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PREFACE 

The joint Symposium is combining the 34th European Symposium on Computer -Aided Process Engineering 
and the 15th International Symposium on Process Systems Engineering (PSE)  

The PSE series of triennial conferences was initiated in 1982, rotates between venues in the Americas, Asia-
Pacific and Europe and has proved to be an attractive global platform for PSE academics, researchers, and 
practitioners from all corners of the world to share advances in PSE education, research, and application. 
The ESCAPE series is an annual series initiated in 1991 by the CAPE Working Party of the European 
Federation of Chemical Engineering which is convened at sites rotating through the member countries of 
the European Federation. 
A joint symposium occurs in the years when the PSE rotation brings the event to Europe. The 2024 
Symposium is only the fourth time that this joint event has been held (Copenhagen 2015, Garmisch-
Partenkirchen 2006 and Trondheim 1997) and will combine the innovative PSE research conducted in 
Europe with exciting PSE developments occurring on a global scale. 

The keynotes, presentations and discussions will extend over 4 stimulating days and will cover the progress 
made in the broad range of the methodologies of the PSE toolkit, including AI, data analytics and 
digitalization, as well as impactful applications in the energy, food, healthcare, materials and sustainability 
domains. The venue in Florence, one of the premier cultural centers of Europe, will also provide the 
opportunity for participants to further enrich their understanding, appreciation and enjoyment of the fine 
arts and cuisine of Italy. 

Starting since 1966 with the former name "The use of Computers in Chemical Engineering", the Working 
Pary pioneered the approach to Process System Engineering with the limited tools offered at that time. 
In 1991 the Working Party redefined its Terms of Reference and adopted a new Title, CAPE, Computer 
Aided Process Engineering. 
Today computers are routinely applied throughout the entire spectrum of process and product engineering 
activities covering chemical, petrochemical, bio-chemical, and pharmaceutical industries and thereby, 
reflecting the success of the Working Parties activities. In its current form, the Working Party aims at: 
Acting as a focal point, within CAPE and related fields, for other EFCE Working Parties and National and 
International bodies, e.g. IChemE, IFAC, and AIChE. Promote good industrial practice by encouraging the 
development and use of CAPE methods and tools, by sharing experience in the application of existing CAPE 
methods and tools, by providing strategic reviews of the ongoing needs of the profession, and by 
identifying the potential opportunities for beneficial CAPE developments. Encourage and promote CAPE 
research by providing a European forum for the presentation and debate of new ideas and developments, 
by preparing state-of-the-art reviews of CAPE methods and tools, by stimulating new projects to meet 
identified needs and opportunities, both present and future The European Symposium on Computer-Aided 
Process Engineering (ESCAPE) is the reference event promoted every year by CAPE Working Party since 
1992. It is expected that the continued participation of the past years will be maintained and enhanced also 
in this event. 

The previous events attracted leading Industrialists and Academics worldwide and provided a state-of-the-
art on Chemical and Process Engineering. 

Previous events were: 
ESCAPE 33, Athene, Greece, 2023 
ESCAPE 32, Toulouse, France, 2022 
ESCAPE 31, Istanbul, Turkey, 2021 
ESCAPE 30, Milan, Italy, 2020 
ESCAPE-29, Eindhoven, The Netherlands, 2019 
ESCAPE-28, Graz, Austria, 2018 

ESCAPE-27, Barcelona, Spain, 2017 
ESCAPE-26, Portorose, Slovenia, 2016 
ESCAPE-25, Copenhagen, Denmark, 2015 (Joint 
event with PSE 12) 
ESCAPE-24, Budapest, Hungary, 2014 
ESCAPE-23, Lappeenranta, Finland, 2013 



ESCAPE-22, London, United Kingdom, 2012 
ESCAPE-21, Porto Carras, Greece, 2011 
ESCAPE-20, Ischia, Italy, 2010 
ESCAPE-19, Krakow, Poland, 2019 
ESCAPE-18, Lyon, France, 2008 
ESCAPE-17, Bucharest, Romania, 2007 
ESCAPE-16, Garmisch-Partenkirchen, Germany, 
2006 (Joint event with PSE 9) 
ESCAPE-15, Barcelona, Spain, 2005 
ESCAPE-14, Lisbon, Portugal, 2004 
ESCAPE-13, Lappeenranta, Finland, 2003 
ESCAPE-12, The Hague, The Netherlands, 2002 

ESCAPE-11, Kolding, Denmark, 2001 
ESCAPE-10, Firenze, Italy, 2000 
ESCAPE-9, Budapest, Hungary, 1999 
ESCAPE-8, Brugge, Belgium, 1998 
ESCAPE-7, Trondheim, Norway, 1997 (Joint event 
with PSE 6) 
ESCAPE-6, Rhodos, Greece, 1996 
ESCAPE-5, Bled, Slovenia, 1995 
ESCAPE-4, Dublin, Ireland, 1994 
ESCAPE-3, Graz, Austria, 1993 
ESCAPE-2, Toulouse, France, 1992 
ESCAPE-1, Helsingor, Denmark, 1992 

PSE SERIES 
The International Symposia on Process Systems Engineering (PSE) have been a triennial tradition since 
1982. 
The series was arranged by the International Organization for Process Systems Engineering with 
representation from the Asia Pacific Confederation of Chemical Engineering, the European Federation of 
Chemical Engineering, and the Inter-American Confederation of Chemical Engineering. It has proved to be 
an attractive global platform for the PSE academics, researchers, and practitioners from all corners of the 
world for sharing advances in PSE education, research, and application. PSE-24 is the 15th in the series. 

Previous events were: 
PSE 14 Kyoto, Japan, 2021 
PSE 13 San Diego, USA, 2018 
PSE 12 Copenhagen, Denmark, 2015 (Joint event with ESCAPE 25) 
PSE 11 Singapore, Singapore, 2012 
PSE 10 Salvador Bahia, Brazil, 2009 
PSE 9 Garmisch Partenkirchen, Germany, 2006 (Joint event with ESCAPE 16) 
PSE 8 Beijing, China, 2003 
PSE 7 Keystone, USA, 2000 
PSE 6 Trondheim, Norway, 1997 (Joint event with ESCAPE 7) 
PSE 5 Kyongiu, Korea, 1994 
PSE 4 Montebello, Canada, 1991 
PSE 3 Sydney, Australia, 1988 
PSE 2 Cambridge, England, 1985 
PSE 1 Kyoto, Japan, 1982 

The scientific programme of ESCAPE34-PSE24 features about 700 Lecture and Poster presentations, 
including 7 plenary lectures by outstanding Researchers. 

This Book of Abstracts consists of a summary of the topics treated and listed during the Symposium. 

prof. Flavio Manenti, 
prof. Gintaras V. Reklaitis 

ISC Chairboard 
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Abstract 

In the rapidly evolving hydrogen economy, the means of transportation and geopolitical 

factors can significantly influence the global hydrogen trade landscape. This research 

introduces a dynamic analysis of potential scenarios shaping hydrogen trade in medium 

to long-term horizons, assessing their feasibility based on technological advancements, 

economic implications, and external factors. 

We incorporate various energy scenarios into our analysis using an agent-based model 

approach in the AnyLogic simulation software. These range from a full-scale transition 

to hydrogen as a primary renewable energy carrier, a partial transition, to a potential 

retreat from hydrogen consumption. Each scenario incorporates varying hydrogen 

production methodologies, storage solutions, and transportation channels. Specific 

emphasis is placed on contrasting transportation methods: pipelines, liquified hydrogen 

in ships, and ammonia conversion. Moreover, geopolitical considerations, such as the 

closure of marine chokepoints, are integrated to visualize their potential impact on 

hydrogen trade. 

In this paper, we provide preliminary results that offer initial insights into the evolving 

scenarios of the hydrogen trade. These early findings, focusing on diverse aspects of 

hydrogen transportation and geopolitical influences, introduce more detailed analyses that 

will be conducted as our research progresses. 

Keywords: Agent-based model, Hydrogen economy, Hydrogen market, Trade, 

Simulation  

1. Introduction

The evolution of the global energy landscape is increasingly characterized by a shift 

towards more sustainable and low-carbon sources. In this context, hydrogen emerges as 

a pivotal element in the global energy transition, offering a versatile energy storage and 

transportation solution. The production of hydrogen is achievable through diverse 

methodologies, such as renewable energy-powered water electrolysis and natural gas-

based methane reforming coupled with carbon capture. This versatility and the growing 
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need for cleaner alternatives have positioned hydrogen as a central player in the 

sustainable energy dialogue. 

 

As the hydrogen sector witnesses exponential growth, significant advancements in 

production technology and distribution methods are becoming apparent. A substantial 

increase in investments and technological innovations underpins this growth trajectory. 

An estimated $ 8 trillion in hydrogen-related investments is needed by 2050 to develop 

international hydrogen trade (Hydrogen Council and McKinsey & Company, 2023). 

However, the hydrogen market faces several challenges, including the high costs 

associated with production, the emerging state of its delivery and storage infrastructure, 

and the need for more robust policy frameworks to encourage further investments and 

expansion. Despite these hurdles, the unique advantages offered by hydrogen, notably its 

clean energy credentials, have spurred considerable interest globally. Numerous 

countries, especially those rich in renewable resources or natural gas reserves, are actively 

exploring ways to enhance their hydrogen production and utilization capabilities (IEA, 

2023a). 

 

Recent years have seen a surge in interest in the hydrogen market from the research 

community. While studies on the hydrogen market are still evolving, parallels can be 

drawn from the extensively researched liquefied natural gas (LNG) market. In LNG 

market research, various models have been employed to understand the dynamics 

between market players, including producers and importers (Meza et al., 2021). These 

studies have yielded crucial insights into energy markets’ workings and growth potential 

and can serve as a reference for hydrogen market research. 

 

In addition to agent-based modeling, other methodologies have been employed to analyze 

the hydrogen market. These include market simulations to forecast future hydrogen 

supply and demand, economic models to examine the impact of policy measures, and life 

cycle analyses to assess the environmental implications of hydrogen production and 

usage. These varied methodologies provide a holistic view of the hydrogen market and 

its growth potential, offering insights ranging from market projections to environmental 

sustainability assessments. 

 

This study endeavors to explore the hydrogen market, focusing on the role of leading 

energy exporters. This research projects hydrogen and ammonia supply and demand up 

to 2050, evaluating market costs and investment opportunities using an agent-based 

model. The model accounts for various factors, including hydrogen/ammonia producers, 

importers, delivery contracts, shipping methods, and infrastructure, treating each country 

as an independent entity. The findings of this study will be instrumental in understanding 

the growth potential of the hydrogen market and the pivotal role of major energy 

exporters. 

 

Understanding the dynamics of the hydrogen market is crucial for achieving net-zero 

targets and transitioning to sustainable energy sources. This research will provide 

essential insights into the costs and investment opportunities within the hydrogen market, 

highlighting the significance of key energy exporters in its expansion. The insights gained 

from this study will aid in shaping policies that foster the development of the hydrogen 

sector and support the transition toward cleaner energy. 
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This research presents a novel approach to examining the hydrogen market, utilizing an 

agent-based model to analyze the interplay among various market participants. By 

conducting a comprehensive analysis of the hydrogen market and its growth prospects, 

this study addresses existing gaps in research, contributing significantly to the body of 

knowledge in this field. 

2. Methodology 

2.1. Agent-based model 

This model simulates the dynamics of hydrogen production, consumption, and trade 

among 40 different countries from 2022 to 2050. It integrates various parameters and 

databases to analyze scenarios under three different conditions. The model’s core 

components include agents, parameters, databases, variables, and functions. 

2.2. Agents 

Each country is an agent in the model with unique characteristics and behaviors. A total 

of 40 countries were selected based on different criteria to represent the hydrogen trade 

using manageable computational resources. Initially, countries were ranked using a 

hydrogen competitiveness index from a previous publication (Hjeij et al., 2023), assessing 

their potential in the hydrogen market. Additionally, the hydrogen investability index was 

used to gauge the attractiveness of countries for hydrogen sector investments (Cranmore 

Partners and Energy Estate, 2021). Insights from Deloitte’s “Green Hydrogen” report, 

which identified countries actively involved or with significant potential in the green 

hydrogen sector, were also considered (Deloitte, 2023). This multi-source approach 

ensured a well-rounded and informed selection of countries. 

2.3. Parameters 

2.3.1. Hydrogen demand 

To project hydrogen demand up to the year 2050, we employed data from the 

International Energy Agency’s (IEA) World Energy Review (IEA, 2023b). Specifically, 

we based our projections on three distinct scenarios outlined in the review: 

• STEPS (Stated Policies Scenario): Reflects the impact of current policy 

frameworks and announced policy intentions. 

• APS (Announced Pledges Scenario): Takes into account the targets and pledges 

announced by different countries but not yet implemented as policies. 

• NZE (Net Zero Emissions by 2050 Scenario): Envisions a pathway to achieve 

net-zero global emissions by 2050. 

These scenarios provide a comprehensive range of possible futures, with assumptions and 

outcomes regarding energy consumption and hydrogen demand.  

 

To distribute the projected global hydrogen demand among the 40 countries in our model, 

we utilized the primary energy consumption data from the Energy Institute’s (EI) 

Statistical Review of World Energy (Energy Institute, 2023). This approach allowed us 

to align hydrogen demand with energy consumption and ensure proportional 

representation. 

 

The projected hydrogen demand, split among the countries based on the methodology 

above, was then integrated into our agent-based model. This integration is crucial for 

accurately simulating future hydrogen trade dynamics, production needs, and the overall 

functioning of the hydrogen market under different global scenarios. 
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2.3.2. Natural gas production 

To obtain accurate and current data on natural gas production by country for 2022, we 

utilized the GlobalData Oil & Gas Upstream Fields Database (GlobalData, 2023a). This 

comprehensive database provides detailed information on natural gas production across 

various countries, offering a reliable baseline for our analysis. The data extracted from 

this source were instrumental in establishing the current landscape of natural gas 

production globally, serving as a foundation for future projections. 

 

For projecting natural gas production from 2022 to 2050, we referred to the International 

Energy Agency’s (IEA) World Energy Review. The review’s scenarios provided a 

structured framework for forecasting, encompassing STEPS, APS, and NZE. 

We then calculated the expected annual growth rates of natural gas production based on 

these scenarios. This enabled us to simulate future scenarios with natural gas production, 

assessing its impact on hydrogen production and the broader energy landscape. 

 

2.3.3. Renewable energy 

For our study’s renewable energy generation component, we employed GlobalData’s 

Power IC – Capacity and Generation Database, a resource that provides extensive data 

on capacity and generation for 171 countries spanning from 2000 to 2035 (GlobalData, 

2023b). This detailed database categorizes information based on various power-

generating sources and further segments it according to specific technologies or 

installations.  

 

To extend our analysis up to 2050, we integrated the International Energy Agency’s (IEA) 

Global Energy Review, which allowed us to incorporate three distinct scenarios (STEPS, 

APS, NZE) into our projections of renewable energy generation, providing a 

comprehensive and forward-looking view of the renewable energy sector. 

3. Results and Discussion 

This section introduces our preliminary findings, which lay the groundwork for a deeper 

exploration of the hydrogen trade’s dynamics. The results discussed here highlight key 

aspects of hydrogen transportation and the influence of geopolitical factors. These early 

insights are a stepping stone towards a more comprehensive analysis in the subsequent 

phases of our research. 

 

The global hydrogen demand is expected to evolve significantly by 2050 across three 

scenarios: STEPS, APS, and NZE. Under the current policy-committed STEPS scenario, 

demand is projected to rise from 86 million tonnes (Mt) in 2022 to 122 Mt by 2050, 

reflecting a steady, modest growth. The APS scenario, with more aggressive policy 

support, anticipates a near tripling in demand to 252 Mt, highlighting the impact of 

enhanced policies and investment in hydrogen technologies. The most ambitious, the 

NZE scenario, aiming for net-zero emissions by 2050, forecasts an exceptional increase 

to 366 Mt, underscoring hydrogen's potential role in achieving a low-carbon economy 

and meeting environmental objectives. 

 

The analysis highlights key global demand centers for hydrogen, with China as the 

largest, followed by the United States and India, especially under the APS and NZE 

scenarios. This trend indicates a growing reliance on hydrogen as a sustainable energy 
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source, influenced by policy shifts. The evolving energy landscape sees hydrogen as a 

crucial element, with demand varying significantly based on policy and environmental 

commitments. 

 

 

Figure 1: Global hydrogen demand until 2050 according to the different scenarios 

 

By 2050, a notable misalignment is expected between the locations of major hydrogen 

demand centers and optimal production sites, presenting opportunities for international 

hydrogen trade. Regions like Japan, South Korea, and parts of Europe, constrained in 

hydrogen production by their decarbonization commitments, are likely to become 

importers. In contrast, areas like South America and the Middle East, with excess 

production capacity, could emerge as key exporters in the hydrogen market.  

 

Local hydrogen production will often be more cost-effective than imports, especially 

involving long-distance transportation. This is due to the additional costs incurred in the 

conversion to intermediaries for transport and re-conversion at the point of use, alongside 

the costs associated with hydrogen losses and other necessary inputs such as electricity. 

Consequently, long-distance hydrogen transport is expected to be a less favored option, 

reserved for cases where local production is not viable.  

 

However, the transportation costs for hydrogen derivatives like ammonia and synthetic 

kerosene are relatively low compared to the overall product costs due to their higher 

volumetric densities. This aspect could make long-distance trade in these derivatives from 

low-cost production centers economically competitive, even in high-cost markets. 
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Figure 2: Hydrogen demand in the base scneario by country, 2050 

4. Conclusions 

The future hydrogen trade landscape will likely be shaped by production costs, the nature 

of the products being transported, and the availability of local resources. While local 

production will generally be preferable, long-distance trade in hydrogen and its 

derivatives will play a crucial role, especially connecting regions with excess production 

capacity to those with significant demand but limited production capabilities. This global 

trade in hydrogen and its derivatives could significantly reduce overall investment 

requirements in the energy sector, fostering a more interconnected and efficient global 

energy market. The international hydrogen trade will also influence global geopolitics, 

potentially redefining energy alliances and shifting power balances between nations based 

on their roles as producers or consumers. 
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Abstract 

Transitioning to more sustainable chemicals will require shifting to renewable carbon 

technologies (captured CO2, waste, or biomass), which are often evaluated decoupled 

from each other. However, opportunities for energy and mass integration may arise that 

could improve their economic and environmental performance, thus making them more 

appealing than originally thought. In this work, we consider integrated chemical clusters 

based on fossil and renewable carbon for methanol production. We apply multi-objective 

optimization to the integrated cluster and unintegrated configuration, finding that the 

integrated solution can substantially improve the environmental performance via 

hybridization of technologies, with reductions in global warming potential (GWP) impact 

ranging from 19 % to 183 % for a given unitary cost target. 

Keywords: integrated chemical clusters, multi-objective optimization, global warming 

potential 

1. Introduction 

The climate goals set by the Paris Agreement have spurred efforts in the chemical industry 

to move away from the current fossil-based synthesis. This requires shifting to renewable 

carbon feedstock, including captured CO2 via carbon capture and utilization (CCU), 

waste, and biomass. Many current studies of such alternative synthesis routes, which may 

differ in the feedstock and the reaction pathway, focus on isolated processes and neglect 

the potential synergistic effects between them, thus failing to evaluate their full potential 

as an integrated industrial system minimizing material and energy usage, waste 

generation, etc. (Boix et al., 2015). Notably, savings realized via e.g., heat and mass 

integration, common waste disposal systems and wastewater treatment plants, could 

substantially improve such emerging technologies when deployed in integrated clusters. 

For example, Baliban et al. (2013) proposed an optimization framework for a biomass-

to-liquid fuels (BTL) system, which simultaneously addressed heat, electricity, and water 

integration along with process synthesis decisions, finding that BTL refineries using 

existing technologies with capacities above 5,000 barrels per day could be economically 

feasible across the United States. Ioannou et al. (2023) conducted a techno-economic and 
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life-cycle assessment of an integrated CO2 refinery co-producing methanol, olefins, and 

aromatics, with an Allam cycle (Allam et al., 2017) for residual gas utilization. The Allam 

cycle operates at high pressures (i.e., up to 330 bar), and utilizes oxy-combustion of the 

purge stream to generate power and pure CO2. The authors reported savings of 135 % in 

the GWP impact in the integrated CO2 refinery compared to the business-as-usual. 

Therefore, exploiting synergies between various synthesis routes can lead to substantial 

savings resulting from heat and mass integration. Moreover, integrating emerging 

technologies for residual gas utilization (e.g., the Allam cycle) provides additional 

benefits in terms of environmental impact reduction.  Thus, in order to optimize economic 

and environmental performance, we focus here on multi-objective optimization of a 

chemical cluster for methanol production that integrates fossil and renewable carbon 

technologies.  

2. Process modeling and optimization 

We explore the hybridization of fossil and renewable carbon technologies for methanol 

production through the multi-objective optimization (production cost and GWP impact) 

of the integrated and unintegrated configurations, as shown in Figure 1.  

 

Figure 1: Process block diagrams of the integrated cluster and the unintegrated configuration. 

The fossil-based route consists of the autothermal reforming (ATR) of natural gas with 

high-pressure steam and oxygen (O2) for syngas production. The renewable route uses 
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direct air-captured carbon dioxide (CO2) with hydrogen (H2) obtained from wind-

powered water electrolysis via solid oxide electrolysis (SOEC). In the integrated cluster, 

the purge from the methanol process, which comes from the flash units (vapor stream 

consisting mainly of CH4, CO2, CO, and H2) and distillation column (vapor stream 

consisting mainly of CH3OH and CO2), can be utilized in an Allam cycle to generate 

electricity and pure CO2, or can be combusted using air. Note that the specific 

composition of the purge depends on the route/s chosen (i.e., green and/or fossil), and the 

values of the other degrees of freedom. Moreover, the O2 generated in the SOEC can also 

be used in the Allam cycle and in the ATR. All processes are simulated in Aspen HYSYS® 

v11, where Aspen Custom Modeler® (ACM) v11 is used to model the SOEC. To calculate 

the climate change impact, we quantify the 100-year time horizon (hierarchist 

perspective) GWP following the ReCiPe 2016 v1.13 methodology.  The multi-objective 

optimization is carried out using the algorithm surrogateopt in MatLab® vR2021b 

through the COM interface. For simplicity, we use the weighted sum of objectives 

method, which can only identify solutions lying in the convex envelope of the Pareto 

front. We consider nine degrees of freedom: ATR – natural gas molar flow rate,  

O2/natural gas molar ratio, and steam/natural gas molar ratio; SOEC – H2 molar flow rate; 

CH3OH – Plug flow reactor (PFR) temperature, PFR pressure, PFR volume, and purge 

percentage; Allam cycle – feed temperature.  

3. Results and Discussion 

The Pareto frontier obtained from the multi-objective optimization is shown in Figure 2. 

The minimum cost solution implements the ATR process (i.e., fossil route), while the 

minimum GWP impact solution deploys CO2 hydrogenation (i.e., renewable route). Note 

that the GWP can attain negative values due to the cradle-to-gate scope of the life cycle 

assessment (LCA) that omits the use phase of methanol. The integrated cluster shows 

substantial improvements over the unintegrated configuration. More specifically, the 

reduction in GWP impact in the integrated cluster with respect to the unintegrated 

configuration falls in the range 19-183 % for the Pareto points shown in the figure. These 

savings are due to mass and heat integration, and the incorporation of the Allam cycle, 

which enables recycling of pure CO2 to the methanol process (instead of venting the flue 

gas resulting from the combustion process directly into the atmosphere). Additionally, 

the intermediate Pareto points show the different levels of hybridization between the 

fossil and renewable carbon technologies.  

 

 

Figure 2: Pareto frontier from the multi-objective optimization (the percentages are calculated 

based on the mole fraction of natural gas used as feed in the ATR process, i.e., the fossil route). 
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4. Conclusions 

In this work, we studied the synergistic effects of integrating fossil and renewable 

processes based on heat, mass and power integration. Our results show that the integrated 

cluster can greatly reduce the environmental impact (i.e., between 19 % and 183 %). In 

addition, the Pareto-optimal frontier demonstrates different combinations of the fossil and 

renewable routes, showing their hybridization potential that could enable a gradual 

transition to more sustainable chemicals.  
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Abstract 
Greenhouse gas (GHG) emissions are at the forefront of global concerns. The 
development of low-carbon hydrogen (H2) production methods has gained prominence 
due to the ability to substitute fossil fuels in the transport and power generation sectors. 
Non-oxidative CH4 pyrolysis for low-carbon H2 production holds significant potential to 
produce H2 and solid carbon without CO2 emissions. A three-dimensional (3D) 
computational fluid dynamics (CFD) model coupled with chemical reactions and heat 
transfer was developed to investigate the hydrodynamics, reaction kinetics, and heat 
transfer of non-catalytic CH4 pyrolysis in a vertical tube reactor. The vertical tube 
experienced buoyancy forces due to the density variations caused by the significant 
temperature differences. The mixed convection heat transfer phenomena were observed 
due to buoyancy forces leading to distortion in the velocity field. The distortion in velocity 
fields enhanced the heat transfer coefficient in the reactor. The overall convective heat 
transfer coefficient from wall to fluid was 30.0 W/m2/K. The CFD model is a valuable 
tool for the identification of chemical reactions and heat transfer coupled with 
hydrodynamics of the reactor. 

Keywords: H2 production, non-catalytic CH4 pyrolysis, reactor hydrodynamics, mixed 
convection heat transfer, computational fluid dynamics (CFD), 

1. Introduction 
Hydrogen (H2), as a clean energy source, offers a promising alternative to fossil fuels and 
holds the potential to become a leading fuel for sustainable transportation, providing a 
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reliable and secure energy source (Qureshi et al., 2022). The non-oxidative CH4 pyrolysis 
generates H2 and solid carbons without CO2 emissions, as long as the thermal source 
remains free from emissions (Catalan and Rezaei, 2020). 
 
The phenomenon occurring inside the noncatalytic CH4 pyrolysis reactor is difficult to 
investigate due to the high operating temperature (Paxman et al., 2017). Computational 
fluid dynamics (CFD) simulations are commonly used to study the hydrodynamics and 
heat transfer characteristics of the reactor following geometric and operational 
modifications (Ngo and Lim, 2020; Ngo et al., 2023). Ozalp studied the effect of 
temperature and gas flowrate on methane conversion (𝑋𝑋𝐶𝐶𝐻𝐻4 ) for noncatalytic CH4 
decomposition (Ozalp and JayaKrishna, 2010). Previously published studies have 
neglected the effect of buoyancy forces on the heat transfer characteristics in the CH4 
pyrolysis reactor for CFD modelling. Mixed convection occurs due to the simultaneous 
effect of buoyancy forces and externally applied inertia forces and plays a vital role in the 
reactor heat transfer (Gorai and Das, 2020).  
 
This study aims to develop a 3D CFD model coupled with chemical reactions, and heat 
transfer to investigate mixed convection heat transfer for noncatalytic CH4 pyrolysis 
through a vertical tube. CFD model for CH4 decomposition has the potential to be a useful 
tool for enhancing heat transfer, particularly in the context of mixed convection caused 
by buoyancy forces within the reactor.  

2. Model description  
A single-phase Eulerian 3D CFD model was developed for the noncatalytic CH4 pyrolysis 
in a vertical tube at 1000 °C and 0.5 LPM. The Eulerian single-phase was modeled by a 
set of continuity equation, a Navier-Stokes (NS) momentum equation, and an energy 
equation. The CFD model uses the widely adopted shear-stress transport (SST) k-𝜔𝜔 
turbulence model for simulating laminar and turbulent mixed flows (Menter, 1994). 
Figure 1 presents the Eulerian CFD model description of the CH4 pyrolysis reactor.  
 
The 3D geometry and meshing of the computational domain for CH4 pyrolysis are 
depicted in Figure 2. Poly-hexcore meshes were adopted and mesh independence test was 
performed to ensure numerical accuracy. The CFD simulation was performed using a 
commercial CFD code, ANSYS Fluent R2022b (ANSYS Inc., USA) with a 24-core 
workstation.  
 

 

Figure 1. Single-phase Eulerian 3D CFD model description 
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Figure 2. (a) Computational domain (b) meshing of the computational domain 

3. Results and Discussions  
The reliability and accuracy of the Eulerian CFD model were confirmed through a process 
of verification and validation. Fig 3 shows the verification and validation of the CFD 
model. In the verification step, coarse (50,000 cells), medium (200,000 cells), fine (600,00 
cells) meshes were tested for velocity (𝑢𝑢𝑔𝑔) and temperature (𝑇𝑇) profiles as shown in Fig 
3a. Medium mesh has been selected for the further investigation considering both 
computational accuracy and cost. Figure 3b shows a comparison of the axial temperature 
profile in the tube reactor between the CFD results and experimental data. Temperature 
readings were taken at different axial positions to assess the temperature profile along the 
tube height (h). It can be observed that the CFD simulation results align well with the 
experimental measurements.  
 
Mixed convection is the combined form of natural and forced convection heat transfer 
and holds a crucial role in the reactor heat transfer (Gorai and Das, 2020). The impact of 
buoyancy on heat transfer coefficients can either enhance or impair the process, 
depending on the flow orientation (upward or downward) (Jackson et al., 1989). This 
investigation involves the process of downward heating and cooling of fluid in a vertical 
tube. In Fig 4(a), the velocity (𝑢𝑢𝑔𝑔) contours are depicted at an operating temperature of 
1000 °C and a gas flow rate of 0.5 LPM. The cooling zone of the tube reactor experiences 
a reversal flow attributed to the buoyancy effect owing to the sudden temperature change 
(see Fig 4b). Figure 4b shows the temperature contour on the slice normal to the 
transversal direction (z=0). As the gas flows under laminar flow conditions, the gas 
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attains thermal stability (T~ 950 °C) in the pyrolysis zone. Fig 4c shows the CH4 mole 
fraction (𝑌𝑌𝐶𝐶𝐻𝐻4) along the tube reactor. The concentration of CH4 (𝑌𝑌𝐶𝐶𝐻𝐻4) decreases as the 
endothermic reaction progresses, attributed to the high pyrolysis temperature (see Fig 4b).  
Figure 5a presents a dimensionless parameter, the Richardson number (𝑅𝑅𝑅𝑅 = 𝐺𝐺𝐺𝐺

(𝑅𝑅𝑅𝑅)2
) was 

calculated to investigate the presence of mixed convection phenomena in the CH4 
pyrolysis tube reactor. In mixed convection heat transfer, 𝑅𝑅𝑅𝑅  plays a crucial role in 
assessing the impact of natural and forced convection. When 𝑅𝑅𝑅𝑅 ≫1, natural convection 
dominates the heat transfer process and  𝑅𝑅𝑅𝑅 ≪ 1. forced convection predominates in 
governing the heat transfer (Cengel, 2000). At the beginning of the preheat, Ri indicates 
the presence of natural convection, transitioning to forced convection as the gas moves 
towards the pyrolysis. In the absence of buoyancy forces in the pyrolysis region, the 
reactor shows a domination of forced convection. In the cooling region, strong buoyancy 
forces lead to the predominance of natural convection.  Fig 5b illustrates the heat transfer 
coefficient (HTC), calculated along the column height (h) using Eq. (1). HTC stabilizes 
at a constant value (HTC ~ 34 W/m2/K) as the temperature reaches thermal stability in 
pyrolysis region and fluctuates in the cooling zone due to flow recirculation.  The area-
averaged overall HTC is 30.03 W/m2/K for the noncatalytic CH4 pyrolysis tube reactor.  

