝑡  𝑤ℎ𝑒𝑟𝑒   ∆𝑄𝑖 > 0  𝑎𝑛𝑑 𝑖 = {𝑐𝑜𝑛𝑑, 𝑟𝑒𝑏} (8) 
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High CHP concentration can lead to accident in a cleaving reactor after the CHP concentration unit, therefore a 

constraint was defined in every optimization task (Eq(9)) as the maximum CHP concentration during transition 

cannot be higher than 61.2 w%. 

max(𝑤𝐶𝐻𝑃) ≤ 61.2% (9) 

4. Results 

The different transition strategies derived from different objective functions can be seen in Figure 4, and the 

optimized parameters of transition functions are collected in Table 2. Objective functions highly influence the 

strategy of operating point transition, therefore it is important to evaluate the choice. Optimizing the transition 

can save a significant amount of production time, invested energy and can decrease the amount of off-grade 

product. Despite of minimizing the TTP (No. 1) the optimal value of TTP is higher than the TTP from non-

optimized operating point transition (Table 1), but as it can be seen in Figure 3, the safety limit of high CHP 

concentration was violated there. A similar tendency can be noticed in case of minimizing the amount of off-

grade product (No 3.) and the first reference case. The most significant progress is achieved in case the OGP 

from the previously described performance indicators after the optimization procedure compared to the 

reference cases.  

Table 2: Parameters of optimal operating point transitions considering different objective function 

No. n tx [min] p1 p2 p3 p4 p5 TTP [min] IET [MJ] OGP [kg] 

1 2 4.17 0.87 0.13 0 0 0 17.00 2.84 1243 

2 5 3.33 0.03 0.08 0.29 0.30 0.29 24.60 0.11 1313 

3 3 6.64 0.17 0.09 0.74 0 0 25.20 0.82 856 

4 3 2.24 0.44 0.39 0.17 0 0 17.58 1.49 1254 

 

Figure 4: Optimal strategy of transition due to different objective functions  

In case of a distillation column minimum energy requirement during transition means to switch between 

operating points as slow as possible, which is going against the minimum transition time, so the combination of 

this two performance indicator should be considered in optimization as it was evaluated at No. 4 task. 

5. Conclusion 

Operation optimization of chemical processes involves two aspects: steady-state and dynamic optimization. 

Steady-state optimization is necessary to perform for knowing the optimal process parameters during normal 

operating conditions. However, process disturbances can occur, or process conditions can change, and the 
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state variables will vary with time. The safety limits and constraints can be violated during transitions between 

optimal operating points obtained in steady-state optimization, therefore the dynamic optimization is necessary 

to perform to drive the process variables according to the safety limits and to evaluate achievable benefit.  

In this work it has been shown that operating point transition optimization problem can be efficiently solved using 

a commercial process simulator. The dynamic process simulator of cumene-hydroperoxide concentration was 

developed in Aspen HYSYS. NOMAD global extremum search algorithm implemented in MATLAB was used to 

solve the nonlinear optimization task. A data link was established between MATLAB and Aspen HYSYS, which 

is used to change the operating conditions of the process unit due to the change in the value of optimization 

variables during the optimization process.  

Transition optimization was done based on different objective functions taking into account the time of transition 

phase, invested energy during transition and the amount of off-grade product. Different objective functions 

results definitely different transition strategies, therefore the choice of right objective function always has to be 

considered. Large differences can be detected if the optimization task is to decrease the IET as can be seen in 

Figure 4. If the aim is to minimize the IET, the amount of OGP and the TTP will be higher, which may be not the 

best choice in the view of financial loss. Applying cost function as objective function in the optimization task can 

decide which parameter (OGP or IET) is more important in operating point transition. In case of minimizing the 

TTP and the amount of OGP the optimal transition strategy is similar according to the TTP and the amount of 

OGP, but there is a slight difference in IET. In case of minimizing the amount of OGP the IET is lower than in 

case of minimizing the TTP.  
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