𝐻𝐻𝐻𝐻𝐻𝐻 =
𝑞𝑞𝑊𝑊

𝑇𝑇𝑊𝑊 − 𝑇𝑇𝑐𝑐
 (1) 

where 𝑞𝑞𝑊𝑊  is wall heat flux (W/m2), 𝑇𝑇𝑤𝑤  is wall temperature (°C) and 𝑇𝑇𝑐𝑐  is temperature 
(°C) at the center of the tube reactor. 

 
 

Figure 3. Verification of numerical accuracy and validation of the CFD model 
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Figure 4. (a) Contour of velocity (𝑢𝑢𝑔𝑔); (b) Contour of temperature (𝑇𝑇) profile; (c) Axial 

profile of CH4 mole fraction (𝑌𝑌𝐶𝐶𝐻𝐻4) 

 

Figure 5 (a) Axial profile of Richardson number (Ri) (b) Axial profile heat transfer 
coefficient (HTC) 
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The influence of buoyancy flow becomes more pronounced when operating at lower 
temperatures, mainly due to the decreased gas velocity. Mixed convection heat transfer 
phenomena were observed because of buoyancy forces induced by density changes in the 
tube.  

4. Conclusions 
The noncatalytic CH4 pyrolysis for low-carbon H2 production in a vertical tube was 
analysed using computational fluid dynamics. A single-phase Eulerian 3D CFD model 
coupled with heat transfer, turbulence and reaction kinetics was developed to investigate 
the presence of mixed convection heat transfer phenomena in the CH4 pyrolysis reactor 
tube. The findings emphasize that the 3D CFD model has the potential to recognize the 
buoyancy phenomenon that happens within the reactor during noncatalytic CH4 pyrolysis. 
The buoyancy effect can be reduced by either reducing temperature differences or 
increasing the gas flow rate in the reactor.  
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Abstract 
Limitations regarding process design, optimization, and control often occur when using 
particular process simulators. A single software tool could not provide models of such a 
large application range and perform properly without making compromises in some areas 
(Pistikopoulos et al. (2021)). With the implementation of connection methodologies, 
integrated tools could be made by coupling popular process simulation software with each 
other or with external programming environments. These hybrid systems can handle 
complex user-defined problems and can be used for decision support, performing custom 
unit operations, operator training, process optimization, building control systems, and 
developing digital twins (Khan et al. (2021)). 

Sustainable practices are more and more desired in the industry, and the development of 
technologies based on recycled and/or nature-derived feedstocks is in demand. For 
example, biomass valorization requires a more complex reaction system with unique 
components and kinetic models, which is often a rather time-consuming and complex task 
to implement into current process simulators (Alshehri et al. (2020)). 

This work presents an example of an application where the shortcomings of commercial 
process simulators with restricted reaction kinetic structures can be solved (Csendes et al. 
(2023)). We proposed using the process simulator Aspen HYSYS linked with a 
MATLAB optimization algorithm to solve a reaction kinetic parameter identification 
problem regarding the production of γ-valerolactone in a dynamic simulation setting. A 
co-simulation setup was chosen to solve this MIMO problem, as the integration of the 
two software gives us the ability to run several simulation models, perform parameter 
identification, and validate the data at the same time from a main program, and that way 
obtain results in ’one-go’ and organize data in one place. 

Keywords: software linking, co-simulation, kinetic parameter identification, multi-
software engineering 
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1. Multi-Software Engineering 
Modelling chemical equipment, processes and reactions is a complex task, engineers and 
researchers highly rely on powerful software to solve these problems. Commercial 
process simulators are a great tool to perform simulation, where the mathematical 
equation systems are behind easy-to-use graphical interfaces. However, the manipulation 
or customization of the deeper mathematical correlations are often come with limitations, 
or simply restricted by the programs (Csendes et al. (2023)).  

Multi-software engineering is used to overcome this problem, by using different parts of 
one or two software to complement each other. Programming environments for example 
have the advantage of containing more complex numerical methods, and this means that 
optimization algorithms and response surface methodology can also be used to achieve a 
wider application range (Rangaiah et al. (2020)). Building user-defined equation systems 
and utilising algorithms created in numerical solvers can be used via built-in toolboxes or 
native integration with commercial process simulators (Furda et al. (2020)). Like this, 
integrated tools can complement each other providing a more robust and complex system 
for modelling, parameter estimation, data regression, sensitivity analysis, optimization 
and control. 

Multi-software engineering is a novel tool for connecting a priori and a posteriori models 
to keep up with the evolution of information technology. 

 
Figure 1. Categorization of popular process modelling components and environments. 
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2. Case study 
Our case study showcases a kinetic parameter identification with software linking for the 
production of γ-valerolactone (GVL) from butyl-levulinate (BL) in a two-step hetero-
catalytic reaction over Ru/C catalyst.  

2.1. Simulator Development of the Case Study 

A detailed description of the characteristics of the components as well as the setup used 
for the experiments is written in the works of Capecci and Wang (Capecci et al. (2021), 
Wang et al. (2020)). Four dynamic HYSYS simulation files were built according to the 
experimental setup. When generating the simulation in Aspen HYSYS, kinetics were 
simplified to Arrhenius type for the three reactions present in the system, where the pre-
exponential factors and the activation energies could be reached via an internal HYSYS 
spreadsheet. The unit design contains a batch reactor equipped with a temperature 
controller to operate in an isotherm mode. Isobaric conditions were obtained with a high-
pressure H2 inlet stream, similar to the experimental conditions. 

2.2. Multi-Software Based Identification Framework for Kinetic Parameter Identification 

The kinetic parameters were identified by linking the HYSYS simulator to the MATLAB 
environment, where the latter acted as the main program. The HYSYS models were run 
from MATLAB, where kinetic parameters were modified directly through the HYSYS 
spreadsheets. The identification framework within the MATLAB environment calculates 
the kinetic parameters of the HYSYS files, where their values were varied in each 
iteration step to achieve better fitting to the experimental data sets in each case based on 
the objective function, which is a minimum search with a quadratic error function.  

 
Figure 2. Outline of the identification framework connecting Aspen HYSYS and MATLAB. 

3. Results 
It can be seen in Figure 3. that the calculated concentration trajectories fit the 
experimental data well. The predictive ability of our simpler kinetic model is comparable 
with Capecci’s model based on the R2 indicator, their fitting to the concentration 
trajectories is 0.976 while ours is 0.952. 
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Figure 3. The concentration curve fittings resulting from the identification. 

4. Conclusion 
In a case study, parameter identification with multi-software engineering was performed 
to showcase one of the many application aspects of the technique. In our case, the lack of 
kinetics definition was crucial for model building inside the simulator. Therefore, a link 
between the dynamic process simulator Aspen HYSYS and the coding environment 
MATLAB was made utilizing an ActiveX connection. We found that the method 
provided good results and performed well in fitting the available experimental data.  
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Abstract 
High-fidelity modelling is fundamental in simulation, control and optimization of 
chemical processes. However, high-fidelity model is usually of strong nonlinearity, 
multivariable coupling and strong system constraints, which requires high computational 
demand. Developing a multi-dimensional model with lower computational demand poses 
a critical challenge. Our research will combine reduced order models (ROM) with 
machine learning to address the challenge. ROM is the projection of a multidimensional 
system into a low-dimensional subspaces, whereas machine learning is used to overcome 
the limitation of ROM applying to nonlinear and multi-physics models. A three-step 
framework is proposed. Firstly, adaptive sampling strategy is adopted to collect the 
“fewer but better” snapshots calculated by full order model with high computational 
demand. Then, proper orthogonal decomposition is adopted to generate reduced bases. 
Finally, relying on exposed polynomial structure, learning a physics-based ROM. The 
proposed method is demonstrated in thermal cracking furnace. Numerical case studies 
show that the proposed method can accurately predict temperature, velocity and species 
concentration profiles in cracking furnace. The optimisation of the oxygen content in the 
fuel gas of thermal cracking furnace is performed. The results show that the computation 
demand can be reduced significantly while ensuring the optimisation accuracy. 

Keywords: hybrid modelling, thermal cracking furnace, reduced order models, machine 
learning, computational demand, optimisation 

1. Introduction 
1.1. Background 

High-fidelity modelling is fundamental in simulation, control and optimization of 
chemical processes. In recent decades, beneficial from the development of computational 
fluid dynamic (CFD) technology, the detailed three-dimensional high-fidelity models 
coupled mass, heat transfer and reactions were established for solving various physical 
information of process such as temperature, pressure and species concentration field, 
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which is important for equipment design and parameter optimization. However, the 
dimensional of CFD models involving complicated physiochemical phenomena explodes 
to several million degrees as the models become more detailed. When high-fidelity model 
needs to be repeated calculations in optimization and design, three is a tradeoff between 
expensive computational resources and accuracy. 

1.2. Literature review 

In such situation, lots of various simplified methods is proposed to address this problem. 
Several works focus on the reduction of process mechanisms, which would lead to 
excellent performance with constraint conditions. For example, the Hottel zone method 
for simplifying the calculation of radiative heat transfer in thermal cracking furnace (Joo 
et al., 2000). Improvements based on first-principles models are not trivial, a long trial-
and-error process is required to match the improved model to the detailed model under 
specific conditions. Another approach used to cut computational cost is model order 
reduction. The classical generation of reduced order model (ROM) is on the basis of 
proper orthogonal decomposition (POD) and Galërkin projection. Cutillo et al. (2023) 
developed a low computational cost ROM based on POD-Galërkin to predict the 
statement of methanation reactor. Since ROM is derived by projecting the full order 
model onto a low-dimensional subspace, it is precise for linear models. However, it still 
makes the numerical solution computationally expensive for nonlinear models. The 
upgraded model order reduction methods combined POD with discrete empirical 
interpolation method (DEIM) is usually selected to address this problem by evaluating 
the nonlinear problems at only fewer interpolation points. 

 
Figure 1 Framework of the proposed ROM approach for thermal cracking furnace 

Bizon and Continillo (2020) applied the POD/DEIM method to optimize the design of a 
non-isothermal hybrid catalyst pellet and reduced the calculation cost. Bremer et al. 
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(2016) employed the POD/DEIM method for model order reduction of non-linear model 
of catalytic tubular reactors. One of the drawbacks of POD/DEIM is not a significant 
reduction in computational efficiency, because a more accurate ROM often involves more 
interpolation points. The challenge of model order reduction for nonlinear models can 
also be solved using existing machine learning methods. Lee et al., (2021) built ROM 
using POD integrated machine learning for 500 MWe tangentially fired pulverized coal 
boiler. However, ROM constructed with machine learning have poor extrapolation 
performance. Another effective method to address the mentioned challenge is hybrid 
modelling (Swischuk et al., 2020), which combines first principles knowledge and machine 
learning to improve model accuracy and reliability of the model.  

1.3. Novelty of this study 

In this work, a three-step framework for commercial-scale CFD model with combustion 
process is proposed based on model order reduction and hybrid modelling approaches, 
providing an accurate and effective solution for data-driven modelling of commercial-
scale steady-state processes. The constructed nonintrusive ROM exploits hard-earned 
data to the maximum extent possible and show a good predictive performance in the face 
of complex nonlinear and multivariate coupled problems. We show the implementation 
of this framework. First, adaptive sampling strategy is adopted to collect the “fewer but 
better” snapshots calculated by full order model with high computational cost. Then, POD 
method is adopted to generate the reduced bases. Finally, relying on exposed polynomial 
structure, learning a physics-based ROM for high-fidelity model. The model developed 
by proposed framework can be applied for cracking furnace to design, performance 
prediction, operation control and process optimization. The novel contributions of this 
study are as follows: 

(1) Reduced the reliance on the amount of data using two measures: improved adaptive 
sampling methods and hybrid modelling. 
(2) Hybrid modelling is used as a substitute for a generic off-the-shelf machine learning 
approach, the prior knowledge is extracted to correlate the inputs and outputs, thus 
improving model extrapolation performance. 
(3) Developing a ROM of ethylene cracking furnace to significantly increase 
computational efficiency and save time cost with minimal loss of model fidelity. 

2. Methodology 
2.1. Proper orthogonal decomposition (POD) 

The POD approach used to develop projection-based ROM has been widely adopted in 
physical fields approximation in geomechanics, aerospace, and other fields. In this work, 
a collection of the snapshots of full order model is given using high-fidelity CFD model 
developed in Fluent®, and POD is used to produce the basis via these snapshots. 

Consider the nonlinear equations 𝐺𝐺(𝑞𝑞,𝑢𝑢) = 𝟎𝟎 with state vector 𝑞𝑞 ∈ ℝ𝑑𝑑𝑛𝑛𝑥𝑥  and input 𝑢𝑢 ∈
ℝ𝑚𝑚 . These equations can be solved under the specific input 𝑢𝑢 , that is, the operating 
condition, and the solution (state vector 𝑞𝑞) are available. Information of the process can 
be obtained by processing state vector 𝑞𝑞 . In order to acquire the ROM in a low-
dimensional subspace, a reduced basis 𝑉𝑉𝑟𝑟 = [𝑣𝑣1, 𝑣𝑣2, … 𝑣𝑣𝑟𝑟]need to be defined and satisfied: 

𝑞𝑞� = �𝑣𝑣𝑖𝑖𝑞𝑞�𝑖𝑖 
𝑟𝑟

𝑖𝑖=1

 (1) 
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Where 𝑞𝑞�  is the approximation of state vector 𝑞𝑞 , and 𝑞𝑞� = [𝑞𝑞�1, 𝑞𝑞�2, … 𝑞𝑞�𝑟𝑟]𝑇𝑇  is the vector 
projected from the state vector 𝑞𝑞 to the 𝑟𝑟- dimensional subspace, typically called reduced 
vector, and in general, 𝑟𝑟 ≪ 𝑑𝑑𝑛𝑛𝑥𝑥. A set of state vectors solved by corresponding inputs is 
called a snapshot. The 𝑛𝑛 snapshots and their corresponding inputs are collected and used 
to generate the matrices 𝑄𝑄 = [𝑞𝑞1, 𝑞𝑞2, … 𝑞𝑞𝑛𝑛] ∈ ℝ𝑑𝑑𝑛𝑛𝑥𝑥×𝑛𝑛  and 𝑈𝑈 = [𝑢𝑢1,𝑢𝑢2, …𝑢𝑢𝑛𝑛] ∈ ℝ𝑚𝑚×𝑛𝑛 . 
The tall and skinny matrix 𝑄𝑄  is called snapshot matrix and contain snapshots as its 
columns. POD approach is implemented by computing the SVD of the snapshot matrix 
and obtain the reduced basis. 

2.2. Adaptive sampling method 

Snapshots used for ROM have a significant impact on the accuracy of ROM, as POD 
methods can’t describe details beyond the training data. In the reduced order model 
problem, considering the cost of high-fidelity model for more extensive snapshots may 
not be computationally affordable, adaptive sampling method is adopted, which is to 
reduce the time cost of data collection by analysing known snapshots to reduce 
unnecessary sampling. Considering the Eq. 1, prediction quality of the ROM is subject to 
the influence of the reduced basis and the reduced vector. The influence of reduced basis 
and reduced vector is quantified in different methods. The sample space is fitted to the 
influence using off-the-shelf machine learning methods to guide the next new snapshot. 
The next sample is selected as the largest quantified influence given as Eq. 2. 

𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝∈𝑃𝑃𝑓𝑓𝑁𝑁𝑁𝑁(𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝) (2) 

The new sample is added to the initial set, and the adaptive sampling process is repeated 
until 𝑚𝑚𝑚𝑚𝑚𝑚𝐼𝐼𝑏𝑏 < 𝜖𝜖𝑏𝑏, where 𝜖𝜖𝑏𝑏 is tolerance criterion defined by user. 

2.3. Learning physics-based reduced order model 

For the nonlinear equations 𝐺𝐺(𝑞𝑞,𝑢𝑢) = 𝟎𝟎  in CFD model, it can be decomposed into 
polynomial structure in mathematics. Qian et al. (2019) derivate the polynomial structures 
of Navier-stokes equation by convert terms and transformed dependent variables. 
Consider the governing equation discrete nonlinear equation rewritten in polynomial 
form: 

0 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵(𝑞𝑞⨂𝑞𝑞) + 𝐶𝐶(𝑞𝑞⨂𝑞𝑞⨂𝑞𝑞) + 𝑓𝑓(𝑢𝑢) + 𝑐𝑐 (3) 

The governing equations in polynomial form is projected into the defined low-
dimensional subspace by the established reduced basis 𝑉𝑉𝑟𝑟 . The approximation of state 
vector 𝑞𝑞, 𝑞𝑞 ≈ 𝑉𝑉𝑟𝑟𝑞𝑞�, is introduced. The equation is then left multiplied by the transpose of 
𝑉𝑉𝑟𝑟 , generating the ROM is written as  

0 = 𝐴̂𝐴𝑞𝑞� + 𝐵𝐵�(𝑞𝑞�⨂𝑞𝑞�) + 𝐶̂𝐶(𝑞𝑞�⨂𝑞𝑞�⨂𝑞𝑞�) + 𝐹𝐹(𝑢𝑢) + 𝑐̂𝑐 (4) 

The unknown operators 𝐴̂𝐴, 𝐵𝐵� , 𝐶̂𝐶 are combined in the matrix 𝐷𝐷�, and the term including 
reduced vector 𝑞𝑞�  are combined in the vector 𝑌𝑌� . The governing equation in low-
dimensional subspace is then written as Eq. 5. 

𝐷𝐷�𝑌𝑌�𝑇𝑇 = 𝐹𝐹(𝑢𝑢) + 𝑐̂𝑐 (5) 

In order to eliminate the operator 𝐷𝐷� of output, POD approach is used twice to reduce the 
order of 𝑌𝑌�𝑇𝑇  from 𝑟𝑟 + 𝑟𝑟2 + 𝑟𝑟3 to 𝑟𝑟, and the training data that used to generate the reduced 
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basis 𝑉𝑉𝑟𝑟  is used again to generate the reduced basis of 𝑌𝑌�𝑇𝑇  shown in Eq. 6. The governing 
equation in low-dimensional subspace is transformed into the Eq. 7. 

𝑌𝑌�𝑇𝑇 ≈ 𝑣𝑣𝑣𝑣 × 𝑌𝑌ℎ𝑎𝑎𝑎𝑎� 𝑇𝑇 (6) 

𝑌𝑌ℎ𝑎𝑎𝑎𝑎� 𝑇𝑇 = 𝐷𝐷ℎ𝑎𝑎𝑎𝑎�(−1)𝐹𝐹(𝑢𝑢) + 𝑐̂𝑐ℎ𝑎𝑎𝑎𝑎  (7) 

Where 𝐷𝐷ℎ𝑎𝑎𝑎𝑎� = 𝐷𝐷� × 𝑣𝑣𝑣𝑣 ∈ ℝ𝑟𝑟×𝑟𝑟  is a square matrix that can be inverted in practical 
applications. This form is the same as multioutput support vector machine (MSVM), and 
this method is adopted to regression the relationship between 𝑌𝑌ℎ𝑎𝑎𝑎𝑎� 𝑇𝑇 and input 𝑢𝑢.  

3. Application for thermal cracking furnace 
3.1. Cracking furnace full order model and numerical method 

A steady-state solver of the commercial CFD software ANSYS Fluent® is used to produce 
training data (snapshots) of published thermal cracking furnace (Hu et al., 2015). Standard 
𝑘𝑘 -𝜀𝜀  method is applied as turbulence model, Discrete Ordinates model was used to 
calculate the radiation source term, and eddy dissipation concept is used to couple GRI 
3.0 chemical reaction mechanisms. The semi-implicit method for pressure-linked 
equations (SIMPLE) algorithm for pressure-velocity coupling is selected to solve the 
nonlinear governing equations for the conservation of mass momentum, energy, radiation 
and species based on finite volume method.  

The nonlinear governing equations discretized implicitly by a second-order upwind 
scheme, turn into a series of equations for the specific dependent variables in every 
computational cell. For a spatial discretization with 𝑛𝑛𝑥𝑥 cells and 𝑑𝑑 dependent variables, 
the partial differential equations composed of steady-state governing equations lie in a 
𝑑𝑑𝑑𝑑𝑑𝑑-dimensional system of nonlinear equations. 

3.2. Model validation and results 

The high-fidelity thermal cracking furnace CFD model was run with 278,397 divided 
grids, and each set of steady state data was run for 20-30 hours in a computer with 64 
cores CPU and 128G RAM, and a total of 40 sets of data were obtained for training and 
validation. The ROM of the thermal cracking furnace has been established using the 
proposed framework and its predicted longitudinal section temperature of the furnace is 
shown below. The results show a very good agreement between the temperature 
calculated by high-fidelity CFD model and predicted by the ROM. 

 
Figure2. (a) Temperature of High-fidelity model (b) temperature of ROM and (c) relative error. 
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3.3. Case study on optimisation of the oxygen content 

Turbulence in the cracker results in irregular mixing of air and fuel. It is necessary to 
increase the air flow rate to avoid the generation of CO. In practice, the excess air factor 
for thermal cracking furnace is determined empirically and is generally set at 1.1 (i.e. 1.1 
times the amount of oxygen required for complete combustion of the fuel). The ROM 
developed by the proposed framework allows for a fast prediction of the outlet CO content 
at different fuel flow rates to determine the optimal excess air coefficient. 

The optimal excess air coefficient of 1.086 was determined using a high-fidelity full-order 
model with the condition of the fuel flow rate 11,000 kg/h. A total of 24 runs were 
performed, requiring more than 20 days to perform the calculation. In contrast, the 
optimal excess air coefficient of 1.088 can be quickly obtained in less than 15 minutes 
using the ROM. 

4. Conclusion 
In this paper, we propose a three-step framework for model order reduction based on POD 
and machine learning. Firstly, an adaptive sampling strategy is used to collect "fewer but 
better" snapshots computed from the high-fidelity CFD model. Then, POD is performed 
to generate the reduced basis. Finally, a polynomial structure of the model mechanism is 
derived to learn the physical-based ROM for the high-fidelity model. The proposed 
method is applied to the thermal cracking furnace. Very good agreement between the 
high-fidelity CFD model and ROM validates the proposed methodology. A case study of 
oxygen content optimization is carried out and this demonstrated that the proposed 
method can significantly reduce the computational demand. 

References 
EJ. Joo, KH. Lee, MY. Lee, SW. Park, 2000, CRACKER-A PC based simulator for industrial 
cracking furnaces, Computers & Chemical Engineering, 24(2e7), 1523e8. 
EA. Cutillo, E. Mancusi, K. Bizon, P. Bareschino, G. Continillo, 2023, A Reduced Order Model 
for the Prediction of the Dynamics of a Methane Reactor, Computer Aided Chemical Engineering, 
Volume 52, Pages 1199-1204, ISSN 1570-7946, ISBN 9780443152740. 
https://doi.org/10.1016/B978-0-443-15274-0.50191-8. 
K. Bizon, and G. Continillo, 2020, Optimal Design of a Non-isothermal Hybrid Catalyst Pellet 
based on POD-DEIM Reduced-order Methodology, Computer Aided Chemical Engineering, 
Volume 48, Pages 271-276, ISSN 1570-7946, ISBN 9780128233771. 
https://doi.org/10.1016/B978-0-12-823377-1.50046-X. 
J. Bremer, P. Goyal, L. Feng, P. Benner, K. Sundmacher, 2016, Nonlinear Model Order Reduction 
for Catalytic Tubular Reactors, Computer Aided Chemical Engineering, Volume 38, Pages 2373-
2378, ISSN 1570-7946, ISBN 9780444634283. https://doi.org/10.1016/B978-0-444-63428-
3.50400-8. 
W. Lee, K. Jang, W. Han, KY. Huh, 2021, Model order reduction by proper orthogonal 
decomposition for a 500 MWe tangentially fired pulverized coal boiler, Case Studies in Thermal 
Engineering, Volume 28, 101414, ISSN 2214-157X. https://doi.org/10.1016/j.csite.2021.101414. 
R. Swischuk, B. Kramer, C. Huang, K. Willcox, 2020, Learning Physics-Based Reduced-Order 
Models for a Single-Injector Combustion Process, AIAA J, 58. https://doi.org/10.2514/1.J058943. 
E. Qian, B. Kramer, A. Marques, K. Willcox, 2019, Transform & Learn: A Data-Driven Approach 
to Nonlinear Model Reduction, AIAA Aviation and Aeronautics Forum and Exposition, 2019-3707. 
https://doi.org/10.2514/6.2019-3707. 
G. Hu, CM. Schietekat, Y. Zhang, F. Qian, 2015, Impact of Radiation Models in Coupled 
Simulations of Steam Cracking Furnaces and Reactors, Industrial & Engineering Chemistry 
Research, 54 (9), 2453-2465. https://doi.org/10.1021/ie5042337. 

26



Flavio Manenti, Gintaras V. Reklaitis (Eds.), Book of Abstract of the 34th European 
Symposium on Computer Aided Process Engineering / 15th International Symposium on 
Process Systems Engineering (ESCAPE34/PSE24), June 2-6, 2024, Florence, Italy. 

Waste-to-Methanol-to-Ethylene for Future 
Circular Plastics 
Cecilia Salaha, Robert Istrateb, Anders Bjørnc, Gonzalo Guillén-Gosálbeza* 

a Institute for Chemical and Bioengineering, Department of Chemistry and Applied 
Biosciences, ETH Zürich, 8093 Zürich, Switzerland 
b Institute of Environmental Sciences (CML), Department of Industrial Ecology, Leiden 
University, 2300 RA Leiden, The Netherlands  
c Center for Absolute Sustainability, Department of Environmental and Resource 
Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark 
gonzalo.guillen.gosalbez@chem.ethz.ch  

Abstract 
The global demand for polymers is increasing at a fast pace, which creates a clear need 
for alternative pathways to produce them more sustainably. Specifically, the linear nature 
of the current plastics economy based on fossil carbon poses a threat to the environment, 
as it is highly resource and carbon intense. In this work, we assess the environmental 
performance of an alternative circular carbon strategy for plastics based on chemical 
recycling routes with high technology readiness level, whereby polymer waste is first 
converted into methanol via gasification, and the latter is subsequently transformed into 
building blocks for plastics production. Results showcase that the circular route based on 
chemical recycling enables a significant reduction of the life-cycle emissions of the 
plastics economy, more so in the future as power mixes get decarbonized. 

Keywords: ethylene, chemical recycling, life cycle assessment, prospective life cycle 
assessment. 

1. Introduction 
The increasing demand for polymers, notably in the plastic packaging sector, is coupled 
with large amounts of waste generated globally, with only a small fraction being recycled 
(Geyer et al., 2017). Moreover, polymers production is carbon and resource intensive, 
following a mostly linear economy, with most polymers deriving from fossil feedstock. 
The need for a circular polymer economy has motivated the development and 
implementation of new recycling technologies aiming to extend the lifetime of materials 
and decrease the detrimental environmental effects caused by mismanaged plastic waste 
(Ellen MacArthur Foundation, 2016). 
For instance, Meys et al. (2021) have explored pathways to enable net-zero plastics, 
heavily relying on renewable energies, carbon capture and utilization, and increasing 
recycling rates up to 70%. However, their study excludes high technology readiness level 
(TRL) technologies for chemical recycling, focusing instead on low TRL routes that have 
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not been deployed at scale yet and, thus, are affected by more pronounced uncertainties. 
Moreover, this study omitted how expected changes in the economy, e.g., due to 
decarbonization trends in power systems, will influence the performance of the 
investigated chemical recycling technologies.  
We here study the emission-reduction potential of closing the ethylene loop by deploying 
high TRL technologies based on waste polymers-to-methanol and methanol-to-olefins 
routes. We find that this route enables polymers with a lower carbon footprint than the 
current plastics economy, notably in a future with low-carbon power mixes.   

2. Methodology
The chemical recycling route consists of the gasification of plastic waste to produce 
syngas (Salah et al. 2023), which is then converted into methanol and further transformed 
into ethylene based on the work by Ioannou et al. (2023). We implemented detailed 
process simulations in Aspen v12 and computed the mass and energy balances of the 
waste-to-methanol-to-olefins process to build the life cycle inventory needed for the 
environmental assessment. 
The life cycle assessment (LCA) was carried out in Brightway2, using Ecoinvent v3.8, 
following a cradle-to-grave approach. The aforementioned circular route was compared 
to the business-as-usual (BAU) fossil ethylene obtained from naphtha steam cracking. 
Both systems considered the production of ethylene, its transformation to polyethylene, 
collection, sorting and end-of-life treatment. The BAU end-of-life was defined 
considering the global average waste management of waste polymers in 2015 described 
by Geyer et al. (2017). In the circular route, it is necessary to account for losses of the 
waste-to-methanol-to-olefins process in order to close the mass balance. For that reason, 
this scenario also accounts for a make-up of BAU ethylene. 
The climate change impact of both routes was calculated according to the IPCC 2021 
GWP100 method. Additionally, we explored the evolution of environmental impacts with 
time, by performing the LCA in 2020 and 2050 using scenario information from an 
integrated assessment model (IAM) for the background system. Specifically, this 
prospective assessment was carried out for the climate policy scenario PkBudg500 of the 
socioeconomic pathway SSP2, following the REMIND framework.  

3. Results and Discussion
Implementing the chemical recycling technology for circular polymers in 2020 would 
enable a 17.5% reduction of the global warming impact (GWI) relative to the BAU 
scenario. Analysing the process contributions to the overall GWI (Figure 1), we find that 
the emissions linked to the incineration of waste polymers are the main contributor to the 
GWI in the BAU scenario, followed by electricity and the direct emissions of the fossil 
route deployed for ethylene production. Analogously, more than half of the circular 
polymers’ GWI comes from the electricity used in its life cycle.  
Moreover, following the decarbonization pathway PkBudg500 of REMIND, we find that 
the emissions gap between the circular economy of polymers and the BAU will grow in 
the future substantially. This is because the former is much more sensitive to the carbon 
footprint of the power mix, which will be drastically reduced in the future. 
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Figure 1. Global warming impact of the BAU (A) and circular (B) scenarios in 2020 and 2050 
following the REMIND decarbonization pathway PkBudg500. 

4. Conclusions 
Our work studied the environmental potential of implementing a high-TRL chemical 
recycling route to decarbonize the plastics economy. We found that the waste-to-
methanol-to-olefins route already outperforms the BAU technology at present (17.5% 
less carbon footprint). Moreover, the gap between both will most likely grow substantially 
in the future due to decarbonization trends across sectors. We therefore highlight the need 
to further investigate circular carbon models for plastics production. Moreover, our 
results underscore the importance of conducting prospective life cycle assessments to 
support decision- and policy-making more effectively in the quest for a circular plastics 
economy.  
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Abstract 
The modeling of slurry bubble column reactor (SBCR) for hydrogenolysis of 
polyethylene terephthalate (PET) was conducted. The axial dispersion model is 
commonly employed for modelling SBCRs. However, its suitability for application to 
PET hydrogenolysis reactors may be limited due to extremely viscous molten PET and 
high operating pressure, distinguishing them from conventional reaction systems 
Therefore, a model incorporating both axial and radial dispersion was employed. The 
partial differential equations of the model were approximated using a finite difference 
scheme and solved by iterative method. Through this approach, we found that the radial 
velocity and radial gradients of concentration and axial velocity are negligible. And 
sensitivity analysis revealed that the axial dispersion coefficient has a greater impact on 
PET conversion compared to the radial dispersion coefficient. 

Keywords: modelling, slurry bubble column reactor, hydrogenolysis, PET recycle 

1. Introduction  
Over 300 million tons of plastics are manufactured annually, with PET ranking as the 

fourth most produced. Currently, thermal degradation is the predominant method for 
recycling PET, but it compromises some thermal and mechanical properties of PET. 
Consequently, there is a need to investigate more efficient and economical PET recycling 
techniques. Hydrogenolysis of PET, known for its cost-efficiency, has gained significant 
attention (Wu, 2021). This process, characterized by relatively slow reaction rates, high 
pressure, and high viscosity, differs from conventional three-phase reaction systems. 
Thus, reactor design for PET hydrogenolysis requires consideration of numerous unique 
factors, yet research in this area remains sparse. 

Among the diverse three-phase reactors, the stirring reactors are suitable for highly 
viscous system but are challenging to implement in industrial-scale reactors at high 
pressure. Similarly, the trickle bed reactor, commonly employed in industrial applications, 
is unsuitable for highly viscous system and therefore, not a suitable choice for PET 
hydrogenolysis reactors. Consequently, this research modeled a PET hydrogenation 
reactor based on the SBCR, capable of handling both high pressure and viscous system. 
Then, instead of the axial dispersion model commonly used for SBCR modeling, we 
employed a model that accounts for both axial and radial dispersion. Through this model, 
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we analyzed the velocity and concentration in the radial direction and the radial gradient 
of the axial velocity. Finally, a sensitivity analysis of the dispersion coefficient was 
performed. 

2. Mathematical model 
2.1. Governing equations 
The process of PET hydrogenolysis is relatively slow which requires a low liquid 

flowrate to achieve sufficient conversion. Given that the catalyst particles are 
sufficiently small, it is deemed suitable to use a homogeneous model. Additionally, 
fluctuations in gas partial pressure and mass transfer limitations are negligible since the 
reactor is operated under high pressure (100 bar). Taking all these factors into account, 
an isothermal and steady-state reactor model was developed, incorporating mole, mass 
and momentum balance as shown below. 

−∇ ∙ (Ciu�⃗ ) + ∇ ∙ �D��⃗ ∙ ∇Ci� + ri = 0 (1) 

∇ ∙ (ρu�⃗ ) = 0  (2) 

−∇ ∙ (ρu�⃗ u�⃗ ) + ρg�⃗ − ∇P + ∇ ∙ τ = 0  (3) 

τ =  ∇ ∙ (μeff (∇u�⃗ + ∇u�⃗ T)) (4) 

where ri is generation rate of species i, τ is the stress tensor, Ci is the concentration, u�⃗  is 
the velocity vector, D��⃗  is the dispersion coefficient, ρ is the density of liquid, g�⃗  is the 
gravity acceleration vector and μeff is the effective viscosity of liquid. 
 The radial and axial dispersion coefficient was represented as follows, based on the work 
of Kim (1928) and Kang (1986), respectively.  

Pel =  dpUl
Dz

= 20.19 � dp
Dcolumn

�
1.66

 � Ul
Ul+Ug

�
1.03

   (5) 

Per =  dpUl
Dr

= 28.3 � dp
Dcolumn

� � Ul
Ul+Ug

�
1.16

  (6) 

2.2. Reaction kinetics 
The product of PET hydrogenolysis reaction depend on the catalyst. In this study, we 

assumed xylene as final product based on the study of Wu (2021). Also, the reaction 
was simplified with assuming direct conversion of PET into xylene by the 1st order 
reaction. 

PET + H2 → 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋 + 2𝐶𝐶𝑂𝑂2 (7) 

As mentioned above, mass transfer limitation was negligible. So, the concentration of 
H2 and CO2 was expressed by follows. 

𝐶𝐶𝑖𝑖 = 𝑃𝑃𝑖𝑖 ∗ 𝐻𝐻𝑒𝑒𝑖𝑖   (8) 

where Hei  is the Henry constant of the component i. Then, the reaction rate can be 
expressed by 
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𝑟𝑟𝑃𝑃𝑃𝑃𝑃𝑃 =  −𝑘𝑘𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐻𝐻2𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐    (9) 

where wcat is the mass of the catalyst. The reaction rate constant (𝑘𝑘) was assumed to be 
0.000340 m3/mol ∙ s ∙ kgcat, which is equivalent to 10 grams of PET being converted to 
99.99 mol% within 12 hours in the batch reactor experiment. 
2.3. Model solution 

Boundary conditions of the system are below. 

z = 0, v = inlet condition  (10) 

z = L, ur = 0, 𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

=  0 , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  0,   𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

=  0 (11) 

r = 0, ur = 0, 𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝜕𝜕

=  0 , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  0,   𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

=  0 (12) 

r = R, ur = 0, 𝑢𝑢𝑧𝑧 =  0 , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  0,   𝜕𝜕𝐶𝐶𝑖𝑖
𝜕𝜕𝜕𝜕

=  0 (13) 

where v stands for the all variables. Then, the partial derivatives in the radial and axial 
coordinates are approximated by finite difference method. In general, simulations of 
reactor systems employ 2nd order central difference or backward Euler for the 
computational simplification. However, in this study, a 4th order central difference 
scheme was employed to minimize errors, particularly when sparse grids were used. The 
approximated nonlinear equations were implemented in Python, utilizing Pyomo, and 
solved by interior point method with IPOPT (Hart et al., 2017). 

3. Result and Discussion 
3.1. Laboratory-scale simulation 

For the laboratory-scale reactor simulation, the reactor diameter and height were 
assumed to be 0.5 m and 2 m, respectively. Then simulations were carried out with 
varying grid sizes, and the results are presented in Figure 1 and Figure 2.  

 
Figure 1. Velocity profile of the reactor. (a), (b), (c) correspond to grid sizes of 4 x 11, 6 x 21, and 

11 x 41 in the radial (r) and axial (z) directions, respectively 
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Figure 2. PET concentration profile of the reactor. (a), (b), (c) correspond to grid sizes of 4 x 11, 6 

x 21, and 11 x 41 in the radial (r) and axial (z) directions, respectively. 

In Figure 1.a, for small grid number, a distorted velocity field is observed, transitioning 
into a plug flow configuration as the grid number increases. This transition is attributed 
to the error of the 4th order central difference method, where the leading error is 
proportional to the fourth power of the grid size, resulting in a smaller error with a larger 
grid number. Notably, in Figure 1.c, radial velocity is nearly absent, underscoring the 
suitability of employing an axial dispersion model for the laboratory-scale reactor that 
disregards radial dispersion. 

Figure 2 shows concentration profiles exhibiting a more regular pattern in contrast to 
the velocity field. However, the observed conversions stand at 63.4 mol%, 65.2 mol%, 
and 66.0 mol% in Figure 2.a, 2.b and 2.c, respectively. This discrepancy is likely due to 
grid size-related errors. Nevertheless, when the grid size is increased to 21 x 51, the 
conversion is recorded at 66.0 mol%, indicating that an 11 x 41 grid size yields a 
sufficiently low error for the laboratory-scale reactor simulation. 
3.2. Effect of the dispersion coefficient 

Diverse correlations for dispersion coefficients have been proposed, but none have 
specifically addressed systems characterized by high viscosity and high pressure, as in 
our present study. Furthermore, many dispersion coefficient correlations tend to lose 
accuracy under different system conditions (Pham, 2022). Due to the uncertainty 
associated with the dispersion coefficients derived from Eq. (5) and Eq. (6), a sensitivity 
analysis on the dispersion coefficient was conducted to analyze its impact on the system. 
3.2.1. Radial dispersion coefficient 

As shown in Figure 3, the impact of changes in the radial dispersion coefficient, 𝐷𝐷𝑟𝑟 , on 
PET concentration was negligible. This trend is consistent with analogous observations 
in the velocity field. Therefore, applying an axial dispersion model to an SBCR reactor 
for PET hydrogenolysis is a suitable choice. 
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Figure 3. PET concentration profile in the reactor with changing the radial dispersion coefficient. 

(a), (b), (c) corresponds to radial dispersion coefficients scaled by 0.2, 1(unchanged) and 5, 
respectively. 

3.2.2. Axial dispersion coefficient 
The impact of the axial dispersion coefficient on the conversion of PET in the reactor 

is greater than that of the radial dispersion coefficient (Figure 4). With the dispersion 
coefficient calculated by Eq. (5), the conversion rate was found to be 0.6 in mol. However, 
when the dispersion coefficient was varied to 0.2 times and 5 times its calculated value, 
the conversion rates are measured at 0.65 and 0.55, respectively. While these variations 
have a minimal impact on the velocity field, their significant influence on the 
concentration within the reactor underscores the importance of selecting an appropriate 
axial dispersion coefficient. 

 
Figure 4. PET concentration profile in the reactor with changing the axial dispersion coefficient. 

(a), (b), (c) corresponds to radial dispersion coefficients scaled by 0.2, 1(unchanged) and 5, 
respectively. 

In the majority of dispersion coefficient correlation studies, the coefficient is expressed 
in terms of the superficial velocities of gas and liquid which are constant along the reactor. 
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Even in cases where this is not explicitly stated, many studies assume a constant 
dispersion coefficient throughout the SBCR for computational simplification. Under such 
circumstances, the D��⃗  in Eq. (1) is treated as a constant, eliminating the need for gradient 
calculation. However, as demonstrated in the above, the axial dispersion coefficient has 
a significant impact on the concentration profile in the reactor, which can make the model 
less accurate in the above case. Consequently, for a more precise and accurate model, it 
is essential to employ a correlation that consider changes in the axial dispersion 
coefficient.  

4. Conclusion 
In this study, we show that the impact of radial dispersion in the SBCR for PET 

hydrogenolysis can be neglected. Utilizing a sufficient number of grid points to simulate 
the SBCR, radial velocity approached nearly zero, and the radial gradient of concentration 
and axial velocity was negligible. Furthermore, with significant variations in the radial 
dispersion coefficient from the original calculated values, its influence was confirmed to 
be negligible. Therefore, the commonly employed axial dispersion model for SBCR 
modeling can be applied to this highly viscous system. However, the influence of the 
axial dispersion coefficient is relatively large on the concentration profile of the reactor, 
unlike the radial dispersion coefficient. Particularly, considering that correlations 
established in prior research may not align well with the characteristics of a given system, 
it is crucial to utilize an appropriate correlation tailored to the specific system for accurate 
modeling. 
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Abstract 
In this work, a computational approach is used to identify the operating conditions and 
arrangements that minimize the consumption of energy resources for sustainable natural 
gas production. The gasification process of the digestate derived from the biodigestion 
unit as well as the high temperature electrolysis system are modelled using Aspen Plus® 
software, whereas the OSMOSE Lua platform handles the solution to the optimization 
problem of minimum energy consumption and the total cost of the chemical plant. 
Breakthrough technologies played an important role to reduce the intermittency of 
renewable energy sources. The effective CO2 management and storage systems ensure a 
reliable supply of sustainable natural gas, even during times of high electricity demand 
and market volatility. This can increase plant revenues, but indirect emissions from the 
electricity mix remain a challenge to decarbonizing important commodities. 
 

Keywords: process integration, sustainable natural gas, renewable energy, solid oxide 
electrolysis, gasification 

1. Introduction 
Biomethane is a renewable fuel produced from waste-derived biomass (biowaste), which 
offers significant reductions of greenhouse gas emissions and resource consumption. 
Biomethane is currently produced via anaerobic digestion of wet biowaste followed by 
upgrading processes in order to achieve grid specifications. An alternative production 
strategy is the gasification of the biowaste with downstream cleaning, conditioning, 
methanation, and final upgrading of obtained syngas (Domingos et al., 2023).  
Hydrogen production from water electrolysis has recently drawn attention as a versatile 
solution for balancing intermittent renewable electricity generation, particularly from 
sources like wind and solar. In addition, integrating water electrolysis to biomass energy 
conversion processes may offers the potential for a complete transformation of biogenic 
carbon into biofuels. In fact, hydrogen could be added to biomass gasification syngas in 
order to balance the syngas composition before the biofuel production step. The biogenic 
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CO2 may also come from biodigestion processes, thus further increasing the sustainable 
natural gas yield.  Thus, in this work, a systematic approach that considers time-varying 
energy demands in view of the seasonal energy costs and the intermittency of renewable 
energy resources is addressed aiming the integration of anaerobic digestion, gasification 
and high temperature electrolysis in order to enhance the sustainable natural gas 
production.  The optimal CO2 management using storage systems is also assessed to 
demonstrate this operating strategy role in future energy systems. 

2. Methods 
2.1. Process modeling and simulation 
Figure 1 illustrates the proposed integrated sustainable natural gas production using 
anaerobic digestion, digestate gasification and high temperature electrolysis. The 
biodigestion process is modelled considering a biomethane potential of 300 Nm3 CH4 per 
t of volatile solids using organic wastes (Wellinger et al 2013). The DMT Carborex MS 
technology is considered for the biogas upgrading, since it can obtain methane 
concentration of >99% CH4, and has a high energy recovery (>98%) consuming only 
0.18-0.22 kWh/Nm3 and presenting <0.5% methane loss. The CO2 is also recovered in 
the upgrading system with a purity above 99.5% (Lems et al., 2008). The upgraded 
biomethane is marketed and the CO2 rich stream follows to the biomethane production.  
In addition, the anaerobic digestion process produces the digestate, that can be further 
gasified to enhance the methane production. The ultimate mass-based digestate 
composition is set to 36.04%C, 5.14%H, 31.66%O, 2.28%N, 1.85%S and 23.03%ash, 
whereas the mass-based proximate analysis is considered as 5.96% moisture (after 
drying), 11.1% fixed carbon, 59.91% volatiles, 23.03% and ash in balance (Chen et al., 
2017). The initial moisture of the digestate is assumed as 50%. The digestate gasification 
system shown in Fig. 1 operates at atmospheric pressure and uses steam as gasification 
medium (Kinchin and Bain, 2009). The combustion and gasification processes occur in 
separate columns, thus avoiding the dilution with nitrogen of the syngas produced. After 
leaving the gasifier, the syngas is treated to remove tars and impurities. A fraction of the 
char produced in the pyrolysis step is combusted to supply the heat required by the 
endothermic drying, pyrolysis and reduction reactions. The syngas subsequently follows 
to shift reactors and to a CO2 capture unit in order to adjust the composition to be suitable 
for the methanation reaction (H2/CO2 4:1). 
The CO2 captured in the syngas purification unit could be liquefied and stored in a tank 
at -50 °C and 7 bar (1,155 kg/m3). Liquefied CO2 can be later regasified and fed to a 
methanation system, in which the hydrogen necessary is provided by a high temperature 
solid oxide electrolyzer. The solid oxide electrolyzer (SOEC) operates at 1 bar, 800 °C, 
steam conversion rate of 81%. The SOEC system is modelled considering the 
concentration, ohmic and activation overpotentials (Ni et al 2006).  
The methanation system is based on the TREMP® process (Topsøe, 2009), in which a 
series of methanation beds are intercooled either by recycling or indirect inter-cooling in 
order to achieve higher reactants conversion. 
The simulations are performed in the Aspen Plus® software (Aspentech, 2015), using the 
Peng-Robinson EoS with Boston-Mathias modifications as thermodynamic model. the 
Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) is used to model the 
physical absorption of CO2 with dimethyl ethers of polyethylene glycols (DEPG). 
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Figure 1. Integrated biomethane production considering anaerobic digestion, gasification and high 

temperature electrolysis. 
 
2.2. Optimization problem definition 
 
The new energy technologies in Fig. 1 require a redefinition of the energy balance for 
traditional biomethane plants. A systematic method and computational tool are needed 
for the complex energy integration and optimization problem. The OSMOSE Lua 
platform is used to determine the minimum energy requirements (MER) and solve the 
energy integration problem (Domingos et al., 2023). OSMOSE follows a two-step 
approach, in which the nonlinearities are limited to the Aspen Plus® models and it is 
considered that those representative values can be scaled linearly. The slave problem 
consists of a mass and energy integration framework and it is developed as a mixed-
integer linear programming (MILP) problem described in Eqs. (1-5). The goal is to 
minimize the objective function, Eq. (1), and determine the binary variables yw related to 
the selection of a given utility unit ω, and its corresponding continuous load factor, fw, as 
well as the investment cost associated to the implementation of these technologies. In 
summary, the optimization problem accounts for the trade-off between buying the new 
technologies and affording the operating costs and revenues that are associated to a certain 
operating scenario. 

min
𝑓𝑓𝜔𝜔,𝑦𝑦𝜔𝜔
𝑅𝑅𝑟𝑟,𝑊𝑊

�𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 × (𝐵𝐵. 𝑐𝑐)𝑀𝑀𝑀𝑀𝑀𝑀+ 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

× (𝑊𝑊. 𝑐𝑐)𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

+ 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 × (𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+ 𝑓𝑓𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × (𝐵𝐵. 𝑐𝑐)𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝑓𝑓𝐶𝐶𝐶𝐶4 × (𝐵𝐵. 𝑐𝑐)𝐶𝐶𝐶𝐶4 +
𝑧𝑧𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∗ 𝐴𝐴𝐴𝐴

𝑁𝑁ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
� 

     (1) 

Subject to:

 Heat balance at the temperature interval (r): 
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Existence and size of the utility unit:  

max,min, y y 1 ..f f f Nω ω ω ω ωω ω≤ ≤ ∀ =             (4) 
Feasibility of the solution (MER):          

1 10, 0, R 0rNR R += = ≥  
and  

exp0, 0impW W≥ ≥    
 (5) 

where: 

Nw is the number of units in the set of utility systems; B is the exergy flow rate (kW) of 
the resources entering or leaving the integrated energy system; c stands for the buying 
costs of the waste feedstock (0.001 EUR/kWh) and the electricity consumed (for March-
October assumed as 0.001 EUR/kWh, and for November-February as  0.15 EUR/kWh), 
along with the CO2 taxation set as 120 EUR/tCO2 (IEA, 2021), as well as for the selling 
price of the marketable CH4 (0.07 EUR/kWh); q is the heating/cooling flow rates supplied 
by the selected utility systems (kW); W is the power domestically produced by either the 
utility systems (i.e. steam network) or the chemical processes (e.g. expanders); or 
imported from/exported to the grid (kW); AF is the annualization factor; Nhours per year is 
the number of operative hours per year (8760 h); Zequip is the investment cost (EUR). 
The electricity price assumption allows us to model the seasonal energy costs of 
intermittent and renewable energy resources, as well as the factors that affect energy and 
CO2 management in the integrated production system in this case study. 
Equations (6) and (7) are the balance equations for the amount of liquefied gas stored in 
the tanks, being that the continuous variable ftank accounts for the optimization variable of 
the tank capacity, and the mass or energy coming in or out the storage systems depend on 
the operating capacities of the energy systems (f), which are also optimized for each time 
step t.  

tank,_ t tStorage level f=                                                                                               (6) 

,1 ,_ - _    -    t IN tt OUT tStorage level Storage level Mass or Energy Mass or Energy+ =                  (7) 

3. Results and discussion 
The results of the optimal processes parameters for the integrated case are summarized in 
Table 1. During the March-October period, the methane production via the SOEC route 
and using biogenic CO2 coming from either the gasification and from the anerobic 
digestion, is activated, as an adaption to lower electricity prices and more affordable 
renewable energy. This can be also noticed in Fig. 3, where the stored CO2 is preferably 
used in the months in which the electricity price is low, avoiding a large import of costly 
electricity from the grid. Carbon abatement units and liquid fuel storage are essential 
advanced energy conversion technologies that ensure the reliable operation of 
cogeneration systems, especially for electricity supply.  
The integrated setup presented 6.2 MEUR/y of annualized investments costs and -16.4 
MEUR/y of operating costs, which reinforces that the operating strategy can be attractive 
to increase the operating revenues leading to a lower total cost of the plant. In addition, 
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in the months where the electrolyzer is activated, the indirect emissions from the 
electricity grid can reach 0.54 kgCO2/kgCH4. Thus, the indirect emissions associated 
electricity supply chain still represent a challenge for the decarbonization of the extended 
production process.  
 

Table 1. Optimal process parameters for the integrated case. 
 Mar-Oct Nov-Feb 
Feedstock MSW consumption (MJ/kgCH4) 51.69 118.86 

Utility electricity cosumption (MJ/kgCH4) 30.77 1.06 

Water from market (m3/kgCH4) 0.001 0.000 

Indirect CO2 emissions from electricity1 (kgCO2/kgCH4) 0.54 0.02 

Rankine cycle power generation (MJ/kgCH4) 4.12 4.59 

CH4 production from biogas (MJ/kgCH4) 7.65 17.58 

CH4 production from SOEC + bioCO2 (MJ/kgCH4) 28.25 0.00 

CH4 production from gasification (MJ/kgCH4) 14.10 32.42 
1. The indirect CO2 emissions associated with the fossil fuel consumption in the upstream supply chains is 

assumed as 62.63 gCO2 per kWh of electricity (Flórez-Orrego et al., 2015).  
 

 
Figure 2. Monthly power consumption. During Mar-Oct the SOEC power consumption is 30.7 

MW. 

 
Figure 3. Monthly CO2 storage. 
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4. Conclusions 
In this work a systematic analysis of the integration of a gasification system and a solid 
oxide electrolyzer into an anaerobic digestion plant that processes the organic fraction of 
the municipal solid waste is assessed. To mitigate the seasonal electricity fluctuations of 
renewable electricity generation, a strategy involving the storage and utilization of CO2 
streams is also investigated. This process is employed for the production of methane 
exclusively during periods of low-cost electricity, utilizing a power-to-gas methodology 
that capitalizes on surplus electricity generated by prosumers throughout the non-peak 
months. The integration of power-to-gas systems with liquefied gas storage units has 
demonstrated its significance as a pivotal strategy, ensuring a synergistic supply for 
operational needs. Biogenic CO2 sources and an electric input with a low carbon load can 
enhance the potential of power-to-gas plants to act as a CO2 sink, however the indirect 
contributions of electricity grid emissions are still a challenge for the decarbonization 
strategies. For future works, an incremental financial analysis that incorporates the 
uncertainty related to the acquisition and selling costs of the feedstock and fuels produced 
will be performed through Monte Carlo method, by simulating the stochastic variation of 
the commodities price profiles. 
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Abstract 
Coating processes, integral in various industrial applications such as Li-ion battery 
electrode manufacturing, rely on accurate model of fluid dynamics for optimal outcomes. 
However, the dynamic nature of coating material conditions at the inlet of the coating 
apparatus poses challenges, leading to time and cost-intensive fluid dynamics 
calculations. To address this, there have been a growing demand for surrogate models 
capable of providing efficient and precise approximations of CFD results. Our approach 
leverages previously obtained CFD train data under diverse coating material conditions. 
Through a surrogate model integrating proper orthogonal decomposition and deep neural 
network, we efficiently derived CFD results for test conditions, reducing the need for 
resource-intensive CFD simulations. Our research applied this methodology to a practical 
coating apparatus, assuming the coating material properties align with those of Carreau 
fluid. This study holds promise for enhancing industrial efficiency in modeling and 
optimizing coating processes. 

 Keywords: Coating, Computational Fluid Dynamics, Surrogate model, Proper 
Orthogonal Decomposition 

1. Introduction 
Coating processes are employed in various industrial processes, including the 
manufacturing of lithium-ion battery electrodes (Li, et al. 2021). Typically positioned at 
the tail end of coating material production and transportation processes, coating processes 
involve the application of coating material slurry onto substrate as it passes through 
coating apparatus, such as slot die coater. For overall process modeling, the fluid 
dynamics inside the coating apparatus are important. This is because the pattern of coating 
material application on the substrate is determined by the slurry flow at the outlet of the 
coating apparatus.  
It is worth noting that during transportation process or grade change, the rheological 
properties, such as viscosity, of the coating slurry can change due to factors such as 
deformations in the internal microstructure of the slurry (Sullivan, et al. 2022). When the 
rheological properties change, it affects the flow through the coating apparatus, resulting 
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in variations of the velocity and pressure profile at the outlet of the coating apparatus and 
influencing the coated product significantly.     
Simulating the outlet flow of the coating apparatus for each change in rheological 
properties of the inlet poses practical challenges, as it requires substantial time and 
resources for each computational fluid dynamics (CFD) simulations. Numerous efforts 
have been directed towards minimizing the time and cost from repetitive CFD simulations. 
Since first proposed by Raissi, et al. (2017), physics-informed neural networks (PINNs) 
have garnered a lot of attention from the field of fluid mechanics. While PINNs 
substantially reduce time and cost for CFD simulation inference, PINNs suffer from 
inherent inaccuracies due to the soft constraint formulation of loss function during its 
optimization process. This limitation particularly affects predictions related to fluid flow 
aspects, such as conservation principles, boundary conditions, and initial conditions 
(Krishnapriyan, et al. 2021, Wang, et al. 2021).   
There also have been trials with model order reduction techniques based on existing CFD 
simulation data. Proper orthogonal decomposition (POD) (Berkooz, et al. 1993) is among 
the prominent techniques. The fundamental concept underlying this technique involves 
decomposing CFD data into reduced bases encapsulating distinctive flow behaviors 
inherent in the data and their corresponding projection coefficients. Surrogate model can 
be constructed with the reduced bases, which satisfy the fluid flow aspects 
aforementioned because they are extracted from existing simulation data already 
satisfying the conditions. Zhang and Zhao (2021) suggested matching the projection 
coefficients for each reduced base with CFD simulation parameters using deep neural 
network (DNN). This approach not only ensured a sufficiently short inference time, but 
also offered satisfaction of boundary conditions. This is particularly crucial for our 
coating system, as the outlet of the coating apparatus corresponds to such boundary 
conditions. In this work, we propose a surrogate model for CFD simulation of an actual 
coating process using POD and DNN. The prediction performance of the surrogate model 
is compared with the CFD simulation result of the same process. 

2. Process and Data Description 
The target process is a typical slot die coater apparatus widely used in practical coating 
applications, as shown in Figure 1 (a). The geometry of the shape through which fluid 
flows in the apparatus, as shown in Figure 1 (b), was designed in a mesh configuration 
using Pointwise 18.2R1. Numerical solutions were computed using Ansys Fluent 2021R1.  
Carreau model was employed to describe the viscosity of the coating material slurry. This 
choice is based on a previous study by Lee, et al. (2022) where the Carreau model proved 
effective in simulating the viscosity properties of battery slurries. The Carreau model has 
the following mathematical form: 
 

𝜂𝜂(𝛾̇𝛾) = 𝜂𝜂∞ + (𝜂𝜂0 − 𝜂𝜂∞)[1 + (𝜆𝜆𝛾̇𝛾)2](𝑛𝑛−1)/2 (1) 
 

where 𝜂𝜂 and 𝛾̇𝛾 denote the shear viscosity and shear rate respectively. 𝜂𝜂∞(Pa∙s), 𝜂𝜂0(Pa∙s), 
𝜆𝜆(s), and 𝑛𝑛(unitless) are the parameters of Carreau model. The flow was assumed to be 
isothermal and incompressible with a density of 2,230 kg/m3, following Lee, et al. (2022).  
Coating apparatus inlet, wall, outlet boundary conditions were considered. To consider 
the transient pump inlet boundary condition in the actual coating process, the following 
mass flow inlet boundary condition equation was applied:  
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(a)                                                               (b) 

 
Figure 1. (a) The slot die coater apparatus used in coating process, and (b) the mesh with 230k 

nodes designed for the region of fluid in the identical apparatus. The coating slurry is injected into 
the left pipe section, and exits through the right feed slot section. 

 

𝑞𝑞 = 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(1 + 𝐴𝐴 sin 2𝜋𝜋𝑡𝑡𝑡𝑡) (2) 
 

where 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is the average inlet mass flow rate of the steady-state flow, 𝐴𝐴  is the 
amplitude, and 𝑓𝑓  is the pump frequency. Here, 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , 𝐴𝐴 , and 𝑓𝑓  were fixed at 80 
mL/min, 0.01, and 1 Hz respectively. Taking the mass flow rate into account, a laminar 
flow was assumed. A no-slip boundary condition was specified at the walls, and 
atmospheric pressure at the outlet was specified as the outlet boundary condition. 
The parameters, 𝜂𝜂0, 𝜆𝜆 and 𝑛𝑛, of the Carreau model were varied to generate a total of 64 
time-series CFD simulation data. All possible combinations of (𝜂𝜂0, 𝜆𝜆,𝑛𝑛) for 𝜂𝜂0 ∈ [25, 50, 
100, 200], 𝜆𝜆 ∈ [0.1, 1, 10, 100], and 𝑛𝑛 ∈ [0.4, 0.5, 0.6, 0.7] were explored with 𝜂𝜂∞ fixed 
to 0.01. The time step size was set to 0.01second. Simulation results of 100 time steps 
after residence time, equivalent to one pump cycle, were prepared for our surrogate model.  

3. Proposed Surrogate Modeling Approach 
This section outlines a surrogate modeling procedure for the CFD simulation of a slot die 
coater detailed in Section 2. First, the overall model structure is introduced. Then, the 
procedures for data decomposition through POD and projection coefficient regression 
with DNN are discussed.  
3.1. Overall Model Structure 
 
75% of the entire time-series CFD simulation data were randomly selected for training, 
with the remaining 25% reserved for testing. POD was applied to the train dataset, 
producing reduced bases and their corresponding projection coefficients. These reduced 
bases were assumed as the bases for the test dataset. The DNN regression model, trained 
on the coefficients of the train dataset, predicted the coefficients for the test dataset. Each 
predicted coefficient for the test dataset was then multiplied by the corresponding reduced 
base, and the resulting values were summed to obtain predictions for the CFD simulation 
data. The overall model structure is shown in Figure 2. 
3.2. Data Decomposition through POD 
 
Mathematically, POD minimizes the following error:  
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Figure 2. The Overall CFD Surrogate Model Structure 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = � ‖x𝑖𝑖 − P𝑟𝑟x𝑖𝑖‖2
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑖𝑖=1

 (3) 

 

where 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the number of train samples, x𝑖𝑖 is the 𝑖𝑖th train sample on a vector space 
𝑉𝑉, P𝑟𝑟 is the projection of rank 𝑟𝑟, and the operation ‖⋅‖ is the induced norm from the inner 
product 〈⋅,⋅〉 on 𝑉𝑉. The projection of x𝑖𝑖, P𝑟𝑟x𝑖𝑖 , is expressed as follows: 
 

P𝑟𝑟x𝑖𝑖 =  �〈𝜑𝜑𝑗𝑗 , x𝑖𝑖〉 𝜑𝜑𝑗𝑗

𝑟𝑟

𝑗𝑗=1

 (4) 

 

where 𝜑𝜑𝑗𝑗 ∈ 𝑉𝑉 is the orthonormal basis of rank 𝑟𝑟. 𝜑𝜑𝑗𝑗 and 〈𝜑𝜑𝑗𝑗 , x𝑖𝑖〉 are the reduced base and 
projection coefficient previously mentioned. We set the inner product weighting matrix, 
𝑊𝑊, to the identity matrix in the general inner product expression, 〈x𝑖𝑖 , x𝑗𝑗〉 =  x𝑖𝑖∗𝑊𝑊x𝑗𝑗. 
Minimizing the error in (3) leads to the following eigenvalue problem: 
 

XX∗Φ = ΦΣ  (5) 
 

where Σ is a diagonal matrix filled with eigenvalues, and X and Φ are as follows: 
 

X = �
⋮ ⋮ ⋮

x1 x2 ⋯ x𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
⋮ ⋮ ⋮

�  (6) 

 

Φ = �
⋮ ⋮ ⋮
𝜑𝜑1 𝜑𝜑2 ⋯ 𝜑𝜑𝑟𝑟
⋮ ⋮ ⋮

�  (7) 

 

In this study, the columns of X are flattened vectors of time-series CFD simulation train 
data from the coating apparatus outlet. Matrix X was scaled before implementing POD. 
3.3 Projection Coefficient Regression with DNN 
 
The DNN regression model predicts projection coefficients for the Carreau model 
parameter combinations (𝜂𝜂0, 𝜆𝜆,𝑛𝑛). To prevent overfitting, batch normalization, dropout, 
L2 regularization, and early stopping were employed. The model used ReLU activation 
function, mean-squared error loss, and Adam optimizer. Grid search, based on 4-fold 
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cross validation errors, determined the optimal hyperparameter combination from the 
parameter space Ωℎ × 𝑁𝑁ℎ  × 𝐷𝐷𝐷𝐷 ×𝑊𝑊𝑊𝑊 × 𝐿𝐿𝐿𝐿 ×𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 = {4, 8, 16, 32, 64}×{1, 2, 3, 4, 
5}×{0.1, 0.2, 0.3, 0.4}×{10-8, 10-7, 10-6, 10-5, 10-4, 10-3}×{10-4, 10-3,   10-2}×{MinMax, 
Standard}×{MinMax ,Standard}, where ℎ,𝑁𝑁ℎ, 𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊, 𝐿𝐿𝐿𝐿, 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃 , 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁 represents the 
hidden size, number of hidden layers, dropout rate, learning rate, scaling method before 
implementing POD, and scaling method of input and output of the neural network 
respectively. Using the optimal hyperparameter combination, the DNN model was trained 
with 25 % of the train dataset as a cross validation dataset.  

4. Result and Discussions 
The rank of Φ , 𝑟𝑟 , and the optimal hyperparameter combination, 
(ℎ,𝑁𝑁ℎ ,𝐷𝐷𝐷𝐷,𝑊𝑊𝑊𝑊, 𝐿𝐿𝐿𝐿, 𝑆𝑆𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃 , 𝑆𝑆𝑆𝑆𝑁𝑁𝑁𝑁), were determined to be 48 and (8, 1, 0.3, 10-6, 10-2, 
MinMax, MinMax), respectively. The CFD simulation result and surrogate model 
prediction for a randomly selected test sample, corresponding to (𝜂𝜂0, 𝜆𝜆,𝑛𝑛) = (200, 0.1, 
0.5), at a randomly selected simulation time, 𝑡𝑡 = 0.83 second, are illustrated in Figure 3. 
When comparing the velocities in the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions predicted by the surrogate 
model with those predicted by the CFD simulation, a close alignment was observed, 
capturing key features such as the no-slip wall boundary condition, symmetry of 𝑥𝑥 -
velocity, 𝑦𝑦-velocity, and 𝑧𝑧-velocity profiles, and the parabolic flow profile in the 𝑥𝑥 -
velocity. To quantitatively evaluate the performance of the surrogate model, Figure 4 
illustrates the mean absolute percentage errors in the surrogate model predictions at the 
coating apparatus outlet over time. This analysis specifically focuses on the 𝑥𝑥-velocity 
for the same test sample because, in the actual coating process, the 𝑥𝑥-velocity profile is 
the most influential factor affecting the application of the coating slurry onto the substrate. 
The remaining 𝑦𝑦 and 𝑧𝑧 velocity profiles have considerably lower orders of magnitudes,  

 
(a) 

 
 
 
 
 

          
       (b) 
 
 
 
 
 
 
       (c) 
 
 
 
 
 
 

Figure 3. CFD Simulation Result and the Prediction Result of Surrogate Model for a Random 
Test Sample Data, (𝜂𝜂0,𝜆𝜆,𝑛𝑛) = (200, 0.1, 0.5) and 𝑡𝑡 = 0.83 second 
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Figure 4. Mean Absolute Percentage Error of x-velocity over Time for a Test Sample Data, 

(𝜂𝜂0, 𝜆𝜆,𝑛𝑛) = (200, 0.1, 0.5) 
 

resulting in negligible impact during the actual coating process. The mean absolute 
percentage errors of the surrogate model, when compared to the CFD simulation, did not 
exceed 1.830 % over time. The CFD simulation for the coating flow required over 9 CPU 
hours for a single case, while the proposed model achieved inference for 16 test cases in 
0.36 second. The surrogate model, based on POD and DNN, exhibited strong agreement 
with the CFD simulation and showed significant improvement in inference speed.  

5. Conclusion 
This work introduced a surrogate modeling approach using POD and DNN for efficient 
CFD simulation of a slot die coater. Our model demonstrated strong agreement with CFD 
results, achieving accurate predictions while significantly reducing computation time. 
The novelty of our work lies in its applicability to real-world industrial processes where 
input properties may vary. This allows for the prediction of new CFD results based on 
existing data, eliminating the need to run CFD simulations for every change in input 
properties. In future work, integrating this research could lead to the development of a 
unified module encompassing post-coating processes, thereby expanding the scope of 
application.  
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Abstract 

Precisely describing dynamic reactor behavior is of increasing importance considering 

the future need for flexible conversion of renewable energy (e.g. for methane or ammonia 

synthesis). However, the determination of kinetic parameters for highly accurate transient 

(microscale) kinetic models is tedious and connected not only to intricate experimental 

design but also expensive equipment. Furthermore, even the computer aided derivation 

of parameters from kinetic experimental data still poses a major challenge. 

Recently, physically motivated methods of capturing formalized chemical kinetics in 

artificial neural networks have been published. Most notably the Chemical Reaction 

Neural Network (CRNN) method proved to be capable of extracting kinetic information 

from carefully prepared transient simulation or experimental results. However, typical 

challenges induced by heterogeneously catalyzed reactions have not yet been addressed. 

Consequently, in our current contribution we present challenges and limitations of 

applying CRNN-methodology to pseudo-experimental data with the aim of extracting 

microkinetic information and link those to the well-known concepts of rate-determining 

or quasi-equilibrated steps. From the identified limitations, we derive favorable reaction 

regimes for sampling training data and their effect on the recovered kinetics, which is the 

basis to design appropriate transient experiments.  

Therefore, we propose an extended (heterogeneous) CRNN capable of describing 

reaction mechanisms catalyzed by solids. The model is trained with virtual data compiled 

by assuming a combination of fast and slow reactions. Finally, we conclude on the 

capabilities of heterogeneous CRNNs (hCRNNs). 

Keywords: Microkinetics, Neural Networks, Kinetic Modeling, Machine Learning 

48



   

 

1. Introduction 

The demand for technologies capable of the flexible conversion of renewable energies 

and the coupling of energy and gas grids (like methanation, ammonia synthesis or 

Fischer-Tropsch synthesis) is rising. This drives the need for the precise description of 

reactor behavior in highly transient operating regimes, which in turn requires accurate 

microscale kinetic models for resolving transient process on catalytic surfaces. The 

determination of parameters for these kinds of models requires elaborate experimentation, 

often only enabled by prior experience, expensive analytics and supported by findings 

from computational chemistry methods like density functional theory (DFT). The whole 

model development cycle and some current applications are depicted by Motagamwala 

and Dumesic (2020). With the increasing computational power – already relieving some 

constraints on this tedious process – the field of machine learning (ML) promises even 

higher speedups all across the mechanism development cycle.  

To help speedup of calculation and parameter identification Barwey and Raman (2021) 

introduced a neural network formalism for capturing chemical kinetic expressions in 

matrix vector notation enabling efficient handling within ML frameworks like, e.g., 

PyTorch. Ji and Deng (2021) used a similar construction (and coined the term Chemical 

Reaction Neural Network, CRNN) extended by a neural ODE solver to enable detailed 

kinetic discovery via temporal concentration profiles of multiple homogeneous reaction 

mechanisms. 

Both approaches do not consider the difficulties inherent to heterogeneous reaction 

mechanisms, where ad- and desorption of reactants occur simultaneously to surface 

reactions. Specifically, to our knowledge these methods have not yet been linked to the 

well-established concepts of the rate-determining or quasi-equilibrated steps though from 

experimentation it is clearly known that the existence of extremely fast or slow reactions 

in a given reaction network might mask critical pathways to the desired products. Hence, 

the current state of CRNN models is not yet demonstrated for reaction mechanism being 

more realistic in heterogeneous catalysis. Consequently, we aim to investigate the 

influence of the rate differences on CRNN performance and thus identify suitable training 

strategies to obtain reliable and detailed knowledge about the investigated kinetics. 

In our earlier work, we demonstrated a) the wide range applicability and generalizability 

of microkinetic CRNNs for heterogeneously catalyzed reaction mechanisms emerging 

from the physically informed network architecture and b) coupling possibilities with 

common reactor models. These results promise the identification of reaction networks 

and respective kinetic parameters from readily available transient experimental data, as 

obtained by periodic transient kinetics method (PTK) presented by Meyer et. al. (2021) 

or Gäßler et. al. (2022). 

2. Heterogeneous CRNNs (hCRNNs) 

The underlying structure of the proposed hCRNN is adapted from Ji and Deng (2021) 

taking advantage of the similarity between the power law and Arrhenius equation for 

heterogeneous reactions in log-scale and the general mathematical formulation of a single 

layer in multilayer aNNs (eq. (1)). We propose extending the previous structure by 

including a more general approach for parametrization of the reaction rate. In addition to 

the basic structure, our network features parametrization of surface coverage dependency 

of the Arrhenius expression as well as the inclusion of special kinetic expressions for the 

adsorption reactions typically parametrized by the initial sticking factor 𝑆0. In eq. (1) the 
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rate, 𝑟𝑗, of reaction 𝑗 depends on temperature, 𝑇, via Arrhenius equation (with frequency 

factor, 𝐴𝑗, activation energy, 𝐸A,𝑗, and gas constant, 𝑅), on surface coverage, 𝛩𝑖 , of 

component 𝑖 (with coverage dependence of activation energy of reaction 𝑗, 𝜀𝑖,𝑗) and the 

surface and gas phase concentrations, 𝑐𝑖, assuming elementary reactions with the order 

of, 𝜈𝑖,𝑗
′ . Eq. (2) establishes the connection of species 𝑖 formation rate 𝑠̇𝑖 to all 𝑛 reactions 

in the mechanism through the stoichiometric coefficients 𝜈𝑖,𝑗. 

𝑟𝑗 = exp

(

 
 
ln(𝐴𝑗) −

𝐸A,𝑗

𝑅𝑇⏟        
Arrhenius

+∑
𝜀𝑖,𝑗 𝛩𝑖
𝑅𝑇

𝑚𝑆

𝑖=1⏟      
Coverage

+∑ν𝑖,𝑗
′ ln(𝑐𝑖)

𝑚

𝑖=1⏟        
Power law )

 
 
  (1) 

𝑠̇𝑖 =∑𝜈𝑖,𝑗 𝑟𝑗

𝑛

𝑗=1

 (2) 

Here, we construct a more strongly separated network in the open-source deep learning 

framework PyTorch. Our architecture aims to make use of clearly interpretable parameter 

groups for different parts of the microkinetic model such as stoichiometric coefficients, 

reaction orders, Arrhenius-type parameters, and surface coverage dependency parameters 

grouping them into their own dedicated layers. Hence, the architecture clearly reflects the 

structure of eq. (1). An overview of the proposed network architecture is depicted in fig. 1. 

The main and most physically interpretable hyperparameter to influence learning success 

is the number of suspected reactions involved in the mechanism. We make extensive use 

of this hyperparameter and evaluate its influence on the accuracy of the determined 

kinetic parameters.  

3. The influence of rate determining steps in the mechanism 

To investigate the influence of reaction rates on training and performance of the hCRNN, 

a generic but universal Langmuir-Hinshelwood (LH) type microkinetic model consisting 

of four elementary reactions is constructed, parametrized and used as a benchmark in the 

Figure 1: Proposed network architecture. Each box represents a fully connected linear 

layer.Power law, Arrhenius and coverage dependence layers are further separated intoforward and 

backward sub-layers acting on their own set of trainable parameters. 
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depicted experiments. As a building block of more complex reaction networks, the LH-

mechanism encapsulates reactant adsorption (eqs. (R1) and (R2)) and product desorption 

(eq. (R4)) as well as a single surface reaction (eq. (R3)), which – depending on their rate 

constant – can act either as the rate-determining or a quasi-equilibrated step. 

A + ⋆
𝑘1
+

⇌
𝑘1
−
A⋆ (R1) 

B + ⋆
𝑘2
+

⇌
𝑘2
−
B⋆ (R2) 

 A⋆  + B⋆
𝑘S
+

⇌
𝑘S
−  C

⋆  + ⋆ (R3) 

C⋆
𝑘4
+

⇌
𝑘4
−  C + ⋆ (R4) 

Reaction conditions for training data preparation are sampled at constant temperature and 

random gas- and surface-phase compositions for all involved species according to a flat 

Dirichlet distribution. The so generated dataset consists of 10000 samples at different 

reaction conditions sampled uniformly from the composition space. To generate the 

needed composition (𝑐𝑖) – temperature (𝑇) – formation rate (𝑠̇𝑖) pairs, the latter are 

calculated according to the presumed LH mechanism at the sampled conditions. 

Therefore, the rate constant of the surface reaction, 𝑘0,S
+ , is varied with fixed ad- and 

desorption reaction rate constants. This way, we create multiple versions of the dataset 

corresponding to different surface reaction rates in the mechanism. These cover the 

dynamic range of the surface reaction being rate determining (slow) up to quasi-

equilibrated (fast). This approach represents a highly transient mode of reactor operation 

far from equilibrium. It should be noted that variation of 𝑘0,S
+  results in differing values 

for the formation rates 𝑠̇𝑖 in the dataset but does not influence the sampled reaction 

conditions.  

Training of the hCRNN is then conducted using the Adam-optimizer with a custom 

learning-rate decay schedule by minimizing the L2-Norm as a measure for the error 

between network formation rate prediction and ground-truth mechanistic knowledge. The 

Figure 2: Training result for varying number of presumed elementary reaction steps and surface 

reaction rate constant 𝑘0,𝑆
+ . Notice the three distinct regimes (denoted by 1), 2) and 3)) and the 

bifurcation and reunification of the branches for 𝑛 = 3 and 𝑛 = 4 presumed reactions. 
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number of presumed reactions is varied between 1, 3 and 4. Prior knowledge tells us to 

expect best results at four presumed reactions matching the number in the ground truth 

mechanism. As can be observed from fig. 2 the obtained loss (the error between hCRNN 

prediction and ground truth) behaves differently depending on the order of magnitude of 

the reaction rate constant of the surface reaction. Three regimes can be identified: 

1) Very slow reaction: The surface reaction is too slow to have meaningful impact on 

overall kinetic behavior; three reactions explain the observed data equally well. 

2) Medium fast reaction: The surface reaction is fast enough for the overall behavior to 

not be explained by only three reactions (see the bifurcation of the branches for 𝑛 = 3 

and 𝑛 = 4 reactions) but requires four. 

3) Very fast reaction: The surface reaction dominates the reaction network, in the limit 

for even higher 𝑘0,S
+  one reaction is enough to describe the kinetic behavior. 

These results tie in with the known theory of the rate determining step, although they 

somewhat contradict the experimentalists intuition. As opposed to steady-state kinetic 

experiments in which quasi-equilibrated steps are virtually invisible to the observer, in 

the presented transient regime these fast steps dominate the dynamics and are therefore 

easy to identify. Carrying over these results into the design of suitable training regimes 

hints at the advantages that arise from combining data from both highly transient and 

steady-state experimental results. 

4. Conclusions 

This contribution demonstrates that hCRNNs are capable of identifying the number of 

reactions and determining kinetic parameters for complex mechanisms in heterogeneous 

catalysis. It is apparent that the reaction regime has a critical impact on the performance 

of the hCRNN. Identification of all reactions is possible in the isothermal transient regime 

with no rate limiting or quasi-equilibrated steps, while the significant reaction steps are 

identified in any case. In our contribution we further investigate this behavior of hCRNNs 

and present tailored training strategies making use of different data acquisition strategies 

with the goal of gaining detailed mechanistic knowledge. 
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Abstract 

A promising future approach to reducing CO2 emissions in the metallurgical sector is to 

reduce iron oxides using renewable hydrogen in a shaft furnace. Here, the potentials and 

limitations of iron ore reduction with hydrogen at high and low reduction temperatures 

were studied through two-level dynamic modeling: (i) combined modeling of gas/solid 

reaction, transfer, and diffusion in porous iron ore pellet, (ii) modeling of the shaft furnace 

reactor on an industrial scale. A transient one-dimensional reactor model is developed 

and coupled to the pellet model. In order to predict the conversion and energy 

performance of the reactor, the conversion and energy efficiency were established on the 

scale of an industrial reactor for two contrasted operating conditions: (1) at 900 °C, which 

ensures the complete conversion of iron ore into pure iron with rapid conversion kinetics, 

(2) at 550 °C, which is more compatible with the use of renewable energy sources for 

heating. 

 

Keywords: iron ore direct reduction, modeling of gas-solid reaction and diffusion, 

hydrogen, porous solids. 

1. Introduction 

Metallurgy is an emblematic energy-consumption process in our society. The reduction 

of iron oxide to metallic iron, steel, and cast-iron using coal is the process that gave rise 

to the industrial revolution, clearly taking advantage of the high energy density contained 

in cheap coal despite its considerable environmental and societal impacts. The production 

of 1.7 billion tons of steel per year (2017) results in the release of twice as much CO2 (7 

% of global emissions) (Iron & Steel, s. d.). The concept of utilizing hydrogen as a 

reducing agent, as genuinely reviewed in (Spreitzer & Schenk, 2019), is primarily 

connected to the concern of climate change because the reduction of iron oxide with 

hydrogen produces water vapor rather than the carbon dioxide produced by the reduction 

with the carbon monoxide (coal) (Patisson & Mirgaux, 2020). Around 80 % of the world’s 

pre-reduced iron is produced using a gaseous mixture of hydrogen and carbon monoxide 

as the reducing gas in a shaft furnace. The first production of pre-reduced iron using pure 

hydrogen is scheduled for 2025. Therefore, our aim is to show the potentials and 
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limitations of such processes using pure hydrogen at pellet and reactor scale when 

operating at different operating conditions, such as the reduction temperatures, iron ore 

pellet size, and water content in the reducing gas. 

2. Methods 

In the reactor, the various mass and energy transport phenomena are coupled with 

chemical reactions. In order to predict the process performance, a pellet-scale model is 

first developed to simulate the various transfer, diffusion, and reaction phenomena. Then, 

this model is integrated into the global reactor model that simulates the conversion and 

thermal behaviors at a large scale. The following pellet and reactor models consist of 

homemade Python scripts. 

2.1. Pellet model 

The pellet model is based on the progression of a shrinking core by involving 

simultaneously reaction-diffusion phenomena at each reacting solid layer. This model is 

commonly applied to situations where a chemical reaction occurs at the surface of a solid 

material, and over time, the reaction progresses inward, causing the solid core to "shrink" 

as the reaction front moves deeper into the material. When the reactant transforms into 

another solid material, leaving behind an unreacted solid, the unreacted shrinking core 

model (USCM) is applied (Levenspiel, 1998). Since the reduction of iron oxides with 

hydrogen involves four reactions (R1-4) as a function of temperature, the USCM is 

extended to consider a wide range of reduction temperatures, from low temperatures (T 

< 570 °C) where wüstite (FeO) is unstable up to higher temperatures. Consequently, the 

kinetics of chemical reactions are established separately at low and high temperatures 

with their respective stoichiometries. 

From a chemical reaction perspective, first-order reaction rates (Ri), as shown in Eq. (1), 

are formulated according to characteristic dimensions, i.e., the radius of the pellet (r0) and 

the radius of the corresponding solid layer (ri), the kinetic constant of reaction (ki), and 

the gas concentrations (𝐶𝐻2
, 𝐶𝐻2𝑂). Note that reactions can be reversible depending on the 

chemical equilibrium constant (𝐾𝑖). In order to determine the conversion of iron ore 

pellets, the dynamic evolution of each solid layer is then determined in terms of solid 

concentration (𝐶𝑠,𝑘) as a function of reaction rates and stochiometric coefficients (𝜈𝑘,𝑖) 

through Eq. (2). 

 

𝐹𝑒2𝑂3 + 𝐻2 → 2𝐹𝑒3𝑂4 + 𝐻2𝑂 (R1) 

𝐹𝑒3𝑂4 + 𝐻2 → 3𝐹𝑒𝑂 + 𝐻2𝑂 (R2) 

𝐹𝑒𝑂 + 𝐻2 → 𝐹𝑒 + 𝐻2𝑂 (R3) 

𝐹𝑒3𝑂4 + 4𝐻2 → 3𝐹𝑒 + 4𝐻2𝑂 (R4) 

 

 

𝑅𝑖 = 3 
𝑟𝑖

2

𝑟0
3
 𝑘𝑖 (𝐶𝐻2

(𝑟𝑖) −
𝐶𝐻2𝑂(𝑟𝑖)

𝐾𝑖

 ) 

 

(1) 

 

𝜕𝐶𝑠,𝑘

𝜕𝑟
= ∑ 𝜈𝑘,𝑖. 𝑅𝑖

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑖

  (2) 
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Nonetheless, calculating reaction rates requires knowledge of the pellet’s radial gas 

concentration (𝐶𝑗). For this purpose, the pseudo-steady-state approach for the gas 

diffusion is used for each solid layer, as shown in Eq. (3) assuming a spherical pellet: 

 

1

𝑟2

𝜕

𝜕𝑟
(𝑟2𝐷𝑒𝑓𝑓,𝑗

𝜕𝐶𝑗

𝜕𝑟
) = 0 (3) 

 

Where r is the corresponding radius and Deff,j is the effective diffusivity of gas j in the 

solid layer resulting from Bosanquet’s approach (Krishna & Van Baten, 2012). At the 

pellet boundary condition (r = r0), the diffusion is equal to the amount of mass transfer 

between the pellet and the bulk gas, as formulated in Eq. (4), where the mass transfer 

coefficients (𝑘𝑚,𝑗) are obtained using Sherwood correlation for spherical pellet (E, 1952).  

 

𝐷𝑒𝑓𝑓,𝑗 (
𝜕𝐶𝑗

𝜕𝑟
) = 𝑘𝑚,𝑗 (𝐶𝑗,𝑏𝑢𝑙𝑘 − 𝐶𝑗(𝑟0)) (4) 

2.2. Reactor model 

The reactor model describes the transport, chemical conversion, and thermal effects 

involved in a countercurrent vertical furnace where cold solid is supplied at the top while 

the hot gas is injected at the bottom. The model is based on solving the mass and energy 

conservation equations by including the pellet model (diffusion and reaction with 

temperature-dependent kinetics). The model is transient and one-dimensional with 

respect to the height of the reactor. The mass balance equations for all gas and solid 

components, as well as the energy balance equations for the gas and solid phases are 

formulated based on the general convection-diffusion equation derived from the general 

continuity equation as shown in Eq. (5), where the extensity 𝜃 consists of the mass 

fraction for the mass balances and the specific enthalpy for the energy balances (Ranzani 

Da Costa et al., 2013). 

 

𝜕

𝜕𝑡
(𝜌𝜃) + 𝑑𝑖𝑣(𝜌𝜃𝑢⃗ ) − 𝑑𝑖𝑣(𝐷. ∇⃗⃗ 𝜃) = 𝑆 (5) 

 

Where 𝜌 is the density, D the dispersion coefficient, and u the velocity.  

The first three terms in Eq. (5) describe the accumulation, the convection, and the 

diffusion, respectively. S in Eq. (5) is the source term related to the chemical reactions 

involved both in gas and solid phases. The assumptions used here are: (i) Plug flow is 

considered for both phases; (ii) The reactor is assumed to be adiabatic; (iii) Uniform pellet 

temperature, size, and shape at any axial position in the reactor; (iv) Constant bed 

porosity; (v): Two distinct stoichiometric, at high and low temperatures, coexist in the 

reactor depending on the temperature profile; (vi): Two types of heat transfer are 

considered: conduction and convection. 

In addition, by assuming an average bed porosity (𝜀), and by combining the Ergun 

equation (Wagner, 2008) and the continuity equation in the gas phase, the axial profile of 

gas velocity (ug) and pressure were established in the bed. 
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3. Results and discussion 

Although higher reduction temperature results in a higher conversion of iron ore to pure 

iron (Fig. 1 (a)), studying the apparent conversion kinetics for a single iron ore pellet 

reveals that an optimal conversion kinetics can be found at a lower temperature (550 °C) 

(Pescott, 1976). The latter is potentially compatible with alternative low-tech heating 

solutions using renewable flow energies. Therefore, here the influence of main operating 

parameters such as hot gas inlet temperature and water vapor content on the conversion 

and temperature profile was studied to establish the actual conversion and energy 

efficiency on the scale of an industrial reactor.  

Figure 1. shows that based on a water vapor content of 2 % in the inlet gas, when the inlet 

gas temperature decreases from 900 °C to 550 °C, the conversion decreases from 100 % 

to 54 % while the energy consumption for heating is reduced by 47 %. In addition, an 

increase in water vapor content markedly affects the conversion even at high 

temperatures: no complete conversion for a temperature of 900 °C and 550 °C with a 

water vapor content of 10 % in the inlet gas.  

 

Figure 1. (a): Reduction curves for different inlet gas temperatures and water vapor content.      

(b): Temperature profile in the reactor for different inlet gas temperatures. 

Figure 1. (b) shows that with an inlet gas temperature of 900 °C, the temperature is 

uniform in the reactor within 3 meters of the gas inlet. The hot gas provides an energy 

input to compensate the energy required for endothermic reduction reactions with 

hydrogen. The temperature profile at 550 °C coincides with the shape of the reduction 

curve at this temperature. In fact, the kinetics are strongly affected at lower temperatures 

and also by a progressive formation of water vapor through chemical reactions that 

significantly limit the conversion. 

In comparison with the iron oxide reduction performance of a conventional shaft furnace 

operating with a gaseous mixture consisting mainly of hydrogen and carbon monoxide 

(50% H2, 32% CO, 9% CH4, 4% H2O, 2% CO2) : (i) a complete conversion is obtained 

with a more compact reactor in the case where pure hydrogen is used, this fact due to the 

more efficient kinetics; (ii) zero CO2 emissions in a hydrogen reactor since there is no 

direct CO2 production; (iii) almost the same order of magnitude of energy consumption 

is observed (4% smaller energy consumption using pure hydrogen as the reducing agent), 

56



   

note that the reduction with pure hydrogen is endothermic while in conventional shaft 

furnace operating with syngas involves also exothermic combustion reactions. 

4. Conclusions 

The model-based studies provided in this work helped to understand the potentials and 

limitations of direct iron ore reduction with hydrogen at a real reactor scale. By comparing 

a reactor fueled with pure hydrogen at 550 °C with the same reactor fueled at 900 °C, the 

following main observations were made: (i) Although the thermal requirement for heating 

decreases by 47 % when it operates at 550 °C, conversion drops from 100 % to 54 % for 

10 mm iron ore pellets, (ii) temperature profile and conversion are greatly affected at 

lower temperatures due to loss of conversion kinetics, (iii) the presence of water vapor in 

the gas becomes the main thermochemical barrier for the final conversion of magnetite to 

pure iron at lower operating temperatures. 
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Abstract 

Modeling of appearance and disappearance of liquid phases is a challenging task. 

Methods that predict the phase dis-/appearance in steady state models are usually based 

on minimization of Gibbs free energy. When such methods are not applicable, graphical 

methods can be used. These commonly use different modes and switches, which are not 

supported by most dynamic system solvers. In this work we propose a reformulation of 

an existing graphical modelling approach that does not require any integer variables or 

equation switches. The smoothed formulation is used to model an esterification reaction 

in a batch reactor with liquid phase dis-/appearance. Suggested reformulation of the liquid 

phase dis-/appearance is robust and can be used with any differential algebraic equation 

solver. 

Keywords: Phase Dis-/Appearance, Liquid-Liquid Equilibria, Dynamic Modelling 

1. Introduction 

Appearance and disappearance of phases is a challenging aspect for modeling in many 

chemical engineering applications, particularly of interest for start-up, shutdown or 

change in operation points of distillation, extraction, and multiphasic reactive systems. 

There exist different ways to model a dynamic process with vapor-liquid equilibria (VLE) 

where phases can appear or disappear. Most methods are based on Gibbs free energy 

minimization, such as the relaxed Karush-Kuhn-Tucker (KKT) approach (Gopal and 

Biegler, 1999) and usually require solution of an optimization problem to find phase 

configuration and compositions. 

However, whenever a second liquid phase is of interest, as in liquid-liquid (LLE) or 

vapor-liquid-liquid equilibria (VLLE), Ploch et al. 2018 showed that the KKT approach 

is not always applicable. They proposed their own hybrid continuous model, which can 

be categorized as a graphical based approach (Guo et al., 2004). Their modeling approach 

requires a solver that can handle continuous and discrete variables, a feature, that is not 
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supported by most integrators of differential equations. An LLE formulation without 

discrete variables is the focus of this contribution. 

2. Methodology 

To apply a standard differential algebraic equation (DAE) solver in simulation of a 

dynamic system, the new, reformulated equation system should consist only of 

continuously differentiable nonlinear equations. The originally proposed method (Ploch 

et al., 2019) can be described by an upper and a lower automaton and thus represents a 

hybrid system. The upper automaton serves as a switch between one and two existing 

phases. In the lower automaton, the location of the coexisting phase is constrained to one 

of four possible modes. Contrary to the original formulation, the upper automaton is 

implemented using complementary conditions (Gopal and Biegler, 1999) with a 

smoothed maximum function (Eq. 1, Eq. 2) and the lower automaton is reformulated as 

a nested smoothed minimum function (Eq. 3) (Chen and Mangasarian, 1996). 

 

𝛽 = (𝜎1 − 𝜎2), 𝜎1 = max⁡(0, 𝜎1 − 𝜎2) (1) 

𝑠𝑚𝑜𝑜𝑡ℎ𝑚𝑎𝑥(𝑥, 𝑦, 𝜖) =
𝑥 + 𝑦 −⁡√(𝑥 − 𝑦)2 + 𝜖2

2
 (2) 

𝑠𝑚𝑜𝑜𝑡ℎ𝑚𝑖𝑛(𝑥, 𝑦, 𝜖) =
𝑥 + 𝑦 +⁡√(𝑥 − 𝑦)2 + 𝜖2

2
⁡ (3) 

 

where 𝜎1 and 𝜎2 are two modes that cannot be active at the same time, 𝛽 is a switching 

variable indicating existence of a second phase by its sign, and 𝜖 is a smoothing 

parameter. 

3. Results 

To test the new formulation, it is used as a part of a dynamic model that describes the 

esterification reaction of 1-propanol in batch operation mode. When the reaction is started 

from the product side, with only water and propyl acetate, a second, water-rich liquid 

phase exists. After some time, during the hydrolysis reaction 1-propanol and acetic acid 

are produced, and the second phase disappears. In Figure 1 the simulated trajectory as 

described above is presented. At the start of the reaction, water and ester separate into 

two liquid phases, water concentration of both phases is shown as dashed lines. During 

first four hours 1-propanol and acetic acid are generated, so the height of the second phase 

start to decrease. After four hours, the second, water-rich liquid phase disappears. 
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4. Conclusions 

Different modelling methods for liquid phase dis-/appearance exist, each having their 

own advantages and disadvantages. In this work a fully smoothed reformulation of an 

existing method is proposed. Contrary to the original method, smoothed mode switches 

can be directly used as part of a system of differential-algebraic equations (DAEs). The 

dynamic model with phase dis-/appearance is at least once continuously differentiable 

and can be solved by most DAE solvers. Real experiments are planned to validate the 

model of the esterification reaction with phase dis-/appearance by comparing the 

predicted and the measured liquid height ratio of two separated liquids. 

Acknowledgement: Funded by the Deutsche Forschungsgemeinschaft (DFG, German 

Research Foundation) – 466397921. 
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Figure 1: Change of water concentration and liquid height ratio over time 
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Abstract 

Achieving the Sustainable Development Goals on water and sanitation (SDG 6) is 

fundamentally important and conditional to realize the other SDGs. However, the 

achievement of this goal by 2030 is challenging in the Global South, especially in Sub-

Saharan Africa (SSA). This is attributed to several challenges, in which weak supply 

chain network and inappropriate technologies along the water and sanitation supply chain 

are the major ones. To this end, a decision-support model is developed in this work for 

selecting the best supply chain network and technologies. After establishing a circular 

economy-based water and sanitation delivery process and performing an in-depth 

environmental life cycle assessment (ELCA), a multi-objective optimization model that 

aims to minimize the ecocost, capital cost and operating cost as well as maximize the job 

creation of the supply chain is developed.  

Keywords: Decision-support model, optimization, water and sanitation, Sub-Saharan 

Africa 

1. Introduction 

Several quantitative-based decision support models have been developed so far for supply 

chains of different goods and services. Nevertheless, there is a limitation of considering 

the water and sanitation delivery process simultaneously. Rather, many research either 

focus on the water supply or sanitation process individually. Despite numerous decision 

support models were formulated by considering the different local-, national- and 

regional-level cases, none of them taken into account the water and sanitation sector of 

Sub-Saharan Africa (SSA), as per the author’s knowledge. It is difficult to directly adapt 

and utilize the models developed so far for SSA as the region has its own unique features 

in the water and sanitation sector, which need to be incorporated in model formulation.  

The center of an investigation in the previous water or sanitation related models is either 

of the economic, environmental or social objectives, not three of them together. 
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Furthermore, the techniques of environmental life cycle assessment (ELCA), 

environmental cost accounting, and social audits have been fairly well developed in the 

models but separately from each other regardless of the interdependence of the three 

aspects. Moreover, the previous models are largely oriented toward the selection of 

appropriate technologies (Ddiba et al., 2023) and overlooked the design of the best supply 

chain network.  

 

Based on the above research limitations, this study intends to develop an optimization-

based decision-support model, which integrates the environmental, economic, and social 

criteria of the water and sanitation process in SSA. In the proposed research, the ELCA, 

environmental cost accounting, and social auditing will be combined to develop the 

model. This novel methodology that integrates the three sustainability dimensions will 

provide strategic decisions, including selecting the best technology and supply chain 

network for the water and sanitation delivery process of SSA.  

2. General structure of the water and sanitation network  

The core driver of this study is to deal with the strategic design and planning of water and 

sanitation delivery process for the SSA region. As a result, a water and sanitation process 

that takes into account a circular economy approach is developed. The superstructure 

addressed in this paper is depicted schematically on Figure 1 and the structure is described 

as follows.  

 

The water supply chain model proposed in this work considers different types of water 

resources, including rivers, dams, underground water, etc. Then, the raw water from the 

sources reach to the consumers through two different possibilities. First, it is directly 

consumed by the consumers without passing through any process, which is the dominant 

practice in SSA. Second, the raw water goes to a treatment plant with technology i. The 

treatment plant is comprised of one or more technologies, based on the quality of the raw 

water. The treatment technologies, i, considered in this study include preliminary, 

primary, secondary and tertiary. Once the water is treated and became potable, it is 

supplied to consumers through a distribution facility with technology m. After consuming 

the water for various purposes, the generated greywater, which is a wastewater from non-

toilet plumbing systems such as hand basins, washing, showers and baths, is collected 

and transferred to sewer wastewater treatment plant. 

 

The sanitation supply chain model proposed in this work considers different types of 

sanitation technologies n, which are broadly classified as improved and unimproved 

sanitation technologies. The blackwater, which is the waste released from the toilet, is 

either transferred to sewer wastewater treatment plant with technology j or sludge 

treatment plant with technology k depending on the type of sanitation technology used. 

The greywater and blackwater are treated in the sewer wastewater treatment plant, which 

has different technologies. Then, the treated water from the sewer treatment plant is either 

supplied to consumers to utilize for different purposes except drinking, to irrigation uses 

or discharged to nearby water bodies. On the other hand, the blackwater goes to the sludge 

treatment plant is treated along with the sludge coming from the water treatment and 

sewer wastewater treatment plants. To this end, the treated sludge is utilized for 

composting and anaerobic digestion, whereas the waste liquid generated from the sludge 

treatment plant is sent to the sewer treatment plant or discharged to the nearby water 

bodies. 
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Figure 1: Superstructure of the water and sanitation network 

3. Model formulation 

A deterministic model is selected since the solution of this model gives decision makers 

good insights for making better choices. First, a mono-objective optimization model, 

which intends to minimize the total ecocost (a cost associated with the environmental 

burden of a product/service on the basis of prevention of that burden) of the water and 

sanitation supply chain, is developed. Then, an economic model that intends to minimize 

the investment and operation costs of the supply chain is developed and combined to the 

previous model, which results in an environmental-economic optimization model. 

Finally, a model that aims to maximize the job creation along the supply chain is 

combined to the previous model to result in environment-economic-social optimization 

model. The general approach for the optimization model formulation is depicted in Figure 

2. 

4. Case study 

The optimization model developed in this study is applied to the water and sanitation 

sector of Sub-Saharan Africa (SSA) region. The SSA has the lowest global water and 

sanitation services coverage, in which only 30% and 21% of the region’s population uses 

safely managed drinking water and sanitation services respectively. On top of that, many 

SSA countries are predicted to show negative and sluggish progress in water and 

sanitation coverage by 2030 (Zerbo et al., 2021) against the Paris Agreement and 2030 

Agenda for Sustainable Development (SDG6). The sluggish and negative progress is 

associated with several challenges, in which selection of inappropriate water and 

sanitation technologies is the major one. In SSA, around 30%-60% of the installed water 

and sanitation technologies and infrastructures are not properly functioning (Bouabid & 

Louis, 2015), which makes it a prevalent justification for the failure of the water, 
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sanitation and hygiene (WASH) sector. Beside the failure on the technologies, the 

inappropriate supply chain network that suits the conditions and needs of the community 

and the is another challenge for the water and sanitation delivery process in the region.  

 

 
Figure 2: Model formulation approach 

5. Conclusion 

After establishing a water and sanitation delivery process that considers a circular 

economy approach and performing an in-depth ELCA, this work developed an 

optimization-based decision support model. The multi-objective optimization model 

considers the three pillars of sustainability, namely environment, economic and social, by 

incorporating objectives of minimizing ecocost, capital cost and operating cost as well as 

maximizing the job creation of the entire supply chain. The decision support model 

developed here addresses the major challenges of SSA water and sanitation sector by 

providing the best supply chain network and water and sanitation delivery technologies 

that are customized to the circumstances and desires of the SSA community.  

Future work will focus on improving the water and sanitation network superstructure, 

adding other strategic decisions than technology selection and assess the sensitivity of the 

optimization results to environmental, technical, economic, social and political factors. 
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Abstract 

Batch processes are traditionally operated based on recipes. To replace the recipes and 

allow for more flexible operation, accurate process models are required for optimization 

or application of machine learning algorithms e.g., Reinforcement Learning. For optimal 

operation of real plants with help of model predictive control, the plant-model mismatch 

must be as small as possible. Available models for distillation in packed columns are 

insufficiently detailed for this purpose as they do not properly describe the dynamics and 

are typically not valid from start-up until shutdown. Therefore, we present a smooth and 

pressure-driven model of a real batch distillation column with a structured packing. We 

also show how to implement hold-time constraints for bang-bang controllers in 

continuously formulated systems. 

 

Keywords: pressure-driven, rate-based, batch distillation, hold-time constraints. 

1. Model 

The proposed model describes the whole batch cycle from start-up to shut-down including 

inertization for the separation of an ethanol-water mixture as an example system. The 

phase equilibria are relaxed using methods from (Sahlodin et al., 2016), which allows 

individual phases to appear or disappear. The system structure does not change, when it 

transitions from vapor-liquid to vapor- or liquid-only. It is resulting in mathematically 

feasible, but unphysical, compositions for non-existing phases i.e., they do not need to 

fulfill the summation term. However, this is inconsequential, because these compositions 

always get multiplied with hold-ups or flowrates, which are obviously 0, when the phase 

does not exist. 

The vapor streams are modeled pressure-driven, they are calculated from the pressure 

differences between the stages. The liquid flow is also modeled rigorously, but here the 

main driving force is gravity. It is assumed to be a uniform film flow along the packing, 

with the flowrate being a function of gravity, density, viscosity, and packing specific 

geometric parameters e.g., surface area and void fraction of the packing. To consider 

wetting of the packing, the liquid flow is only activated, once the holdup surpasses a 
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threshold, the dynamic liquid holdup of the packing. This activation is implemented in 

Eq. 1 to calculate the actual liquid flow, 𝐹𝑠𝑡
𝐿 ,with the binary variable 𝜎𝑠𝑡

𝐿 . Since 

experimental data for the holdup inside the packing is unavailable for the dynamic case 

in the open literature. The mentioned threshold is derived from the steady state correlation 

for total liquid holdup in packed columns at total reflux from (Rocha et al. (1993). 

𝐹𝑠𝑡
𝐿 =  𝜎𝑠𝑡

𝐿 𝐹𝑠𝑡
𝐿,𝑓𝑖𝑙𝑚𝑓𝑙𝑜𝑤

 (1) 

The model uses non-ideal thermodynamics. The activity coefficients are calculated with 

Wilson’s gE-Model (Wilson, 1964). To circumvent problems arising from unphysical 

compositions, the property equations are reformulated, when necessary, e.g., for activity 

coefficents and density. In Eq. (2), this reformulation is exemplarily shown for the activity 

coefficient. Here 𝛾𝑖
𝑔𝐸𝑚𝑜𝑑𝑒𝑙 and 𝛾𝑖

𝑎𝑐𝑡𝑢𝑎𝑙 are the activity coefficients calculated from Wilson’s 

equation and the one which is actually used in the system, respectively. 𝛾𝑖
𝑑𝑢𝑚𝑚𝑦

 is in this 

case 1 and 𝜎Σ𝑥 is a binary variable, which is 1 if the liquid phase exists and 0 in case it 

does not. 

𝛾𝑖
𝑎𝑐𝑡𝑢𝑎𝑙 =  𝛾𝑖

𝑑𝑢𝑚𝑚𝑦
+ 𝜎Σ𝑥 ∙ (𝛾𝑖

𝑔𝐸𝑚𝑜𝑑𝑒𝑙
− 𝛾𝑖

𝑑𝑢𝑚𝑚𝑦
) (2) 

The binary variables inside the model can be expressed by step- or the Kronecker-Delta 

functions, which are smoothened by sigmoidal or Gaussian functions, respectively. For 

numerical reasons alternative formulations based on complementarity constraints (Powell 

et al., 2016) are used in some places. 

2. Hold-Time Constraints 

The presented model is validated against a real-life plant at TU Berlin. The pressure inside 

the mini-plant column is controlled by a bang-bang controller: A magnet valve, which is 

either fully opened or closed, whenever the pressure is above or below the setpoint, 

respectively, what is typical for lab-scale columns. The switching frequency of real valves 

is limited. However, in a simple model the valve would flutter rapidly. To mimic the real-

life behavior, it is suitable to add hold-time constraints in the model, which force the valve 

to stay at any position for at least a specified period in time. 

Adding these hold-time constraints to a manipulated binary variable, such as the position 

of a valve or activation of a heater, is trivial in a discretized system, see Eq. 3, especially 

when discretized with constant time steps. Here uk is the manipulated variable at timestep 

k, which may only be altered, if at least Nk timesteps have passed since the last change. 

Nk depends of the time grid. In equidistant grids this simplifies to a constant N. 

0 = (𝑢𝑘 − 𝑢𝑘−1) ∙ ∑(𝑢𝑘−𝑛−1 − 𝑢𝑘−𝑛)2

𝑁𝑘

𝑛=1

 (3) 

Whilst discretization is beneficial and commonly used in some cases, e.g., for 

simultaneous optimization; forward integration of the continuously formulated system 

can still be advantageous in different scenarios, especially simulation. However, here it 

is non-trivial to add hold-time constraints. 

We propose to superpose the switching condition, which is based on the controlled 

variable with a decaying signal, which is triggered by an actual switch of the manipulated 

variable, resulting in an oversaturation of the switching signal. Hence, the switching 
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condition is only considered when the other signal has decayed. A signal flow graph for 

the exemplary pressure controller is shown in Figure 1. 

 

 

Figure 1: Signal Flow Graph of the proposed pressure controller 

 

The output value of the whole System, 𝜎𝑃𝐶 , describes the position of the valve. The output 

of the DT1-Element is a signal that peaks in either direction and then moves back to 0, 

whenever 𝜎𝑃𝐶  switches from 1 to 0 or vice versa. To circumvent the need to differentiate 

the input signal, the DT1-Element is replaced by a PT1 and a P element in parallel, which 

show the same behavior. 

Section B takes this signal as an input. If it is in the interval [-α, α], it returns 0, else it 

returns +2 or -2 depending on the input sign. This signal is added to the output of section 

A. The subsystem represents a classical bang-bang controller, which returns 1 or 0, when 

the difference to the setpoint is positive or negative, respectively. Finally, the sum of the 

2 sections is limited to [0,1] and represents the output of the whole system. α should be a 

small value e.g., 0.01 and the parameters for the transfer function can be calculated by 

Eq. 4, where t is the desired hold-time. 

𝑇 =
−𝑡

𝑙𝑜𝑔(𝛼)
 

𝐾 = 𝑇 

(4) 

The described controller can be implemented as a differential-algebraic-equation system 

(DAE) and the same smoothing techniques as before can be applied. 

3. Conclusions 

We presented a smooth pressure-driven model of a batch distillation column with 

structured packing, which can describe the whole batch cycle starting and ending cold 

and empty, including inertization and phase changes.  
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Furthermore, hold-time constraints were presented for both discretized, as well as 

continuously formulated systems.The controller was added to the column model and the 

resulting DAE system was solved with gPROMS®. 
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Abstract 

Long-term chemical storage of renewable hydrogen in ammonia is a potential building 

block in a carbon-free energy system. An integrated reactive adsorption column for 

ammonia synthesis may allow for an intensified and flexible process. To investigate this, 

we present a pseudo-homogeneous pressure-driven phase model representing the 

integrated unit. Using an operation schedule, the control trajectory is sequentially 

optimized by means of time-invariant parameters obtaining a single-pass conversion of 

YH2 = 76 %. Back-reaction of ammonia in presence of the catalyst and the need for a 

subsequent cryogenic separation unit may however be detrimental to the efficiency of the 

overall process design. 

Keywords: pressure-driven modeling, process intensification, sorption-enhanced 

catalysis, ammonia production 

1. Introduction 

Hydrogen will play a crucial role in the transition towards a decarbonized energy system. 

While its molecular properties (e.g.: density, diffusivity) currently complicate hydrogen 

storage and transport, ammonia (NH3) is a viable candidate substance for chemical 

hydrogen storage. Developing a renewable, resource-efficient, and flexible NH3 synthesis 

process is thus desirable to advance the utilization of green hydrogen. The major 

advantages of process flexibility, required for coping with volatile electricity supply, and 

increased efficiency (evasion of the limiting chemical equilibrium) could be achieved by 

cyclic sorption and desorption (Smith, 2021) of the product NH3 as compared to a recycle 

in the traditional Haber-Bosch process. 

2. Methods 

In this study, we employ a dynamic pressure-driven model of a reactive adsorption 

column. To this end, a (partial differential algebraic equation) PDAE representing the     

1-D dynamic pseudo-homogeneous phase model (Palys, 2018) is incorporated by reaction 

and sorption kinetic models available in the literature (Smith, 2021). Further, a cyclic 

batch operation schedule is proposed, i.e., a valve activation schedule: pressurization, 
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reaction/absorption and desorption, which is realised by temporal switching of the 

boundary conditions at the inlet and outlet as described in the simulation of 

(pressure swing adsorption) PSA beds (Moon, 2016).  

 

The PDAE is spatially discretized via orthogonal collocation on finite elements to result 

in a DAE, which permits the usage of gradient-based optimization methods. To handle 

the expected stiffness of the equation system the gProms® modelling environment is 

used. The defined operation recipe restricts the control space of the DAE to a set of time-

invariant recipe parameters (Löwe, 2001). Based on the developed model, several  

(optimal control problems) OCPs to maximize the hydrogen conversion, NH3 purity and 

the units’ productivity are formulated. Thus, the goal is to identify optimal recipe 

parameters for this recycle-less (i.e., single-pass) NH3 synthesis reactor. 

3. Results and Discussion 

To evaluate the potential for improvement in single-pass conversion for the integrated 

reactor-sorption system, a sensitivity study is performed. Here, the inlet pressure during 

pressurization pH and the outlet pressure during desorption pL are varied from 20-100 bar 

and 2–12 bar, respectively. The inlet composition is set to a stoichiometric H2/N2 molar 

ratio along with a uniform temperature over the whole domain of T = 573 K.  The results 

of the simulation campaign are shown in Figure 1. 

 

We calculate a maximum achievable single-pass conversion of the integrated sorption-

reaction unit of YH2 = 76 % at a time averaged outlet ammonia molar fraction of 

xNH3,out = 59 % at pH = 100 bar and pL = 2 bar. Integration with a gradient-free optimization 

algorithm in MATLAB® results in the same, yet trivial, optimal recipe parameters. 

 

The simulations indicate that sorbent material integration enables a single-pass H2-

conversion well beyond the chemical reaction equilibrium. Sensitivity studies on both the 

temperature window and the reaction/sorption kinetic models are conducted to define the 

performance targets for catalyst and sorbent material development. In general, fast 

adsorption/desorption kinetics at a high sorbent working capacity allow for a high feed 

throughput and conversion. However, a large sorption hysteresis (effectively decreasing 

the working capacity of the sorbent), back-reaction in the presence of the catalyst, and 

sorbent/catalyst material interactions could occur. All these effects would be detrimental 

to the conversion performance of the integrated reaction-sorption unit. 

 

Figure 1. Calculated reactor single-pass conversion (left) and average molar fraction ammonia 

molar fraction at the outlet (right) for varying inlet (pH) and outlet pressures (pL) 
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4. Conclusions 

This study presents a pressure-driven PDAE model for a novel reactive adsorption 

process for ammonia synthesis. Sensitivity studies regarding both material parameters 

and the operating window allowed us to examine the achievable conversion, purity and 

productivity performance of the integrated unit. Restriction of the control space via an 

operation recipe formulation enabled us to solve an OCP. Mathematical reformulation of 

the operation recipe is one possible way to render a broader range of numerical 

optimization methods, e.g., simultaneous methods, applicable to the OCP. Further, the 

presented model would allow for training of a data-driven regression model, which can 

be employed in a dynamic real-time optimization (D-RTO) framework.  

 

Including information about the performance from integrated catalyst-sorbent unit 

experiments to the rate-based model would provide further insight. However, the first 

OCP studies results already show an encouraging reactor unit performance, in the light 

of flexible and demand-responsive NH3 production. 
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Abstract 
This paper investigates the advancements in Process System Engineering (PSE) by 
integrating computational methodologies and tools to incorporate next-generation 
technologies such as Support Vector Machine (SVM) metamodels and Quantum 
Computing into PSE workflows. We use Python programming language to create an 
interface that interconnects Aspen Plus and Activity Browser, a graphical user interface 
for the Brightway2 LCA framework, to accelerate process modelling, simulation, and 
Life Cycle Assessment (LCA) while bridging the gap between process simulation and 
environmental impact assessment. 
  
We conduct multiple sensitivity analyses and use the automated interface framework to 
generate preliminary ReCiPE indicators for LCA. Additionally, we compare the 
performance of classical Support Vector Regression (SVR) models versus quantum SVR 
models. We transform classical machine learning models into quantum models using 
parametrized quantum circuits in Python's scikit-learn and Qiskit packages.  
 
Our preliminary results demonstrate the quantum SVR capabilities to reinforce more 
efficient, accurate, and sustainable automated process simulation optimization for next-
generation process design and assessment approaches. 

Keywords: Quantum Computing, Life Cycle Assessment, Support Vector Machine, 
Machine Learning, Process Simulation  

1. Introduction 
Process Systems Engineering has become an indispensable and well-established tool for 
developing, designing, and optimizing chemical processes since its beginnings in the 
1970s. Computational methodologies and tools made it feasible to model and simulate 
complex industrial operations, including traditional chemical processes as well as 
sustainable ones, enhanced by process intensification. Process simulations are used in the 
chemical industry to support the entire life cycle of a chemical process, including 
development, design, construction and operational optimization. Furthermore, 
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simulations enable a holistic understanding of the environmental impact associated with 
a product or process by modelling and analysing the environmental effects from raw 
material extraction to disposal. However, when developing innovative processes, there is 
currently no single process simulation environment capable of adequately representing 
all aspects of a process's life cycle. Life Cycle Assessment (LCA) studies and Techno-
Economic Analyses often result in numerous trial-and-error phases during technology 
upscaling, significantly extending time-to-market and costs (Algren et al., 2021). 

To effectively integrate process simulation with other applications, such as conducting 
Life Cycle Assessment (LCA), is a challenging and resource-intensive task due to the 
way commercial software is integrated into a company's infrastructure. Furthermore, the 
advancing digitalization within industrial environments demands open interfaces, 
modularization, and efficient data connections for feasible process modeling, simulation, 
and optimization. Machine learning and data-driven models are now available and can 
adapt flexibly to large datasets to analyze the behavior of developing technology at an 
industrial scale and create scenarios for optimizing environmental factors while meeting 
higher-level application demands for accuracy, convergence, and speed. 

To address the challenge of integrating and switching between these components based 
on specific application requirements, the utilization of Python can be a potent mean to 
accelerate process modelling, simulation, and Life Cycle Assessment (LCA) generation 
through an automated interface (Casas et al., 2020). The Activity Browser is an open-
source software for LCA projects within the Brightway framework. It enables Python 
integration for LCA parameterization, scenario modeling, graph exploration, and other 
advanced features. This approach effectively bridges the gap that typically exists between 
process simulation and the assessment of environmental impacts in a streamlined and 
efficient manner, 

Incorporating metamodeling strategies into complex process operations allows us to 
reduce model complexity and transform it into more manageable algebraic models. One 
effective way to achieve high accuracy and computational efficiency is by utilizing a 
Support Vector Machine (SVM) metamodel (Müller et al., 2017). However, the landscape 
of computational science is rapidly evolving, and a new horizon has emerged with the 
emergence of Quantum Computing. This presents a unique opportunity to seamlessly 
integrate quantum machine learning algorithms into the broader framework of 
metamodeling, optimization and decision-making. Implementing quantum machine 
learning algorithms could lead to faster training, improved data point separation, and 
better generalization performance, challenging traditional data science methods. We have 
decided to investigate the difference in performance between a classical (SVR) and a 
quantum (QSVR) support vector regression model, using the output data derived from an 
Aspen – Python – Activity Browser interface designed for simulating a hydrocarbon 
separation process, serving as an illustrative case study.   

For the SVR model we used Python's scikit-learn library and for the quantum part Qiskit 
packages for quantum machine learning have been applied (Benedetti et al., 2019). 
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2. Methods 
2.1. Interface Integration 
 
The Aspen-Python-Activity Browser framework is designed in a Jupyter Notebook to 
ensure flexibility and scalability in its functionality. This framework is the foundation for 
integrating various software tools and conducting comprehensive analyses (see fig. 2). 
The simulation section includes an open-source code library that facilitates the integration 
of simulations developed in Aspen Plus (ten Hagenet al., 2022). In our case study, we 
focus on the separation and conversion of a hydrocarbon mixture, which involves feed 
preparation, a DSTWU column, heat exchangers, and an RCSTR and a PLUG reactors to 
obtain main products (Prod1) and by-products, as shown in a simplified graphical 
representation in fig. 1. The simulation's inputs and outputs can be defined in this section. 
Upon linking the simulation, the outputs can be used as inputs for the environmental 
assessment section, where the process's life cycle assessment (LCA) is modelled upon 
Activity Browser, a graphical user interface for the Brightway2 open-source LCA 
framework (Steubing et al., 2020). The environmental section extracts LCA calculations 
and conducts analyses based on specific environmental metrics and data settings. We 
consider GWP (kg-CO2-eq/t prod1) and ReCiPe 2016 v1.03 endpoint (E) indicators, 
utilizing the ecoinvent 3.5 database (Köck et al., 2023). 

 
Figure 1 Simplified Process Flowchart for the Separation and Conversion of a Hydrocarbon 
Mixture comprising Propane, N-Butane, 1-Butene, Ethane, Propylene, and N-Pentane via 

Distillation (DSTWU) and Conversion (RCSTR and RPLUG) Units, Resulting in Two Distinct 
Product Streams 

2.2. Support Vector Regression 

The main goal of regression analysis is to identify the relationship between dependent 
and independent parameters, in order to predict the target variable. SVR allows for 
significant improvements in the area of Process Systems Engineering by predicting 
parameters which play a major role in the decisional processes related to optimization 
(Pasetto et al., 2022). Predicting environmental impact indicators, such as GWP and 
ReCiPe, as well as specific operational parameters, like the light key rate within a 
DSTWU, can play a crucial role in the optimization of industrial processes from an 
environmental standpoint. This predictive approach aids in the identification of trade-offs 
among various environmental impact categories and their relationship to the desired 
product quality and yield. SVR can be applied for linear and non-linear regression 
problems, by implementing a kernel function such as sigmoid, polynomial or radial basis 
function (as in our case). 
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2.3. Quantum Support Vector Regression 

The main goal of QSVR is to enhance the performance of classical machine learning 
regression models, up to the point of outperforming classical methods. The QSVR model 
developed in our work is based on the quantum kernel method applied on a 2 qubits 
parametrized quantum circuit (Pasetto et al., 2022). 
 

3. Results 
3.1. Dataset 

The output of the LCA scenario resulted from the Python-Aspen-AB interface has served 
as the dataset for the modelling task. The training and test datasets consist of 3 variables 
as follows: Light Key (operation parameter of the DSTWU column) and GWP and 
ReCiPe, the first one was defined as the label and the next 2 as features (LCA 
environmental indicators), each with 141 datapoints. These variables were selected 
because of their strong correlation with the operational process performance under 
investigation. The light key component often serves as the primary product, and its 
separation can result in substantial energy consumption. Predicting the behaviour of the 
light key component can contribute to energy optimization, cost reduction, and mitigating 
environmental impacts. Furthermore, while GWP helps to identify conditions linked to 
high global warming potential, ReCiPe can aid in assessing trade-offs among various 
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environmental impact categories when optimizing product quality and yield. For 
encoding classical data into quantum space, we have used a second-order Pauli-Z 
evolution circuit, named as ZZFeatureMap in Qiskit circuit library (Daspal, 2022; Qiskit, 
2023). The most efficient model parameters such as data splitting subsets, 
hyperparameters for both SVR and QSVR, and quantum kernel parameters have been 
determined empirically. The performance of created models is illustrated in the following 
subchapters. 
3.1.1. Classical SVR 
As a first step, the performance of the classical model has been evaluated by comparing 
test and training accuracies, the coefficient of determination (R2), and the root mean 
square error (RMSE) for each of the predicted variables: GWP and ReCiPe, presented in 
table 1 (Scikit, 2023).  
As expected, the classical SVR model performs very well, with a 100% accuracy and 
minor errors. 
 
Table 1: R2 and RSME for the classical SVR model  

 Accuracy 
(train) 

Accuracy 
(test) R2 RMSE 

GWP 1,00 1,00 1,00 0,15 
ReCiPe 1,00 0,99 0,99 0,07 

 
Figure 1 illustrates the parity plots between actual and predicted values and as it can be 
clearly seen, the predicted datapoints are nearly equal to the actual values. 
 

 
Figure 1: Actual vs predicted target values for the classical SVR model applied on the test subset 

 
3.1.2. Classical SVR vs Quantum SVR 
Table 2 displays the comparison of models’ accuracy obtained for classical and quantum 
SVR, applied on both training (subset size = 0,7) and testing (subset size = 0.3) subsets. 
The performance of QSVR model with quantum kernels is almost equivalent to the 
classical SVR model. Nevertheless, the current status of QSVR packages proved to be 
more suitable for the classification problem, rather than the regression problem, therefore 
only the accuracy has been evaluated at this stage. 
 
Table 2: Models’ accuracy for SVR and QSVR  

 Accuracy (train) Accuracy (test) 
SVR 0,91 0,89 
QSVR 0,89 0,90 
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The main reason for different accuracy outcomes for the SVR models in Table 1 and 
Table 2 is due to the fact that different values for random seeds have been tested. The 
main role of a random seed is to ensure the reproducibility of results and the fact that the 
code will give the same output after re-running it. As it can be seen, a variation in the 
initialization parameter has a dominant impact on the classical SVR model performance.  
At the same time the quantum SVR model does not seem to be affected by changing the 
random seed value, as in our current QSVR model the random state has been set to qiskit 
random number generator available in the algorithm utils global package (Qiskit, 2023).  

4. Conclusions 

The convergence of classical and quantum computing holds immense potential for 
revolutionizing optimization research across diverse domains. In our work, the 
performance of two regression models has been compared, one for a classical support 
vector regression and one for its quantum counterpart. Even though the QSVR does not 
present a significantly higher performance as compared to classical SVR, the potential of 
quantum machine learning models should be emphasized as it unlocks the way to 
exploring its potential for future applications on more complex problems and larger 
datasets. Furthermore, our ongoing work is dedicated to addressing the challenges of real-
time data evaluation and dynamic simulations. Our aim is to facilitate the seamless 
integration of quantum-enhanced techniques into practical applications in process control, 
techno-economic analysis, and environmental optimization. This marks a holistic 
advancement in Process System Engineering and environmental sustainability 
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Abstract 
We present and compare two novel data-driven modelling approaches for batch processes 
utilizing information from thermal images. Data from a bench scale A rotational molding 
experimental set up is used to illustrate the approaches. Like most batch processes, the 
key challenge is to develop a model for quality attributes (such as  impact strength and 
sinkhole area) that are only measurable after batch completion, using non-traditional 
sensors such as thermal images. We propose and compare multiple approaches 1) where 
the data from the images is reduced to a lower dimensional space using principal 
component analysis (PCA), and then a subspace modelling technique is used to derive a 
dynamic model and an associated quality model, 2) the image data is directly used in the 
subspace modelling technique to in turn determine the dynamic model and the associated 
quality model, and 3) the image data and quality model are derived through a Prediction 
Error Minimization approach.  

Keywords: Image-based dynamic and quality modeling, Batch Processes, Thermal 
images, Non-traditional sensors, Subspace Identification, Prediction Error Minimization 

1. Introduction  
Most industrial processes, regardless of the domain, have a common target of achieving 
high quality products. Sometimes, batch operation is preferred, for example, in 
pharmaceutical, or biochemical applications when the focus is on the quality requirement 
rather than the quantity of the products. However, due to this reason, coming up with a 
suitable control routine for the process becomes an important task to maintain consistency 
in the product quality. Model predictive controllers (MPC) have been conventionally used 
for many industrial applications. An MPC has an underlying dynamic process model 
which allows the controller to predict the future of the process and enables it to take the 
most optimum control action. Arriving at a good model is one of the challenges, 
especially in processes where there is no first principles model available. An even more 
pressing challenge and opportunity is the availability of non-traditional sensors such as 
sounds or images. In such cases, the model development becomes crucial in the eventual 
effectiveness of the control strategy.    
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There has been some work in utilizing high dimensional data directly, but most of the 
image-based modelling has been done in the context of soft sensing applications like 
monitoring and fault detection (Gopaluni et al. (2020)). Narasingam and Kwon (2017) 
have applied Dynamic Mode Decomposition (DMDc) directly on spatial CFD data to 
construct a dynamic model between the inputs and the outputs, which are specific points 
in the spatial data.  In this case, it is safe to assume that the states of the process are present 
in the high dimensional CFD (Computational Fluid Dynamics) data, and moreover the 
mapping between the states and the output is known to the authors (i.e., data at specific 
locations). In most cases, these two assumptions may not hold true. Likewise, Lu and 
Zavala (2021) have used DMDc on thermal images on a system with multiple heating 
inputs spread across the spatial field, with the controlled variable being the image itself. 
Often in processes, one might not have such a high dimensional reference signal, and 
moreover, the desired target might not be in the form of a setpoint in the first place, but 
rather for the processed product to meet a certain quality demand. There are other works 
(Masti and Bemporad (2021)) which combine the reduction of high dimensional data and 
constructing the dynamic model into one Neural Network model, but these approaches 
assume high volume of available data. In our case, and in most batch processes, we deal 
with a limited amount of experimental data and might not have the luxury to run too many 
experiments considering the material and the energy costs. Considering these issues, we 
present a general modelling approach to model the process, and present three novel 
approaches. Data from a Bi-axial Rotational Molding setup, which is a batch process used 
for manufacturing hollow plastics, is utilized. The system has only one heater as the input. 
The mold rotates biaxially inside the oven and a thermal imaging camera is placed outside 
the oven to capture the image of the mold, which is the only continuously measured output 
of the system. Although the rotation speed is given along with the equipment, the rotation 
is not perfect and hence the camera cannot be hard-coded to take images at particular 
instances to get the mold in the frame perfectly. Furthermore, there are two quality 
variables associated with the molded product; the sinkhole area percentage and the impact 
strength, which can be measured only through destructive means, only after the 
experiment is done. It is essential that a model is developed taking into consideration the 
aforementioned challenges. The proposed modelling approaches are as follows. First, a 
neural network-based classifier is trained on all the images of a batch, to detect whether 
the box is in the camera frame. For the images for which the box is detected, the modeling 
is done in 3 separate ways. In one approach, the high dimensional image data is reduced 
to a representative (lower dimensional) set of variables which reasonably represent the 
dynamics of the mold temperature- and/or even more importantly, captures the 
information necessary to estimate the final product quality. To achieve this, we fit a 
Principal Component Analysis (PCA) Model on only the images containing the box, to 
acquire a set of these latent variables. A Linear Time Invariant State Space (LTI SS) 
model is built between the input and the previously obtained latent variables and a Partial 
Least Squares (PLS) model is built between the latent variables and the quality 
measurements. In the second approach, a subsapce model is directly identified using the 
image data (without reduction), and an associated quality model is identified. Finally, in 
the third approach, a prediction error minimization approach is utilized to determine the 
dynamic and quality model simultaneously. We will first present the experimental setup 
in Section 2 and then present the proposed modelling approaches in Section 3. 
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2. Process description 
A small-scale rotational molding machine is utilized in the laboratory to manufacture 
plastic molded items. Both the inputs from the single heater coil and the resulting images 
from the rotational molding setup are supervised and manipulated using LabVIEW and 
MATLAB programs. A camera, positioned outside the oven, captures images through a 
narrow opening. High-density polyethylene powder is added to the mold at room 
temperature, while the oven is pre-heated to 300°C. Then the mold is placed in the oven 
and is rotated at a steady speed of about 8 RPM. Following the heating phase, the mold 
is shifted to a cooling chamber. The product, still enclosed in the mold, undergoes air 
cooling before extraction for subsequent quality testing. Key quality variables in this 
batch process, namely the sinkhole area and impact strength of the product, are assessed 
separately after the experiment once the product is obtained. 
 
In the rotational molding process, the degree of sintering is evaluated by examining 
surface voids. When polymer particles do not undergo complete sintering, the resulting 
product often displays a noticeable presence of surface voids. To analyze these voids, 
ImageJ is utilized, employing images of the mold captured by a digital camera. Another 
crucial quality parameter is the strength of the product, determined through Izod 
pendulum impact testing. The impact energy of the samples is measured in accordance 
with the ASTM D256 standard. Additional details regarding these quality variables in the 
context of this study are available in our earlier work (Chandrasekar et al., 2022). 

3. Proposed Modelling Approaches 
In this section, we present three modelling approaches to model the dynamics of the 
process along with the product quality using images. All these modelling approaches have 
a layered structure, where the first few layers are required to make it implementable in a 
closed loop setting.  

 
Figure 1 
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The first layer contains a Convolutional Neural Network (CNN) based classifier to 
differentiate between images that contain the mold from those that do not. An image, that 
is classified by the CNN model to contain the mold, goes through another pre-trained, 
CNN based object detection model (YOLOv3, You Only Look Once by Redmon and 
Farhadi (2018)), that captures the portion of the image that only contains the mold. This 
helps in reducing the image upto a certain extent by removing the surroundings, without 
losing important information related to the dynamics of the process itself. The frame size 
of the detected portion of image at every time step is set at 40x40. Once this is done, one 
of the proposed approaches is chosen to complete the modelling process. All the three 
approaches are shown in Figure 1. 
3.1. First Approach 
 

𝑇𝑇 = 𝑋𝑋 ∗ 𝑃𝑃 (1) 

𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘 (2a) 

𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑢𝑢𝑘𝑘 (2b) 

𝒬𝒬 = 𝑅𝑅𝑚𝑚� + 𝑃𝑃𝑚𝑚�𝑥𝑥[𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒] (3) 

In the first approach, the 40x40 mold-containing image is further reduced by Principal 
Component Analysis (PCA) (Equation (1)) to a single latent variable which is then used 
as an output variable along with the heater input while constructing a Linear Time 
Invariant (LTI) State Space (SS) model (Equation (2)) of an order 2 using subspace 
identification. A modified version of the deterministic subspace identification algorithm 
(Moonen et al., 1989) as presented in Corbettt and Mhaskar (2016) that is capable of 
handling multiple batch data has been used for identifying the state space model. Finally, 
a Partial Least Squares Regression (PLS) based quality model (Equation (3)) is 
constructed to link the product quality 𝒬𝒬 of a batch to the final state 𝑥𝑥[𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒]  of that batch, 
which is obtained from the state space model. Specific details regarding the quality 
modelling can be found in Mhaskar et al. (2019). The key quality variables of interest are 
sinkhole area % (𝒬𝒬1) and the impact strength (𝒬𝒬2). T represents the scores or the latent 
variables from PCA analysis, A, B, C, D are the model matrices for the SS model and 
finally, the R and P are the intercept and the coefficient matrices obtained from PLS 
regression.  
3.2. Second Approach 
 
In the second approach however, we directly apply subspace identification taking the 
40x40 image as the output and the heater input as the sole input for the LTI SS model. 
The rest of the approach is similar to the first approach. The only difference is we do not 
reduce the image using a dimensionality reduction technique like PCA prior to modelling 
the dynamics. 
3.3. Third Approach 
 
Unlike the first two approaches, where subspace identification was used to identify the 
dynamics between the outputs and the inputs and subsequently a PLS quality model was 
identified, this approach tries to identify both the dynamic model and the quality model 
together using Prediction Error Minimization (PEM). In particular, the dynamic model is 
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identified between the 40x40 image as the output and the heater input as the sole input, 
and. The optimization formulation used for identifying the models is given below: 
 

min
𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷, 𝑃𝑃, 𝑅𝑅 , 𝑥𝑥0(𝑏𝑏)

���𝑄𝑄𝑏𝑏 − 𝑄𝑄𝑏𝑏��𝑇𝑇 ∗ �𝑄𝑄𝑏𝑏 − 𝑄𝑄𝑏𝑏��  +    �(𝑦𝑦𝑏𝑏,𝑘𝑘 − 𝑦𝑦�𝑏𝑏,𝑘𝑘)𝑇𝑇 ∗ (𝑦𝑦𝑏𝑏,𝑘𝑘 − 𝑦𝑦�𝑏𝑏,𝑘𝑘)
𝑛𝑛𝑡𝑡

𝑘𝑘=1

�
𝑛𝑛𝑏𝑏

𝑏𝑏=1

 
 

(4a) 

𝑥𝑥𝑏𝑏,0 = 𝑥𝑥0 (4b) 

𝑥𝑥�𝑏𝑏,𝑘𝑘+1 = 𝐴𝐴𝑥𝑥�𝑏𝑏,𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑏𝑏,𝑘𝑘 (4c) 
𝑦𝑦�𝑏𝑏,𝑘𝑘 = 𝐶𝐶𝑥𝑥�𝑏𝑏,𝑘𝑘 + 𝐷𝐷𝑢𝑢𝑏𝑏,𝑘𝑘 (4d) 

𝑄𝑄�𝑏𝑏 = 𝑃𝑃 + 𝑅𝑅𝑥𝑥�𝑏𝑏,𝑛𝑛𝑡𝑡  (4e) 

Equation 4a, is the objective function, which minimizes the prediction error of the quality 
model and the dynamic model. 4b is the initial state of each batch in the data set. Note 
that the states also have to be estimated as part of the state space model identification. 4c 
and 4d form the state space model. 4e is the PLS based quality model which related the 
final state of the batch to the quality of the products obtained in that particular batch. 

4. Open Loop Prediction Results 
In this section, we compare and tabulate the prediction performance of the proposed 
approaches in Table 1. All the approaches were trained on 4 batches of data. We can see 
that the 1st approach performs well in predicting the end product quality from intermediate 
points during a batch. However, the 2nd approach gives better predictions towards the end 
of the batch. The PEM approach gives a model that is able to decently predict the qualities 
during the early stages of a batch and is able to recover the accuracy towards the end of 
the batch. It must be noted that PEM solves a non-linear optimization, and for this 
particular problem, the number of variables were found to be around 8000. Hence a good 
initial guess becomes crucial. The initial guess for the model parameters that were to be 
identified was used from the 2nd approach. Overall, we can see that all the three modelling 
approaches are able to sufficiently model the dynamics and in turn, the quality of the 
product in the batch process. 

Table 1 

 

Method 

Single Batch results 

Absolute errors in Q1 and Q2 for a batch, as 
seen from different time instances 

All batches 

Cumulative MSE 

Error in  

Q1 and Q2 

t = 20 t = 50 t = 80 t = End Point 

1st Approach 0.54 0.17 0.95 0.291 

2nd Approach 1.61 1.91 2.02 0.043 

3rd Approach 3.99 1.37 1.33 0.107 

5. Conclusions 
In conclusion, this work presents different ways of modelling the quality variables in a 
batch process when the only available output measurements are high dimensional in 
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nature. The proposed modelling approaches involve a combination of CNNs, PCA, PLS 
and LTI SS models to completely account for the process dynamics. In particular, the 
CNN models were used to detect images containing the mold and cut out the surrounding 
portions from the image. Then for the 1st approach, PCA is done on the images to reduce 
the high dimensional image to a single latent variable which can then be used as an output 
variable along with the input for subspace identification and finally quality modelling. 
For the 2nd and 3rd approaches, no reduction was done and the whole image was taken in 
the output space while constructing the LTI SS dynamics model and PLS quality model. 
Subspace identification and subsequently PLS was used in 2nd approach whereas both the 
models were jointly identified using PEM in the 3rd approach. The results show that all 
three approaches are able to sufficiently model the key quality variables of the batch 
process, hence making them implementable under closed loop control, which is the true 
objective. 
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Abstract 
Current life cycle assessments (LCAs) of conventional and emerging chemical 
technologies often neglect future changes in the economy required to meet climate goals, 
such as those affecting transportation systems and heat and power generation. 
Disregarding these trends, which will shape the future economy, could lead to less 
accurate assessments and spurious conclusions. Hence, in this study, we conducted a 
prospective LCA to understand how future changes in the economy (until 2050) will 
affect the environmental impact of chemicals, using ammonia as a representative case. 
To achieve this, we used background data consistent with climate policies aimed at 
limiting global temperature rise across 26 regions. Our findings reveal that the 
environmental gap between fossil and green ammonia will significantly increase in the 
future, with solar-based routes showing the most improvement due to efficiency gains in 
solar panels and their lower carbon footprint resulting from the decarbonization of the 
energy mixes used in their manufacture. Overall, this study emphasizes the importance 
of considering future trends in the assessment of chemical technologies to draw a more 
comprehensive picture of their environmental potential. 

Keywords: climate policies, platform chemicals, prospective life cycle assessment. 

1. Introduction 
The chemical industry poses a formidable challenge towards decarbonization, primarily 
due to its heavy reliance on fossil fuels, leading to 5.6 Gt CO2-eq, accounting for 10% of 
global GHG emissions (Bauer et al., 2023). Moreover, only one-third of these emissions 
are direct, with the remaining attributed to energy acquisition and the upstream value 
chain, highlighting the industry’s dependence on global energy systems and supply 
chains. However, this challenge also presents an opportunity to reduce environmental 
impacts in chemical production through decarbonization of other key sectors. In recent 
times, there have been rapid technological advancements in response to decarbonization 
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challenges and climate policies aligned with the Paris Agreement. In this context, key 
platform chemicals such as ammonia could play a crucial role in reducing emissions due 
to their large production volumes and diverse applications. Ammonia plays a pivotal role 
in the production of fertilizers, ensuring global food security. Currently, 60 to 70% of the 
ammonia is produced from fossil fuels, leading to emissions of 450 Mt CO2 y–1 
(Gabrielli et al., 2023). Several studies have evaluated low-carbon production routes for 
ammonia from renewable carbon and hydrogen-based feedstocks (D’Angelo et al., 2021; 
Gomez et al., 2020). These analyses have consistently highlighted the environmental 
superiority of green routes over their fossil counterparts. However, the majority of them 
often assume that the foreground system (chemical plant) interacts with the existing 
energy systems and supply chains, neglecting forthcoming decarbonization efforts, which 
could lead to less accurate and meaningful assessments. Hence, in this work, we evaluate 
the environmental impacts of fossil and green ammonia pathways until 2050, by 
considering expected changes in the power, materials, and transportation sectors under 
three climate-scenarios: a baseline scenario (3.5 °C), and two scenarios consistent with 
the 2 °C and 1.5 °C targets, respectively. Furthermore, we highlight the significance of 
locations in decision-making, by performing a temporal region-specific prospective LCA 
for 26 regions. Our results show that green ammonia could become more environmentally 
appealing in the future than originally thought. 

2. Methods 

In this study, we follow ISO 14040 and 14044 standards (International Standards 
Organization, 2006) in four phases. Phase one involves defining the goal and scope, 
where we assess the production of 1 kg of ammonia via specific technologies, considering 
cradle-to-gate impacts from 2020 to 2050 and various climate targets. Phase two includes 
the inventory analysis, where we use life cycle inventory (LCI) data generated 
automatically utilizing the IMAGE (Integrated Assessment of Global Environmental 
Change with IMAGE 3.0, 2014) Integrated Assessment Model (IAM) to evaluate the 
environmental performance of both fossil and green pathways for ammonia production. 
This enables us to project potential economic scenarios and provides insights into the 
environmental impacts based on expected socioeconomic and technological 
advancements. Specifically, we adopt the middle-of-the-road shared socioeconomic 
pathway (SSP2) and consider a range of representative concentration pathways (RCPs), 
including RCP6, RCP2.6, and RCP1.9. RCP6 corresponds to a scenario limiting global 
temperature rise to 3.5 °C, while RCP2.6 and RCP1.9 correspond to scenarios limiting 
temperature rise to 2 °C and 1.5 °C, respectively. To generate inventories for prospective 
LCAs covering the time period from 2020 to 2050, we utilize the premise framework 
(Sacchi et al., 2022). The year 2020 is considered as the reference year for our analysis. 
Additionally, we perform a regional assessment for the production of these platform 
chemicals across 26 global regions, considering location-specific temporal dynamics. 
Phase three involves life cycle impact assessment (LCIA) using IPCC 2013 global 
warming potentials (GWPs) and Environmental Footprint 3.0 methods to quantify various 
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impact categories, with a focus on climate change. Lastly, phase four involves 
interpretation of the results obtained. 

3. Results and Discussions 

The impact of both fossil and green ammonia will decline in the future, but the 
environmental gap between them will grow substantially, thus drastically improving the 
environmental appeal of green ammonia (Figure 1a).  

 
Figure 1 Climate change impacts of ammonia production technologies. (a) Global average 

impacts of fossil, solar and wind-based production from 2020 to 2050 across three scenarios 
(3.5 °C, 2 °C, and 1.5 °C). Regional analysis under the 2 °C scenario for (b) solar and (c) 

wind-based production pathways. 

 
Particularly, under an aggressive climate policy, such as the 1.5 °C scenario, these 
impacts will decrease significantly, with both the solar and wind-based pathways 
reducing their impact by 70% in 2050 (compared to 4% in the fossil analogue). Moreover, 
solar-based routes are projected to compete with, or even outperform, their wind-based 
counterparts. Under the moderate 2 °C scenario, the impacts of solar and wind-based 
ammonia routes are projected to decrease by two-thirds compared to their respective 2020 
values. In both scenarios, green hydrogen accounted for half of the total impacts in 2020, 
and its contribution is expected to increase significantly to at least 80% by 2050. Grid 
electricity played a major role in green ammonia production due to the high-pressure 
Haber-Bosch process. However, by 2050, this contribution is expected to decrease 
six-fold due to the anticipated decarbonization of the electricity mix. Even under the 
baseline 3.5 °C scenario, the green ammonia routes are expected to display significant 
reductions ranging from 17% to 42%. Furthermore, a regional assessment reveals 
significant variations in impact reductions for both solar (Figure 1b) and wind-based 
(Figure 1c) ammonia production, with African regions demonstrating the highest 
reductions. This underscores the crucial importance of the location of green facilities in 
maximizing global benefits. These results indicate that a paradigm shift may occur, i.e., 
solar-based production routes may demonstrate the highest reduction in climate change 
impacts over time, approaching the performance levels of their corresponding wind-based 
counterparts. This nuances previous studies that consistently found wind-based routes to 
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outperform solar pathways. This is in alignment with investigations indicating that wind 
turbine performances are plateauing and the most significant improvements in carbon 
intensity will be derived from the manufacturing and end-of-life recycling of these 
turbines (Li et al., 2022). 

4. Conclusions 

In this work, we assess the impact of future economic trends, with a focus on climate 
policies, on key platform chemicals, using ammonia as a testbed. We conduct this analysis 
across 26 regions spanning from 2020 to 2050. Our findings reveal that while the impact 
of both fossil and green routes will decrease, the gap between them will widen, especially 
under ambitious climate policies. Additionally, we emphasize the significance of facility 
location in our analysis, as it can significantly influence the results over time. Overall, 
this work underscores the importance of considering technological advancements, market 
trends, and regional factors in LCAs of emerging technologies. We hope this study will 
aid in making informed decisions during the transition towards more sustainable 
chemicals. 
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Abstract 
In this study, we utilize a physics-guided data-driven approach to model capacity loss in 
lithium-ion batteries. Spline fitting is used for fitting currently available data, with 
additional constraints imposed by the physical model. For future data, the extension of 
the spline fit is governed by the physical model that accounts for reaction diffusion, solid 
electrolyte interphase growth, and lithium plating.  While both the physical model and 
spline fitting are able to model data across a large capacity range, only the proposed 
approach can predict degradation over time with a limited amount of data during the 
period when reaction-diffusion predominates.  The ability to detect onset of a fast 
degradation behavior substantially enhances the accuracy of remaining useful life 
predictions for batteries and improves battery management systems. 
Keywords: lithium-ion battery, capacity loss, reaction-diffusion, lithium plating, 
physics-guided data driven model 

1. Introduction  
Modelling and predicting the capacity loss of lithium-ion batteries is a challenging 
research problem, due to the complexity of loss mechanisms, unit-to-unit variations, and 
different charge-discharge histories. It is known that capacity loss in a battery can be 
primarily attributed to the formation the solid electrolyte interphase (SEI) (von 
Kolzenberg et al., 2020) and lithium plating (Yang et al., 2017). The onset of lithium 
plating causes rapid, accelerated capacity loss. However, such onset varies from unit to 
unit and depends on the charging rate.  Parameters of physical models must be obtained 
only after sufficient data on various phenomena has been collected. On the other hand, 
despite of the prevalence of data-driven models in battery research (Severson et al., 2019), 
few of them take the underlying physical mechanisms into consideration and hence lacks 
the ability to predict future decay behaviors. In recent years, physics-guided machine 
learning has attracted interest in many engineering fields (Williard et al. 2020). In this 
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study, we will examine the advantage of this approach by modelling the capacity loss data 
we have collected.   

2. Experimental 
Commercially available 3350mAh, 18650 cylindrical cells (Panasonic NCR18650B) 
were used in our experiments. A charge-discharge test chamber (NEWARE, CT-4008T-
5V6A-S1) with temperature control was utilized. The chamber temperature was set at 
25°C. Charging was carried out at 0.5C, involving a constant current charging process 
until the battery reached a cut-off voltage of 4.2V, followed by maintaining a constant 
voltage of 4.2V until the current dropped to 0.02C. The battery was then discharged at 
1C. Between each charge and discharge cycle, there was a resting period of 1.5 hours. 

3. Physical Model 
This study models capacity fade by considering lithium loss due to both the formation of 
the solid electrolyte interface (SEI) on the negative electrode and lithium plating on the 
interface between the negative electrode and the separator. 
3.1. SEI formation 

The SEI is composed of lithium ethylene decarbonate, and the reaction is depicted as 
follows: 

2𝐶𝐶2𝐻𝐻4𝐶𝐶𝐶𝐶3 + 2𝐿𝐿𝐿𝐿+ + 2𝑒𝑒− → (𝐶𝐶𝐶𝐶2𝑂𝑂𝐶𝐶𝐶𝐶2𝐿𝐿𝐿𝐿)2(s) + 𝐶𝐶2𝐻𝐻4 
As an electrochemical reaction, the SEI reaction obeys the Butler-Volmer equation, 
combined with species conservation of diffusion. We can get the differential equation of 
capacity loss due to SEI formation as depicted in Eq. (1), in which 𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆 is the capacity 
loss due to SEI formation, 𝑡𝑡 is the cumulative charging time, 𝑉𝑉 is the initial negative 
electrode void volume, 𝑐𝑐𝐸𝐸𝐸𝐸0  is the bulk concentration of EC, 𝑎𝑎𝑠𝑠 is the specific interfacial 
surface area of graphite, 𝐹𝐹 is Faraday’s constant, 𝑘𝑘0,𝑆𝑆𝑆𝑆𝑆𝑆 is the kinetic rate constant of the 
SEI reaction, 𝛼𝛼𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆  is the cathodic transfer coefficients of the SEI reaction, 𝑅𝑅  is the 
universal gas constant, 𝑇𝑇 is the absolute temperature, 𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆 is the overpotential of SEI the 
reaction, 𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆 is the molar weight of the SEI, 𝐷𝐷𝐸𝐸𝐸𝐸  is the diffusivity of EC in the SEI, and 
𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆 is the density of the SEI. 

 

𝜕𝜕𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆
𝜕𝜕𝜕𝜕

=
𝑉𝑉𝑐𝑐𝐸𝐸𝐸𝐸0

2

𝑎𝑎𝑠𝑠𝐹𝐹𝑘𝑘0,𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛼𝛼𝑐𝑐,𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹
𝑅𝑅𝑅𝑅 𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆�

+ 2𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆
𝐹𝐹2𝐷𝐷𝐸𝐸𝐸𝐸𝜌𝜌𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉

𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆
 

(1) 

3.2. Lithium plating 

Lithium plating is an irreversible side reaction occurring in the anode, represented as  
𝐿𝐿𝐿𝐿+ + 𝑒𝑒− → 𝐿𝐿𝐿𝐿(s) 

The capacity loss due to lithium plating is given by 

 
𝜕𝜕𝐶𝐶𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕

= 𝑎𝑎𝑠𝑠𝑖𝑖0,𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝛼𝛼𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙𝐹𝐹
𝑅𝑅𝑅𝑅

𝜂𝜂𝑙𝑙𝑙𝑙𝑙𝑙� (2) 

in which 𝑖𝑖0,𝑙𝑙𝑙𝑙𝑙𝑙  is the exchange current density of lithium plating, 𝛼𝛼𝑐𝑐,𝑙𝑙𝑙𝑙𝑙𝑙  is the cathodic 
transfer coefficient of lithium plating, and 𝜂𝜂𝑙𝑙𝑙𝑙𝑙𝑙 is the overpotential of lithium plating. 

3.3. Simplified model  

The following assumptions were made to simplify the model: 
 Side reactions occur only during the charging phase. 
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 The rate of SEI formation depends only on the electrolyte solvent concentration, 
which means that the overpotential of the SEI reaction remains constant. 

 The exchange current density of lithium plating is constant 
 The overpotential of lithium plating increases linearly with cumulative charging 

time, and exponential growth in lithium plating becomes prominent only after a 
period of charging. 

 The capacity loss due to the two mechanisms can be integrated independently and 
is additive. 

 The capacity loss can be normalized to the range [0,1] over the time period [0,∞). 
Based on the above-mentioned equations and assumptions, we can derive a simplified 
model of capacity loss:  

 𝐶𝐶𝐶𝐶𝑝𝑝ℎ𝑦𝑦(𝑡𝑡|𝜷𝜷) =
𝑡𝑡𝑡𝑡𝑡𝑡−1 �𝛽𝛽1��1 + 𝛽𝛽2𝑡𝑡 − 1� + 𝛽𝛽3�𝑒𝑒𝛽𝛽4(𝑡𝑡−𝛽𝛽5)+ − 1��

(𝜋𝜋/2)
, (3) 

where 𝛃𝛃 = (𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽5 )′. 

4. Physics Guided Spline Fitting 
I-spline (Ramsay, 1988), widely used as a spline basis for regression analysis where 
monotonicity is desired, is defined as 

 𝐼𝐼𝑖𝑖(𝑡𝑡|𝑝𝑝,𝒦𝒦) ≡ � 𝑀𝑀𝑖𝑖(𝑢𝑢|𝑝𝑝,𝒦𝒦)
𝑡𝑡

−∞
𝑑𝑑𝑑𝑑, 𝑖𝑖 = 1,2, … ,𝑁𝑁,  (4) 

in which 𝑝𝑝 is the order of the piecewise polynomial, 𝒦𝒦 ≡ {𝑘𝑘1, 𝑘𝑘2, … , 𝑘𝑘𝑁𝑁+𝑝𝑝} is a set of 
knots in ascending order, and 𝑁𝑁 is the number of free parameters that I-splines having the 
specified continuity properties. With 𝑝𝑝 = 1,  

 𝑀𝑀𝑖𝑖(𝑢𝑢|1,𝒦𝒦) = �
1

𝑘𝑘𝑖𝑖+1 − 𝑘𝑘𝑖𝑖
,        𝑓𝑓𝑓𝑓𝑓𝑓  𝑘𝑘𝑖𝑖 ≤ 𝑢𝑢 < 𝑘𝑘𝑖𝑖+1,

0,                         𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.            
 (5) 

For 𝑝𝑝 > 1, 

𝑀𝑀𝑖𝑖(𝑢𝑢|𝑝𝑝,𝒦𝒦)  = 𝑝𝑝 � (𝑢𝑢−𝑘𝑘𝑖𝑖) 𝑀𝑀𝑖𝑖�𝑢𝑢�𝑝𝑝 − 1,𝒦𝒦� + �𝑘𝑘𝑖𝑖+𝑝𝑝−𝑢𝑢� 𝑀𝑀𝑖𝑖+1�𝑢𝑢�𝑝𝑝 − 1,𝒦𝒦��
(𝑝𝑝−1)�𝑘𝑘𝑖𝑖+𝑝𝑝−𝑘𝑘𝑖𝑖�

.    (6) 

We fit capacity loss with a linear combination of I-splines:  

 𝐶𝐶𝐶𝐶�(𝑡𝑡|𝛅𝛅,𝒦𝒦) = �𝛿𝛿𝑖𝑖 𝐼𝐼𝑖𝑖(𝑡𝑡|𝑝𝑝,𝒦𝒦)
𝑁𝑁

𝑖𝑖=1

, (7) 

where 𝛅𝛅 = (𝛿𝛿1, 𝛿𝛿2, … , 𝛿𝛿𝑁𝑁 )′  with 𝛿𝛿𝑖𝑖 ≥ 0  are unknown parameters to be estimated. 
Physics-guided I-spline fits currently available data but is subject to additional constraints 
imposed by the physical model. To achieve it, for fixed λ and 𝒦𝒦, the following objective 
is optimized:  

 

�𝛅𝛅�𝜆𝜆,𝒦𝒦 ,𝜷𝜷�𝜆𝜆,𝒦𝒦� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝛅𝛅,𝜷𝜷

� �𝐶𝐶𝐶𝐶(𝑡𝑡) − 𝐶𝐶𝐶𝐶�(𝑡𝑡|𝛅𝛅,𝒦𝒦)�
2

𝑡𝑡∈𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

+ 𝜆𝜆 � �𝐶𝐶𝐶𝐶�(𝑡𝑡|𝛅𝛅,𝒦𝒦) − 𝐶𝐶𝐶𝐶𝑝𝑝ℎ𝑦𝑦(𝑡𝑡|𝜷𝜷)�
2

.
𝑡𝑡∈𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

 
(8) 

Here,  𝜆𝜆 > 0  controls the trade-off between the spline fitting and physical model. Finally, 
the optimal 𝜆𝜆 and 𝒦𝒦  are tuned on a grid via the Genetic Algorithm to minimize the 
validation data loss: 

 (𝒦𝒦∗, 𝜆𝜆∗) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
𝒦𝒦,𝜆𝜆

� �𝐶𝐶𝐶𝐶(𝑡𝑡) − 𝐶𝐶𝐶𝐶��𝑡𝑡�𝛅𝛅�𝜆𝜆,𝒦𝒦 ,𝒦𝒦��
2

𝑡𝑡∈𝐷𝐷𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

. (9) 
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5. Results and Discussions 
5.1. Physical Model 

Initially, we fit the complete dataset using the physical model through a nonlinear least 
squares method to validate the model. Figure 1a indicates that the simplified physical 
model adequately captures the pattern of capacity loss. As mentioned earlier, the growth 
of SEI can be seen as a diffusion-controlled reaction. Initially, the SEI layer is relatively 
thin, leading to a faster diffusion rate and a quicker capacity degradation. As the thickness 
of the SEI layer increases, the rate of degradation gradually slows down. Notably, the 
capacity loss exhibits a square root correlation with cumulative charging time before 
1200h in Figure 1a, aligning with the behavior described by the reaction diffusion model. 
As the SEI layer thickens, it leads to a linear increase in lithium plating's overpotential 
over time. Once the SEI layer reaches a certain thickness, it triggers lithium plating. This 
rapid reaction significantly accelerates the loss of battery capacity with exponential 
correlation. In Figure 1a, it sharply increases as cumulative charging time reaches 1200 
h, indicating the onset of lithium plating. Figure 1b illustrates fitting results of physical 
models using data from the initial 600 cycles. It seems there's a strong fit in describing 
the SEI growth phase, but there's no detection of the occurrence of lithium plating 
behavior. Obviously, the absence of data featuring significant lithium plating hinders the 
detection of its onset, leading to square root correlation prediction. 

a 

 

b 

 

Figure 1: Physical model fitting with full range (left) and 600 cycles (right) of data 

5.2. I-spline Fitting 

Splines are widely recognized in numerical analysis for their exceptional performance in 
interpolation. In this section, we first fit the spline model with the full range of data. With 
a setup featuring 4 equally spaced knot intervals and an order of 4, Figure 2a suggests 
that the I-spline model effectively captures the pattern of capacity loss through 
interpolation. Figure 2b illustrates the fitting results of I-spline models using data from 
the initial 400 cycles as training data and the subsequent 200 cycles for validation. The 
optimal outcome is achieved with a fourth-order spline and three internal knots. Although 
I-splines are monotonically non-decreasing, through adjusting weight of each I-spline 
composing data-driven model can change tendency of the model. As the result of scarce 
data of lithium plating in training data, the weight of the spline in the last interval is adjust 
low. In this condition, the model underestimate the capacity loss of follow-up data. In 
conclusion, the lack of substantial data regarding lithium plating hampers the model’s 
performance in extrapolation. 
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a 

 

b 

 

Figure 2: I-spline model fitting with full range (left) and 600 cycles (right) of data 

5.3. Physics-Guided I-Spline Fitting 

We incorporated a data-driven model into our physical mechanism analysis, utilizing the 
first 400 cycles as training data and the subsequent 200 cycles for validation. The fifth-
order spline with 4 inner knots stands out as the optimal choice due to its minimal loss. 
The positions of each knot are illustrated by dotted lines along the x-axis. Within this 
physics-guided data-driven model, Figure 3 predicts the information of the onset of 
lithium plating that both physical model and I-spline model couldn’t achieve. The model 
adjusts the location of knots to satisfy the physical constrain in validation part. The 
location of the last internal knot is moved forward, so that the curve can match both data 
and physical model. It comes out that the physics-guided data-driven model can not only 
forecast the emergence of the turning point but also accurately track the trajectory of 
capacity loss. 

 

Figure 3: Physical-guided I-spline fitting model fitting with limited range data 
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6. Conclusions 
In this study, we integrate a physical model with a data-driven approach to predict future 
capacity loss in lithium batteries. The experimental results show that while the physical 
model can effectively explain the mechanism of capacity loss over time, adequate data is 
crucial for accurate model parameterization. Otherwise, the physical model fails to detect 
the onset of lithium plating. Additionally, I-spline, known for its exceptional interpolation 
performance, shows less favorable results in extrapolation. The physics-guided data-
driven model, which integrates spline and physical constraints, comes in handy when 
training data is insufficient. Consequently, this model predicts capacity loss more 
accurately than either the physical model or I-spline alone. It showcases significant 
potential in predicting battery end-of-life and enhancing battery management systems. 
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Abstract 
In this study, numerical modelling that couples mass transfer and reaction kinetics has 
been performed on a process designed for ikaite production involving dissolution of 
calcite and the subsequent controlled precipitation to favour ikaite selective 
crystallization. Multiple configurations regarding supply of calcite particles and agitation 
were considered to evaluate energy consumption. Through simulation in COMSOL, the 
results identified the importance of dissolution and crystallisation over degassing, and the 
significant influence of calcite particle size and agitation speed on total energy demand, 
which are to be focused on in the subsequent experimental studies.  

Keywords: dissolution, crystallization, ikaite, energy efficiency 

1. Introduction 
In order to reach the goals of the Paris agreement, it has been considered necessary to 
remove CO2 from the atmosphere along with significant reduction of emissions. Oceans 
have been acting as the natural sink for CO2. To enhance this process as a way to actively 
remove CO2 from the atmosphere, it has been proposed to dissolve suitable minerals in 
seawater to increase alkalinity, which promotes the dissolution of atmospheric CO2 to 
form bicarbonates. Especially, calcite (CaCO3) as a relatively fast dissolving mineral has 
been suggested for this purpose, which however has already supersaturated the ocean 
surface, making it impossible to draw down CO2 from air through its dissolution.   

To address this issue, the use of other minerals has been proposed, including particularly 
hydrated CaCO3 minerals such as ikaite, which can overcome the limitation of calcite and 
dissolve in seawater naturally, hence fulfilling the purpose of CO2 removal (Renforth & 
Henderson, 2017). However, the natural occurrence of ikaite is extremely low, which 
means that it needs to be manufactured artificially for use in ocean alkalinity 
enhancement. To understand the feasibility and cost of ikaite manufacturing, the current 

95



   

work extends an earlier study (Renforth et al., 2022) through process modelling, 
particularly aiming at quantifying energy consumption of a potentially feasible process.   

2. Process configuration and modelling 
A COMSOL model consisting of a dissolution reactor, a degasser and a crystallizer was 
developed to create the ikaite production process (Figure 1), following the configuration 
and process conditions with constant temperature at 276.15K throughout the system while 
the dissolution reactor, degasser and crystallizer were maintained at 2, 0.5 and 0.02 bar 
pressure respectively as proposed by Renforth et al. (2022). 
 

 
Figure 1. Ikaite production process configuration (Renforth, et al., 2022) 

All the three reactors were modelled as stirred tanks, operating in a batch mode. The 
dissolution reactor was fed with (recycled) CO2 gas and calcite solid particles to dissolve 
the latter in water. The dissolution product solution entered the degasser tank where the 
total dissolved carbon (TDC, including CO2-aqueous, HCO3

-, CO3
2-) was partially 

removed from the solution, with the remaining solution entering the crystallizer. In this 
final reactor, TDC was further removed due to the pressure difference, and seeded 
crystallization of ikaite occurs. The evolved CO2 gas flows from the degasser and the 
crystallizer were recycled through two compressors back to the dissolution reactor which 
also received the depleted solution from the crystallizer through a pump. 
To model these reactors, calcite particle dissolution was simulated using the particle 
shrinking model. The chemical reactions depicting calcite dissolution and the aqueous 
phase reactions were considered following the studies of Plumber and Busenberg (1982) 
and Cents et al (2005) respectively. The gas-liquid mass transfer followed the same 
approach in Xing et al (2023). Precipitation of ikaite was modelled using the empirical 
kinetic equation proposed by Papadimitriou et al. (2014), while the supersaturation and 
the precipitation constants were calculated according to Strohm et al. (2022). The 
secondary nucleation and growth equations were utilized in the quadrature method of 
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moments (QMOM) equations (Wei, et al., 2001) to simulate the ikaite precipitation in 
COMSOL. 

3. Energy Calculations and Simulation Cases 
The current study explores the direction of optimization guided by the minimization of 
energy consumption per unit mass production of ikaite. To calculate energy consumption, 
the following operations have been considered: 
• Compressors for the recycling CO2 gas flows  
• Pumping for water recycle 
• Agitation in the stirred tanks 
• Grinding for preparing calcite particles 
Grinding energy was calculated from the method given by Xing et al (2022), while the 
energy consumption of the other processes was calculated using standard methods. 
 
Through preliminary simulation tests, it became clear that the degassing process was 
significantly faster than the other two processes which was therefore excluded in the 
analysis. The duration of dissolution was potentially affected by both gas-liquid mass 
transfer and the surface dissolution kinetics. Therefore, its stirring speed (affecting mass 
transfer) and feed calcite particle diameter (affecting area available for surface 
dissolution) were chosen as key parameters for analysis. Besides, the stirring speed in the 
crystallizer, which affects the evolution of CO2 gas through gas-liquid mass transfer, was 
also chosen to assess its effect. Table 1 shows all the cases comprising combinations of 
different settings of these parameters.  

Table 1. The configurations considered for the energy modulations. 
Case no Stirring speed in 

dissolution reactor (RPM) 
Stirring speed in the 
crystallizer (RPM) 

Particle diameter 
(µm) 

Case1 60 100 10 
Case2 30 30 60 
Case3 60 30 60 
Case4 30 100 60 
Case5 60 100 60 
Case6 100 30 60 
Case7 100 100 60 
Case8 30 60 60 
Case9 60 60 60 

Case10 60 100 180 

4. Results and Discussion 
Figure 2 shows the key simulation results of the base case. One can see significant CO2 
dissolution (in the dissolution reactor) and evolution (in the crystalliser) within a very 
short period of operation, followed by more gradual increase or decrease in TDC caused 
mainly by the dissolution or crystallisation. In contrast, the concentration of calcium ions 
changed more evenly. In term of the batch duration, dissolution appeared to consume 
much longer time than crystallisation.  On energy consumption, Table 2 shows the results 
of the base case. 
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Figure 2. Simulation results of the base case (case 5). 

Table 2. Energy consumption during various operations of the base case per kg ikaite. 
Operation Energy Consumption 

(kJ/kg ikaite) 
Compressor1 5.92E1 
Compressor2 8.52E2 
Agitation in dissolution reactor 5.93E2 
Agitation in crystallization 4.05E3 
Water pumping 3.62E2 
Grinding 3.86E1 
Total 5.96E3 

The overall energy consumption per one cycle of ikaite production was calculated to be 
5.96E3 kJ/kg of ikaite production. Amongst all the operations, agitation was observed to 
have contributed the highest to the energy consumption followed by compressions. 
 
Figure 3 summarised the energy consumption results of all the simulation cases. It can be 
seen that the particle diameter has profound influence. Smaller particles, although 
consuming more grinding energy, lead to a shorter dissolution time and hence lower 
energy consumption for agitation. A higher stirring speed always leads to the increase in 
the power required for agitation (while with limited impact on the dissolution rate, not 
shown) and hence higher energy consumption. 
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Figure 3. Specific energy consumption by cases listed in Table 1. 

Amongst all the cases considered, Case 7, with 100rpm dissolution and crystallizer 
stirring speeds with 60µm feed particle size was observed to have consumed highest 
amount of energy with a total of 8.83E3 kJ/kg of ikaite. The minimum energy 
consumption was observed for the case 2 with 30rpm each with 60µm feed particle size 
with 1.60E3 kJ/kg of ikaite. 

5. Conclusion 
This COMSOL based modelling of ikaite precipitation predicted the feasibility of the 
production of ikaite and identified key parameters for future optimisation in order to 
reduce energy consumption. More specifically, we observed that the lower stirring speeds 
would be preferrable, and that using more energy to produce particles at smaller sizes 
would lead to the reduction of the overall energy demand.  
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Abstract 
Tightening emission standards necessitate development and optimization of devices for 
exhaust gas aftertreatment. Catalytic particulate filter is a multifunctional device that can 
trap particulate matter (soot and ash) and provide catalytic conversion of gaseous 
pollutants such as CO, hydrocarbons and NOx. In the present work, we focus on pore-
scale simulations of (i) influence of soot deposits on catalytic conversion of gaseous 
pollutants and (ii) oxidation of soot deposits during filter regeneration. Pore-scale 
simulations are performed within a section of the filter wall, 3D reconstructed from X-
ray tomography (XRT) images of porous structure including distribution of catalytic 
material [1]. CO oxidation is used as test reaction. First, we assume uniform soot layer 
inside the porous wall structure and evaluate its impact on CO conversion. Several 
different thicknesses of soot layer are compared. In the second approach, we virtually 
load the same amount of soot deposits using a mechanistic filtration model [2], which 
results in non-uniform soot distribution, and evaluate again the impact on CO conversion. 
Subsequently, we introduce a soot oxidation model for the filter regeneration. During 
oxidation of soot deposits, clusters of particles may detach from the wall and freely travel 
through wall pores. Such a process can be described with a fully coupled CFD-DEM 
solver [3], capable of simulating arbitrarily shaped solid particles. The mentioned solver 
is extended with reactive flows to account for particle oxidation and the related changes 
in its morphology. All the developed models are implemented in the form of custom-built 
solvers within the OpenFOAM computational framework. 
 
Keywords: catalytic filters, CFD, OpenFOAM, Automotive exhaust gas aftertreatment 

1. Introduction 
Present trends in emissions standards and environmental policies further encourage the 
development of new exhaust gas aftertreatment technologies or optimization of the ones 
presently available. Catalytic particulate filter is a multifunctional device enabling 
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catalytic conversion of gaseous pollutants such as CO, hydrocarbons, and NOx [1]. 
Furthermore, it removes the particulate matter (soot and ash) from the exhaust [2]. The 
catalytic filter is designed as a monolithic reactor structured as a cylinder containing 
parallel channels with alternating plugs at the channel inlet or outlet. Such design forces 
exhaust gas to flow through the porous channel walls coated with a catalyst. This enables 
both catalytic conversion of the pollutants and filtration of the particulate matter. Thus, a 
catalytical filter allows replacing separate catalytic converters and filter by a single 
device.  
Throughout the filtration operation, a layer of particulate matter gradually forms on the 
wall surface [2]. The soot deposits lead to an increase in filtration efficiency, pressure 
drop of the filter, and, consequently, a decrease in catalytic activity. The latter 
phenomenon is due to diffusion limitations presented by soot cake formed on the active 
sides of the catalyst obstructing the gas flow towards the catalyst's active sides. The filter 
can be regenerated by oxidation of the soot deposits. In the following text we focus on 
pore-scale simulations of how soot deposits influence catalytic conversion of gaseous 
pollutants. We use CO oxidation as test reaction. 

2. Methods 
The system is resolved with computational fluid dynamics (CFD). To accurately describe 
the processes occurring within the catalytic filter wall, we need to consider (i) fluid flow 
through the porous structure of the wall, (ii) diffusion and catalytic reaction of the 
chemical species present within the passing gas and (iii) enthalpic balance of the given 
system. Due to the small size of the described wall segment and low concentrations of 
key reaction component (CO), the system can be considered isothermal. Furthermore, 
convection, diffusion and reaction processes are simulated in steady state. 
2.1. Fluid flow 
The Navier-Stokes equations describe the gas flow in the described segment of porous 
wall, and due to the properties of the given structure and operating conditions, several 
simplifications might be applied. First, the fixed temperature and low-pressure difference 
between the inlet and outlet of the wall enables us to consider constant density of the 
passing fluid. Second, most of the pores present have a characteristic dimension of units 
of micrometres, resulting in low Reynolds criteria values, enabling us to consider flow 
laminar. Thus, the momentum balance Eq. (1) and mass balance Eq. (2)  written as follows 

 𝛻𝛻 ∙ (𝒖𝒖 ⨂ 𝒖𝒖) − 𝛻𝛻 ∙ (𝜈𝜈𝜈𝜈𝒖𝒖) = −𝛻𝛻𝑝𝑝� + 𝑠𝑠  (1) 

 𝛻𝛻 ∙ 𝒖𝒖 = 0, (2) 

where 𝒖𝒖 is fluid flow, 𝑝𝑝 �  is kinematic pressure (𝑝𝑝 � = 𝑝𝑝/ρ), and ν is kinematic viscosity. 
The additional source term 𝐬𝐬 is applied to additional flow resistance according to the given 
area e.g, free pore Ωp soot deposits Ωs and catalyst Ωc. The term is defined as following 
piecewise function 

 

𝑠𝑠 =

⎩
⎪
⎨

⎪
⎧

      𝟎𝟎     𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝 

 
𝜇𝜇
𝜅𝜅𝑠𝑠
𝒖𝒖     𝑖𝑖𝑖𝑖 𝛺𝛺𝑠𝑠 

𝜇𝜇
𝜅𝜅𝑐𝑐
𝒖𝒖     𝑖𝑖𝑖𝑖 𝛺𝛺𝑐𝑐

, (3) 
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where  𝜅𝜅s and 𝜅𝜅c are local permeabilities according to Darcys law for soot and catalyst, 
respectively. Permeability is predicted from the Carman-Kozeny equation [4]. Dynamic 
viscosity 𝜇𝜇 is evaluated using the Sutherland equation [5]. 
2.2. Component diffusion 
With the gas flow description presented above, the next step is a description of the mass 
transport of the individual species (O2, N2, CO and CO2). Ideal gas behavior is assumed 
and low concentrations of the key reactant (CO) enable consideration of Ficks' laws for 
volume diffusion. Transport equation for i-th species is then  

 
𝛻𝛻 ⋅ (𝒖𝒖𝑦𝑦𝑖𝑖) − 𝛻𝛻 ⋅ �𝐷𝐷𝑖𝑖

𝑒𝑒𝑒𝑒𝑒𝑒𝛻𝛻𝛻𝛻𝑖𝑖� =
𝑠𝑠𝑖𝑖𝑟𝑟

𝑐𝑐𝑇𝑇
, (4) 

where 𝑦𝑦i  is the molar fraction of the balanced species, 𝑠𝑠𝑖𝑖𝑟𝑟  is the reaction source term, and 
𝐷𝐷𝑖𝑖eff is effective diffusivity. Its value changes according to domain composition, in a 
similar manner to the momentum source term (3). 

where  𝐷𝐷𝑖𝑖Vol is volume diffusion coefficient [6] and 𝐷𝐷𝑖𝑖Kn stands for Knudsen diffusion 
coefficient depending on mean pore size in the given zone. Porosity and tortuosity for the 
given region are denoted as 𝜀𝜀 and 𝜏𝜏, respectively. 
2.3. Catalytic reaction 
With the definition of mass transport and treatment of diffusion limitations described 
above, the treatment of chemical reaction needs to be addressed. In the present simulation, 
we consider the test reaction, oxidation of CO to CO2 at the Pt/γ-Al2O3 catalyst as written 
bellow. 

 𝐶𝐶𝐶𝐶 +
1
2
𝑂𝑂2 → 𝐶𝐶𝑂𝑂2 (6) 

The kinetics is described by the steady-state Langmiur-Hinshelwood [7] mechanism for 
a dual site reaction on the active surface of the catalyst with dominant inhibition by the 
adsorbed CO: 

 𝑟𝑟 = 𝑘𝑘
𝑦𝑦𝐶𝐶𝐶𝐶𝑦𝑦𝑂𝑂2

(1 + 𝐾𝐾𝑖𝑖𝑖𝑖ℎ𝑦𝑦𝐶𝐶𝐶𝐶)2 (7) 

Here k represents the rate constant for chemical reaction, 𝐾𝐾inh is the inhibition constant 
of gas adsorption to the catalyst surface. The temperature dependence given constants is 
determined by the Arrhenius equation. The rate of chemical reaction is marked as 𝑟𝑟. 
The reaction source term 𝑠𝑠𝑖𝑖𝑟𝑟  is considered only within the catalyst zones 

where 𝜈𝜈𝑖𝑖  is stoichiometric coefficient for given i-th species. 
We implemented the models as custom-built solvers in the CFD framework OpenFOAM. 
 

 

𝐷𝐷𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧                               𝐷𝐷𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉                      𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝               

              
𝜀𝜀𝑠𝑠

𝜏𝜏𝑠𝑠�1  𝐷𝐷𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝐷𝐷𝑖𝑖,𝑠𝑠𝐾𝐾𝐾𝐾⁄⁄ �
     𝑖𝑖𝑖𝑖 𝛺𝛺𝑠𝑠               

𝜀𝜀𝑐𝑐
𝜏𝜏𝑐𝑐�1  𝐷𝐷𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉 + 1 𝐷𝐷𝑖𝑖,𝑐𝑐𝐾𝐾𝐾𝐾⁄⁄ �

      𝑖𝑖𝑖𝑖 𝛺𝛺𝑐𝑐  ,

 (5) 

 
𝑠𝑠𝑖𝑖𝑟𝑟 = �

0   𝑖𝑖𝑖𝑖 𝛺𝛺𝑝𝑝,𝛺𝛺𝑠𝑠 
𝜈𝜈𝑖𝑖𝑟𝑟 𝑖𝑖𝑖𝑖 𝛺𝛺𝑐𝑐

, (8) 
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3. Results 
In the presented study, we focus on a segment of the channel wall of a catalytic filter with 
catalyst located within the porous wall structure. The simulation part of the channel model 
has dimensions of 566 × 200 × 204 µm3. The computational domain for the given test 
was prepared directly from digital reconstruction of the XRT scans to stereolithographic 
description (STL) for both substrate and catalyst. For the generation of the computational 
mesh, we used snappyHexMesh for the removal of the substrate structure from the 
domain and prescribe zones with catalyst. Additionally, we used topoSet to prescribe a 
uniform layer of soot deposits on the free surface, as shown in Figure 1. Both applications 
are part of the OpenFOAM framework. The presented study is designed to show the 
combination of the following influences, the thickness of the soot deposit layer (0, 3.3, 
6.6, 9.9 µm) channel velocity of the flowing gas (0.05 m/s, 0.1 m/s) and the device 
temperature (200, 300, 400, 500, 600 °C). Simulations were performed with material and 
reaction parameters given in Table 1. Composition of the gas entering the wall segment 
in the simulation was 𝑦𝑦𝑂𝑂2 = 0.05, 𝑦𝑦𝐶𝐶𝐶𝐶 = 0.001, and the remaining portion was nitrogen 
(inert). 
 

 
Figure 1. Computational domain: a) slice from the XRT scan of the filter channel with selected 
segment for the simulation, b) reconstructed STLs for substrate (white) and catalyst (grey), and c) 
constructed computational domain with added layer of soot deposits (black). 
 
Table 1. Summary of the material and reaction constants applied in the simulations 
presented (porosity 𝜀𝜀, tortuosity 𝜏𝜏, mean pore size 𝑑̅𝑑𝑃𝑃, preexponential factor 𝐴𝐴0 and 
activation energy 𝐸𝐸𝑎𝑎 from Arrhenius relation for reaction and inhibition [8,9]). 

Structural parameters for materials Reaction kinetics parameters 
Parameter Catalyst Soot Parameter Value Unit 
𝜀𝜀 [-] 0.3 0.82 𝐴𝐴0 7.84 ⋅ 1016 mol s-1 m-3 

𝜏𝜏 [-] 3.0 2.50 𝐸𝐸𝑎𝑎 9 ⋅ 104 J mol-1 

𝑑̅𝑑𝑃𝑃[m] 5.0 ⋅ 10−6 61 ⋅ 10−9 𝐴𝐴0𝐼𝐼𝐼𝐼ℎ 80 - 
   𝐸𝐸𝐼𝐼𝐼𝐼ℎ 1 ⋅ 103 K 
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Figure 2. Influence of soot layer thickness on temperature-dependent CO conversion in the 
simulated segment of the filter wall for superficial gas velocity a) 0.05 m/s, and b) 0.1 m/s. 
 
The results in Figure 2 show an influence of the thickness of the deposited soot layer on 
the outlet conversion of CO as a function of temperature. For all the tested configurations, 
the conversion at 200°C is limited by the slow reaction kinetics. The conversion increases 
readily with temperature and the results suggest complete CO conversion already at 
300°C in the case of a clean filter (soot layer thickness 0 µm). The influence of soot 
deposits is evident – it decreases the CO conversion in all tests by imposing additional 
diffusion limitation for the access of reactants to the catalytic sites. The diffusion 
limitation increases with the soot layer thickness. For the lower gas velocity, we notice 
that full conversion is finally reached at the highest temperature. With the higher gas flow 
velocity, a decrease in conversion is more severe and a slip of unreacted CO persists up 
to the highest temperature with the thickest soot layer. 

4. Conclusion 
In this text we presented theoretical background, methods, and simplification applied for 
simulation of soot influence onto catalytic conversion of gaseous pollutants in a catalytic 
particulate filter. Further work that will be presented as a part of our contribution at the 
conference includes non-uniform soot distribution obtained from mechanistic filtration 
model as well as a pilot study of soot oxidation model involving CFD-DEM approach.  
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Abstract 
Life cycle assessments of emerging chemical technologies often assume static 
background data (i.e., secondary supply chain activities connected to the main system 
under study — foreground activity —), consistent with the current state of the economy. 
However, the background system within which a process will operate can differ from the 
one assumed in the environmental database. For example, one may establish a new supply 
chain with different suppliers or consider future decarbonization and socio-economic 
trends in the analysis. This work addresses this limitation by adjusting the background 
data for a more insightful and holistic assessment of the foreground system. We focus on 
evaluating synthetic diesel fuel in the future, considering projected changes in the 
technosphere and extending the technological coverage of the background system. To this 
end, we use inventories from premise, a Python library that provides background data 
consistent with integrated assessment models and includes additional technologies in the 
background system to model alternative supply chains with which the main technology 
(foreground system) could interact with. Our findings reveal that modifying the 
background data can drastically affect the outcome of the LCA analysis. Overall, this 
work stresses the importance of jointly defining the foreground and background systems 
to perform more meaningful and accurate LCAs.  

Keywords: prospective life cycle assessment, computational LCA, fuel systems, 
integrated assessment models 

1. Introduction 
The power, chemical, and transportation sectors are almost entirely powered by fossil 
fuels today, contributing to 70 % of global anthropogenic greenhouse gas (GHG) 
emissions in 2021 (IEA 2023). Consequently, there has been a noticeable shift towards 
sustainable energy systems and environmentally friendly chemical production. At the 
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core of this transition lies the critical role of environmental assessments, which are 
essential for guiding policy decisions and experimental work more effectively.  

Currently, standard life-cycle assessments (LCAs) retrieve data from life-cycle inventory 
databases that represent today’s economic structure and assume that such data 
(background data or upstream supply chain data) will remain the same. Moreover, such 
assessments rely on static and immutable supply chains in the technosphere (e.g., the 
same suppliers are considered for all the inputs across the supply chain). However, these 
data are expected to change following future decarbonization and socio-economic trends. 
Moreover, future supply chains entailing different technological and regional choices 
could result in different life cycle impacts.  

In recent works, some authors defined background LCA data based on the outcome of 
Integrated Assessment Models (IAMs) scenarios (Mendoza Beltran, 2018). Specifically, 
Sacchi et al. (2022), introduced premise, a tool that generates prospective inventory 
databases by integrating IAM scenarios. This framework enables the creation of library 
datasets that use future projections for a more accurate assessment of technologies and 
future supply chains. Prospective environmental assessments can then use these datasets 
in their background system when assessing emerging technologies (as foreground 
activities). However, it is important that full integration between the foreground and 
background data is accomplished, i.e., technologies in the foreground should also be 
modeled in the markets used in the background to ensure full consistency. In this regard, 
the LCA framework Brightway2 (Mutel, 2017) offers an excellent platform to implement 
changes in the background system that would be very hard to model using standard LCA 
tools. Here, as a representative relevant case, we evaluate transport fuels under modified 
background data, finding that the results can greatly vary compared to those assuming a 
fixed background system. Our analysis highlights the advantages of jointly defining the 
foreground and background systems for more insightful LCAs.  

2. Methodology 
We assess the future environmental impacts of the diesel fuel market. The functional unit 
was defined as 1 MJ of fuel. premise is used to create future background data (v.1.5.1), 
adopting the REMIND (Regional Model of Investment and Development) IAM results 
consistent with a global atmospheric temperature increase of 1.5 oC by 2100. The fuel 
market projected by the IAMs considers fossil, bio-based, and synthetic routes. We 
increase the technological coverage of synthetic fuel production pathways (i.e., synthetic 
diesel routes). To this end, we consider four synthetic diesel production pathways where 
carbon dioxide is captured from the air and hydrogen comes from polymer electrolyte 
water electrolysis varying the power source (i.e. nuclear, wind, solar, hydro).   
Fuel production inventories are modeled with Brightway2 (v.2.4.3). For the diesel 
scenarios, we assume synthetic Fischer-Tropsch (FT) diesel based on Medrano-García et 
al. (2022), for carbon dioxide supply, data were retrieved from Keith et al. (2018), and 
for hydrogen, we follow Bareiß et al. (2019). In this work, we implement the LCA 
calculations in Python. LCA is performed using the technosphere and biosphere matrix. 
The technosphere matrix is a square matrix that incorporates all the processes that are 
present in the economy stored in the columns of the matrix. The rows of the matrix 
represent the inputs of these processes and are inter-defined in the matrix. Our 
technosphere matrix incorporates our fuel production inventories, premise inventories, 
and supply chain projections from IAMs. The biosphere matrix includes all the direct 
emissions or resources consumption of all the processes present in the technosphere. 
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Matrix modifications and LCA calculations using characterization factors from 
Brightway2 are performed in Python, using the IPCC 2021 100a as the impact assessment 
method. Finally, the results are interpreted, and the main conclusions are summarized. As 
already said, a critical aspect of the analysis is that we vary the background data in a way 
that is consistent with the foreground system, which we argue is essential particularly 
when assessing large-scale systems. For example, if one wishes to quantify the impact of 
e-diesel from captured CO2 and green H2 from wind deployed at scale (foreground 
system), it would be sensible to assume that all the e-diesel in the background would be 
produced following the same pathway, (or at least deploy such a pathway to some extent) 
as otherwise, the foreground and background systems would not be consistent with each 
other, potentially leading to less accurate results. 

3. Results and Discussion 
Figure 1 shows that global warming impacts of e-diesel, either with premise background 
or with a background fully consistent with the foreground. In Figure 1a, the impacts of 
synthetic diesel from DAC/nuclear are displayed, for the two cases, as explained before. 
Modifying the background system to consider the technology studied (in the foreground) 
can cause notable differences compared to the standard practice (i.e., using the default 
future background system as provided by premise). Specifically, a 10% difference is 
found between using consistent background-foreground systems and the premise 
background in 2050. This demonstrates the importance of incorporating the assessed 
foreground activity into the background system, especially in the future, where emerging 
technologies will occupy larger parts of the market. Therefore, in Figure 1b, we compare 
the emission trajectories of three different e-diesel pathways (DAC/hydro, DAC/solar, 
DAC/wind) when employed in the market using a consistent foreground-background 
system. All scenarios show carbon-negative impacts after 2025, while DAC/solar shows 
the largest global warming impacts through the years with −40 kg CO2eq. MJ−1 compared 
to −55 kg CO2eq. MJ−1 of DAC/wind and −78 kg CO2eq. MJ−1 of DAC/hydro in 2030. 
Overall, DAC/hydro performs the best in 2050 with −85 kg CO2eq. MJ−1. 

 

 
Figure 1: a. Global warming impacts for e-diesel from DAC/nuclear in the diesel market, examining 
its effects in the foreground and background systems under “Modified background” and “Premise 
background” scenarios. b. Global warming impacts of three synthetic diesel pathways, 
(DAC/hydro, DAC/solar, DAC/wind). The trajectories shown here consider a consistent 
foreground-background system where the diesel market in the background system is modified to 
consider the synthetic diesel technology assessed in the foreground.  
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4. Conclusions 
In this work, we evaluate the future environmental impacts of synthetic diesel fuel while 
considering the decarbonization trends outlined by the REMIND IAM, aligning with the 
Paris Agreement. Additionally, we extend the technological coverage of renewable 
production pathways considered in the IAM by systematically modifying the 
technosphere matrix. To our knowledge, this is the first time such fuels are evaluated 
under future plausible scenarios generated by an IAM with full consistency between the 
foreground and background data. Notably, we find that the background data can greatly 
affect the outcome of the analysis, leading in our case study to differences in global 
warming impact of as much as 10%. Overall, we here stress the importance of adjusting 
the background data when performing prospective environmental assessments of power 
and chemical systems.  
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Abstract 
To meet the emissions reduction targets outlined in the Paris Agreement, removing 
billions of tons of carbon dioxide from the atmosphere is crucial, particularly for 
addressing hard-to-abate emissions such as agriculture and aviation. Direct Air Capture 
and Storage (DACS) stands out as a promising technology for carbon dioxide removal 
(CDR), owing to its modular design and ease in monitoring, reporting and verification of 
emissions. However, given its energy-intensive nature, high cost and sensitivity to 
regional climate variations, optimising its performance is essential. In this study, we 
introduce a modelling optimisation framework for geospatial assessment of DACS 
process configurations coupled with different energy sources, considering the impact of 
both temporal and spatial variations on the techno-economic performance of DACS. The 
framework is applied to industrial DACS technologies utilising solid sorbents and 
powered by conventional (i.e., nuclear and natural gas) and renewable (i.e., solar and 
wind) energy sources. By identifying the least-cost DAC system configurations and their 
corresponding environmental metrics (such as CO2 removal efficiency, land 
requirements, and water footprint) for different regions, our findings offer valuable 
insights for decision-makers and project developers. This work serves as a guide to 
identify suitable regions and system configurations for the cost-effective deployment of 
DACS technology. 

Keywords: Carbon dioxide removal (CDR), direct air carbon capture and storage 
(DACCS), geospatial analysis, techno-economic assessment (TEA), life-cycle 
assessment (LCA).  

1. Introduction 
Achieving Paris Agreement emissions targets economically and realistically requires 
large-scale carbon dioxide removal (CDR) from the atmosphere (Rogelj et al., 2018; 
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Royal Society and Royal Academy of Engineering, 2018). CDR plays a crucial role in 
offsetting residual GHG emissions from hard to decarbonise sectors, such as agriculture 
or aviation. Direct Air Capture and Storage (DACS) emerges as a promising CDR 
method, offering the advantage of no biophysical limits and enabling immediate CO2 
removal from the atmosphere with permanent storage (Chiquier et al., 2022; Matter et al., 
2016; Smith et al., 2016). Additionally, DACS benefits from well-established monitoring, 
reporting, and verification (MRV) protocols, streamlining the issuance of CDR credits 
(Mac Dowell et al., 2022). This can attract the necessary investments for rapid technology 
deployment required to achieve the Paris Agreement targets. 
 

Direct air capture (DAC or DACS when storage is included) is an energy-intensive 
process. Thus, large-scale DACS deployment would require significant additional 
demand for low-carbon and cheap energy for the energy transition (Erans et al., 2022). 
Furthermore, we showed in our previous work that DAC process performance is 
influenced by regional climate variations, impacted by daily and seasonal fluctuations in 
ambient air temperature and relative humidity (Sendi et al., 2022). 
 
Building on our earlier findings, this study introduces a geospatial modelling framework 
to evaluate the techno-economic and environmental performance of various DAC 
configurations and energy supply options. The goal is to identify the most energy and 
cost-effective DAC systems based on regional technology performance while accounting 
for temporal and spatial variations in DAC process performance. We apply this 
framework to determine the least-cost DAC systems for industrial DAC processes based 
on amine-functionalised sorbents coupled with different conventional (i.e., nuclear and 
fossil fuel) and renewable (i.e., solar and wind) energy sources. 

2. Methods 
We model the solid-based DAC unit based on an industrial DAC unit. In this unit, the 
adsorption bed, shaped like rectangular frames with a certain thickness, contains the 
sorbent material. The unique shape of the adsorption bed led us to model it using a 
combination of detailed 1-D and 2-D adsorption models. The 1-D model is applied when 
gas flows perpendicular to the bed frame. In contrast, the 2-D model is used when material 
concentration and temperature variations across the frame's plane influence the process 
performance. More information regarding the adsorption model is found in our recent 
publication (Sendi et al., 2022). Additionally, our adsorption model integrates a binary 
CO2/H2O isotherm specifically developed for DAC applications (Young et al., 2021).  
 
The resulting rigorous DAC model yielded a set of partial differential equations, which 
we discretised using finite volumes. To mitigate non-physical oscillations, we applied the 
van Leer flux limiter only for the 1-D model, as the 2-D model did not exhibit such 
oscillations. MATLAB was utilised to implement and solve the resulting time-dependent 
ordinary differential equations. The rigorous DAC model served as the foundation for 
constructing simplified surrogate models that describe DAC process performance under 
varying ambient conditions (i.e., temperature and relative humidity). These surrogate 
models were then employed to estimate hourly DAC process performance for two 
adsorption cycle configurations — vacuum-pressure temperature swing adsorption 
(VTSA) and steam-assisted VTSA (SA-VTSA) — using hourly temperature and relative 
humidity profiles across different regions. 
 
The regional hourly DAC process data was input into a Mixed Integer Linear 
Programming (MILP) optimisation model based on the Resource Technology Network 
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(RTN) framework. This model integrates components related to energy generation, 
conversion, and storage. Dependent variables that influence the regional techno-
economic performance of DAC systems were incorporated, including weighted average 
capital cost (WACC), solar irradiation, and wind speed. The MILP model, implemented 
in Pyomo, was solved using CPLEX to identify the least-cost DAC system configuration 
for different spatial nodes based on regional technology performance. The mathematical 
formulation of the MILP is shown in Equation 1. Also, the levelised cost of DAC (LCOD) 
is defined in Equation 2.  
 

 min  total annual system cost (TAC) 
s.t.     annual CO2 removal (TAP) 
          mass and energy balance 
          process constraints 
 

(1) 

 
        

TAP
TACLCOD =  (2) 

 
Moreover, key environmental metrics are calculated for the least-cost DAC system, 
including lifecycle greenhouse gasses (GHG) emissions, water footprint and land 
requirements. Equation 3 shows how total lifecycle GHG emissions (TLCGHGE ) is 
calculated, which is the sum of the annual GHG emissions from different technologies 
normalised by TAP . Total water footprint and land requirements are calculated using 
similar equations. Equation 4 defines CO2 removal efficiency ( CDRη )  based on 
TLCGHGE . Finally, MATLAB was utilised for visualisation. 
 

 

TAP

t
t

ALCGHGE
TLCGHGE =

∑
 (3) 

 1CDR TLCGHGEη = −  (4) 

3. Results and discussion 
Least-cost DAC system configurations have been identified for different regions based 
on conventional (i.e., nuclear and fossil fuel) and renewable (i.e., solar and wind) energy 
sources. Figure 1a shows the levelised cost of DAC (LCOD) for the least-cost DAC 
system supplied by renewable energy with energy storage systems. In this case, the least-
cost DAC system configuration is regionally dependent on the DAC regional 
performance, which is affected by regional climate and weather conditions and the 
regional availability of renewable energy resources. For instance, regions with high direct 
normal irradiation (DNI) resources, which also experience drier climates, such as parts of 
the USA, the Middle East, and Australia, show relatively lower LCOD. This is because 
DAC energy requirements are lower in drier climates, and in these regions, concentrated 
solar power (CSP) can provide a relatively cheaper heat source. These results can assist 
in pinpointing regions where DAC deployment could be economically favourable. 
 

Furthermore, Figure 1b showcases an optimised system configuration at specified 
coordinates. In this example, the optimised system employs the SA-VTSA cycle, utilising 
CSP for high-temperature (HT) heat generation in the form of high-pressure steam (HPS). 
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An installed capacity of 2.07 m2 heliostat mirrors is required to capture 1 ktCO2pa 
(kilotons of CO2 per annum). Normalised energy flows reveal that the CSP needs to 
generate 3.1 MWhth of HT heat per tCO2. This HT heat is used to generate electricity for 
DAC (0.4 MWhel per tCO2) in steam turbines (ST), which expand HPS to low-pressure 
steam (LPS). The remaining LPS and HT heat fulfil low-temperature (LT) heat 
requirements for DAC (2.3 MWhth per tCO2) in the form of LPS. HT and LT thermal heat 
storage with installed capacities of 3.58 and 2.49 MWhth, respectively, are needed to 
increase the DAC plant capacity factor to 93% and lower the system cost. Other 
environmental performance metrics can also be identified. In this case, the system can 
produce 0.54 tons of water per tCO2, have a total land footprint of 25 km2 per MtpaCO2, 
and achieve a CO2 removal efficiency of 93% throughout the project lifecycle.  
 
 

 
Figure 1 a) regional levelised cost of DAC (LCOD) for least-cost DAC system powered by 

renewable energy with energy storage. b) optimised DAC system configuration for coordinates 
(25°N, 47°30’E) showing required installed capacity for different technologies and normalised 

energy flows. Abbreviation: concentrated solar power (CSP), thermal heat storage (THS), high-
temperature (HT), low-temperature (LT), low-pressure steam (LPS), curtailment (curt.), steam-

assisted vacuum-pressure temperature swing adsorption (SA-VTSA), capacity factor (CF), 
tpaCO2 (tons per annum of CO2). 

4. Conclusions 
In this work, we developed a comprehensive framework to evaluate DAC processes and 
their energy supply, accounting for regional techno-economic performance across various 
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technologies. This framework considers both spatial and temporal variations in DAC 
process performance influenced by climate and weather conditions. It serves as an 
adaptable tool for conducting techno-economic and environmental assessments of 
different DAC system configurations in diverse regions, facilitating the identification of 
optimal regional configurations. The insights derived from this research are invaluable 
for decision-makers and project developers seeking to identify suitable regions and DAC 
system configurations for the cost-effective deployment of DAC technology. 
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Abstract 
This research focuses on the pivotal role of suspension flow and its rheological properties 
in diverse scientific and industrial applications, such as blood cell flow, pneumatic 
transport, fluidized beds, and catalytic material coating on porous substrates. The study 
aims to develop a numerical approach using computational fluid dynamics and the 
discrete element method (CFD-DEM) to investigate suspension behavior under different 
conditions. A hybrid fictitious domain-immersed boundary method is employed to 
account for the solid phase, with a unique virtual mesh method designed to enhance 
contact precision while minimizing computational costs. The developed solver is 
validated through a suspension rheology case study and applied to simulate the 
washcoating of a catalytic material into a porous substrate. To comprehensively 
understand particulate suspensions at the microscopic level, the CFD-DEM model is 
extended to include interactions between individual particles, considering van der Waals 
forces, electrostatic interactions, and short-range repulsive forces. The resulting extended 
CFD-DEM model, accommodating arbitrarily shaped particles and intricate microscopic 
interactions, offers a comprehensive framework for understanding suspension rheological 
properties.  

Keywords: CFD-DEM, HFDIB, suspension rheology, OpenFOAM. 

1. Introduction 

Particle suspensions play vital roles in real-life and industrial processes, such as sediment 
transport, blood cell motion, fluidized beds, and catalytic coating of porous substrates. 
Numerous experimental and numerical efforts have been dedicated to understanding their 
behavior (Blazek et al., 2021). While the commonly used Eulerian-Eulerian approach is 
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computationally efficient, it lacks the ability to capture local fluid-solid interactions and 
relies on empirical parameters. To address this, the computational fluid dynamics (CFD) 
coupled with the discrete element method (DEM) in a CFD-DEM approach offers a first-
principles-based simulation of suspensions (Sourek and Isoz, 2021). 
This paper employs an in-house developed solver based on the hybrid fictitious domain-
immersed boundary (HFDIB) method and a level-set-like DEM to study suspension 
flows. Simulations explore rheological properties with variations in solid phase volume 
fraction and particle shape. The setup is validated through viscosity estimation for 
spherical particle suspensions, followed by investigations into non-spherical particles, 
where experimental data by Mueller et al. (2011) is used for comparison. The solver is 
also applied to simulate suspension flow through a porous medium, illustrating its 
potential for studying processes like the washcoating process. Finally, we extended the 
CFD-DEM model to account for electrostatic interactions between individual particles, 
providing a more comprehensive understanding of suspension behavior at the 
microscopic level. This extension enhances the model's accuracy by incorporating 
additional forces such as van der Waals forces and short-range repulsive forces, bridging 
the gap between macroscopic rheological properties and microscale phenomena. 

2. HFDIB method 
At each time step (t), the solid phase distribution is introduced into the computational 
domain using a discrete indicator function λ, defined as follows: 

𝜆𝜆 = �
0 in Ωf
1 in Ωs

(0, 1) in Γsf
 (1) 

Here, Ωf represents the portion of the computational domain Ω occupied by the fluid,  
Ωs is the portion occupied by the solid phase, and Γsf is the fluid-solid interface. It's 
essential to note that this projection may not preserve the sharp edges of particles. The 
governing equations for the considered flow are based on the standard variant of laminar 
Navier-Stokes equations for an incompressible Newtonian fluid, including an additional 
forcing term 𝒔𝒔: 

𝜕𝜕𝒖𝒖
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝒖𝒖⊗ 𝒖𝒖) − ∇ ∙ (ν∇𝒖𝒖) = −∇𝑝𝑝� + 𝒈𝒈 + 𝒔𝒔 

∇ ∙ 𝒖𝒖 = 𝟎𝟎 
(2) 

Here, 𝒖𝒖 is the fluid velocity, ν is the kinematic viscosity, 𝑝𝑝� is the kinematic pressure, 𝒈𝒈 
is the gravitational acceleration, and 𝒔𝒔 is the forcing term constructed to generate a 
fictitious representation of the solid phase in the computational domain. This modeling 
approach is commonly known as the hybrid fictitious domain-immersed boundary 
method, building upon the works of Blais et al. (2016) and Municchi et al. (2017). 

3. DEM method 
The Discrete Element Method (DEM) serves as a finite difference numerical technique 
for predicting the motion of independently moving objects within the Lagrangian 
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framework, treating each solid body individually. At any given time 𝑡𝑡, the position and 
angular velocity of each body are described by Newton's second law of motion: 

𝑚𝑚𝑖𝑖
d2𝒙𝒙𝑖𝑖
d𝑡𝑡2

= �𝑓𝑓𝑖𝑖
𝑗𝑗

𝑁𝑁

𝑗𝑗=1

, 𝐼𝐼𝑖𝑖
d𝝎𝝎𝑖𝑖

d𝑡𝑡
= �𝒕𝒕𝑖𝑖

𝑗𝑗
𝑁𝑁

𝑗𝑗=1

 (3) 

Here, 𝑚𝑚𝑖𝑖 is the mass of body 𝑖𝑖, 𝒙𝒙𝑖𝑖 is its centroid position at time 𝑡𝑡, 𝝎𝝎𝑖𝑖  is the angular 
velocity, 𝐼𝐼𝑖𝑖  and is the matrix of inertial moments. The sums on the right-hand sides 
encompass all the forces 𝑓𝑓 and torques 𝒕𝒕 acting on body 𝑖𝑖, respectively. 
 
These equations are numerically solved using the finite difference method, assuming 
constant translational (𝒂𝒂𝑖𝑖) and angular (𝜶𝜶𝑖𝑖) accelerations during each time step. 
Subsequently, 𝒂𝒂𝑖𝑖 and 𝜶𝜶𝑖𝑖 are employed to calculate incremental changes in the position 
and rotation of body 𝑖𝑖. 

𝒂𝒂𝑖𝑖 =
1
𝑚𝑚𝑖𝑖

�𝑓𝑓𝑖𝑖
𝑗𝑗

𝑁𝑁

𝑗𝑗=1

, 𝜶𝜶𝑖𝑖 = 𝐼𝐼𝑖𝑖−1�𝒕𝒕𝑖𝑖
𝑗𝑗

𝑁𝑁

𝑗𝑗=1

 (4) 

For a more in-depth understanding of the DEM implementation, readers are directed to 
Sourek and Isoz (2021). It is crucial to note that our solver accommodates arbitrarily-
shaped particles, allowing for the exploration of particle shape effects on the flow. A 
comprehensive description of the DEM extension for arbitrarily-shaped solids can be 
found in Studenik et al. (2022). 

4. Simulation results 
In our study, we concentrated on simulating the measurement of suspension viscosity, 
utilizing a computational domain designed to emulate rheometric equipment. The domain 
comprises a three-dimensional box with two parallel solid plates. In the absence of solid 
particles, the simulation setup mimics laminar Couette flow. Consequently, we defined a 
linear velocity profile as an initial condition to facilitate the development of the final 
velocity profile within the domain. The viscosity estimation itself is based on Newton's 
law of viscosity: 

𝝉𝝉 = 𝜈𝜈
d𝒖𝒖
d𝑧𝑧

 (5) 

here, 𝝉𝝉 represents shear stress and d𝒖𝒖
d𝑧𝑧

 is shear rate. The shear stress acting on the moving 
wall is obtained using the wallShearStress postprocessing function in OpenFOAM. The 
suspension composed of spherical particles was specifically chosen for validation 
purposes. The obtained results were rigorously compared not only against available 
experimental data but also against widely utilized correlations, specifically Batchelor's 
(1977), and Krieger's and Dougherty's correlations (1959). 

118



   

 
Figure 1: Results of the viscosity study for suspensions made of spherical particles. Trinagles 

represents experimental data, squares simulation data, dashed line stands for Batchelor´s 
correlation and dashed-dotted line for correlation by Krieger and Dougherty 

 
In addition to simulating a suspension containing spherical particles, we delved into 
exploring the influence of particle shape on the apparent viscosity of the suspension. To 
ensure comparability between our findings and experimental data, we selected particle 
shapes based on the work of Mueller et al. (2011). This strategic choice allows for a 
meaningful comparison between the outcomes of our simulations and the corresponding 
experimental observations. 
 

 
Figure 2:  Results for suspensions made of glitter and rod shaped particles. Crosses represents 
experimental data for rod particles and circles results of the simulations. Triangles stand for 

experimental data for glitter particles and squares represents results of the corresponding 
simulations. 

 
The results obtained for suspensions composed of spherical particles exhibit a 
commendable agreement with both the available experimental data and widely employed 
correlations. Notably, it is important to highlight that these correlations are typically valid 
up to a volume fraction of 0.2. However, our simulations extend this scope, showing 
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consistent agreement with experimental data even at higher volume fractions, specifically 
up to 0.4. The observed consistency between our numerical estimates and existing data 
underscores the applicability of our method for conducting numerical investigations on 
suspensions containing arbitrarily-shaped particles—an area often reliant on experimental 
approaches. 
 
To demonstrate our solver's real-world applicability, we numerically studied the 
washcoating process—a crucial step in depositing catalytic material within the porous 
walls of automotive exhaust gas filters. Following the experimental work by Blazek et al. 
(2021), we simulated the deposition of catalyst in two different filter sections. Utilizing 
our CFD-DEM solver, we recreated the washcoating process involving a water-based 
slurry. 

 
 

Figure 3: Comparison of the washcoating simulations (a,b,d,e) to the experimental data (c,f) for 
two different sections of the filter wall: a section with a large pore on (a,b,c) and a closed 

structure (d,e,f). Color code for the numerical results: grey = wall, red = catalyst. Color code for 
the experimental data: white = wall, black = void space, grey = catalyst. 

 
The results presented in Fig. 7 offer a qualitative comparison between simulated and 
experimentally obtained distributions of catalytic particles. Fig. 7a and Fig. 7d provide an 
overall view of the resulting distributions for structures with a large open pore and a 
closed structure, respectively. Further insight is gained from a single slice through the 
structure in Fig. 7b, c and Fig. 7e, f, respectively. 
 
Comparing images (b) and (e) in Fig. 7 highlights the impact of different filter wall 
morphologies on the final coating distribution. In the section with a large pore, the 
catalytic material is primarily deposited inside the wall, whereas, in the relatively closed 
section, the coating is concentrated predominantly on the wall. This observed trend aligns 
with experimental observations shown in Fig. 7c and Fig. 7f. However, it is noteworthy 
that a notable difference exists in the spatial arrangement of particles between the 
simulation and the real sample, with particles in the real sample appearing much more 
closely packed. 
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To address this discrepancy, we are incorporating an electrostatic force into our model. 
This addition aims to simulate the particle interactions more realistically, accounting for 
the increased proximity observed in the real sample. This enhancement in the model 
should contribute to more accurate predictions in future washcoating simulations. 

5. Conclusions 
In conclusion, our study showcases the CFD-DEM solver's versatility in simulating 
complex particulate suspension behaviors, as demonstrated through successful 
washcoating process simulations. The qualitative agreement with experiments supports 
its potential for understanding irregularly-shaped particle systems. Extending simulations 
beyond typical limits and introducing an electrostatic force enhance the solver's 
robustness. 

Our work establishes a foundation for advancing numerical investigations in suspension 
dynamics, particularly in applications like the washcoating process. The CFD-DEM 
solver offers a valuable tool for optimizing particulate processes in diverse industrial and 
scientific contexts. 
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Abstract 
In recent years, additive manufacturing has become exceedingly popular in industrial 
applications and scientific studies. The rapid development in this field, especially the 
slicer and machine software, makes research difficult because these can become obsolete 
due to software improvements. Another limiting aspect is the lack of knowledge and 
interest in the 3D printing process and materials; primarily, 3D printing is seen as a tool 
to achieve some results by researchers. Due to these facts, most studies do not adequately 
dwell on the 3D printing parameters, making the reproduction of results almost 
unachievable. 

This paper discusses four of the major 3D printing parameters that affect the properties 
of final products made by chopped carbon fibre filled- and unreinforced nylon filaments; 
these parameters are the printing temperature, nozzle diameter, layer height, and infill 
orientation. The family of nylon filaments is mainly used for functional 3D printing, 
especially in replacing aluminium and steel parts, mainly due to their excellent 
strength/weight ratio.  

The simulation and modelling of tensile tests were carried out in ANSYS Mechanics. 
Modelling parameters were determined based on the real-life tensile tests carried out 
beforehand. 

Keywords: Additive manufacturing, printing parameters, simulation 

1. Introduction 
3D printing or additive manufacturing is a rapidly developing field, an increasingly 
popular topic of scientific studies and research. One of the main reasons for this popularity 
is the untapped potential it still has due to it being so young compared to other 
manufacturing techniques, which gives researchers a chance to study the different aspects 
of additive manufacturing relatively uncontested. However, because it is so new and the 
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available software and hardware advancements, not to mention the material aspect, are 
happening in leaps and at a fast pace, it makes the research in this field difficult regarding 
longevity and repeatability. Another setback is that many researchers are only familiar 
with 3D printing in a limited capacity. 

Material advancements boomed in variety and quality in recent years, such as continuous 
fibre reinforcement in different thermoplastics that Chen et al. (2021) studied. New high-
performance engineering materials appeared and refined; one such material is the family 
of nylon filaments, especially the chopped carbon fibre-reinforced filaments (Isobe et al., 
2018). The nylon filaments became exceedingly popular among 3D printer enthusiasts 
due to their strength, resistance to substances and UV, printability, high-temperature 
resistance compared to other available thermoplastic families, and arguably most 
important of its properties is its low cost. There are two distinct groups that the 
commercially available nylon filaments fall in, may that be some fibre-reinforced one or 
unreinforced thermoplastic; these are the nylon 6/66 and the nylon 12 group. Strangely, 
the nylon 6/66 group is not distinguished between nylon 6 and nylon 66 most of the time; 
the manufacturers usually state these filaments are nylon or nylon 6/66 since they may be 
a blend of the two. However, the group of nylon 12 is stated clearly each time by the 
manufacturer and is usually available for twice the retail price of the other group. Mainly 
due to its lower price and similar properties, the nylon 6/66 group usage is much more 
widespread, which is why this thermoplastic group was chosen for the research of this 
paper. 

The simulation of additive manufacturing processes can help to achieve the desired 
mechanical properties of products, as the process parameters play a crucial role in almost 
all of them. Saithongkum et al. (2020) made FEM tensile and flexural tests simulations 
of 3D printed specimens that show one of the most crucial parameters that determine the 
mechanical properties is the orientation of fibres inside the 3D printed structure. This 
study's four main parameters are the infill orientation, temperature, nozzle diameter, and 
layer height. The tensile strength and Young modulus of printed and simulated parts were 
compared along these four parameters. 

2. Materials and methods 
When considering the 3D printer that would be adequate for my research purposes, the 
main requirements were that the printer must be a modular platform for different types of 
extruders and hotend, and it must also have high-quality mechanical and electrical parts. 
The ability to run Klipper firmware was crucial as the advanced calibrations it features 
make the printed parts higher quality with better material deposition. Klipper also makes 
altering all aspects of the printer and printing process possible. For these reasons, the 
choice fell on the Rat Rig V-Core 3 400x400, equipped with a Phateus Rapido hotend 
and orbiter 1.5 extruder for this study. Before printing samples, the following calibrations 
were carried out: retraction, skew correction, pressure advance, and flow rate. 
Furthermore, after calibrating the flow rate, a follow-up calibration, including tensile 
strength tests, was done to ensure that the best possible flow rate is being used while 
printing samples. ASTM D638 Type I specimen geometry was chosen for the tensile tests 
as a standard. 
 
For the 3D printing material eSUN ePA-CF with a chopped carbon fiber content of 20 
wt% and nylon 6/66 blend as polymer matrix. It is manufactured in Shenzen, China and 
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is among the most used carbon fibre nylon filaments due to its excellent performance/cost 
ratio.  
For temperature, nozzle diameter, and layer height 4 different values were analysed, while 
for the infill orientation 2 different values were chosen. These values were the following:  
temperature – 240 °C, 260 °C, 280 °C, 300 °C 
nozzle diameter – 0.4 mm, 0.6 mm, 0.8 mm, 1.0 mm, 
layer height – 25 %, 50 %, 75 %, 100 % (compared to the nozzle diameter used) 
infill orientation – 0°, 45° 
Furthermore, to reduce the number of specimens needed to be 3D printed an experiment 
design was carried out. 
In order to approximate the values that can be obtained with the adjustment of the studied 
parameters, a polynomial function was fitted to the measured values in MATLAB. 
The simulations of tensile tests were carried out in ANSYS Explicit Dynamics. We 
specified the material properties; one end of the dog bone-shaped test specimen was fixed 
in place, while force was applied to the other end. 

3. Results 
The method of comparing the tensile strength and Young modulus values of simulated 
and real-life tensile tests was used to evaluate the simulations. 
The tensile strength values obtained from MATLAB showed promising similarity except 
for the four outliers (Figure 1), which showed a significant strength increase compared to 
their simulated counterparts.  

 
Figure 1: the correlation between the simulated and measured tensile strength/Young modulus 

values 

The same four outliers are also present in the case of Young modulus values (Figure 1); 
excluding those values, the others show that the values obtained from MATLAB align 
with measured values. The most influental parameters on strength were the infill 
orientation ,unsurprisingly considering the nature of the fiber reinforced materials, and 
the temperature, which can be varied in quite the range as the used material can be printed 
between 220 – 320 °C with very different results. With the variation of these two 
parameters the tensile strength values were within a 9-11 MPa range. The nozzle diameter 
and layer height had a very similar effect on the mechanical properties, with their variance 
the tensile strength values were between a 5 MPa range. Their effects differed for the 
Young modulus values, as the most impactful two parameters were the temperature and 
nozzle diameter, for with their variance the Young modulus values were within a range 
of 1000-1200 MPa. The layer height had a moderate effect on the Young modulus, with 
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its variance the values were between a 300 MPa range. Lastly, the infill orientation 
strangely had no effect on the Young modulus values obtained. 
 
Also, the simulations carried out showed remarkable similarity to the real-life test results, 
as their stress-strain diagrams showed very similar strength and elongation; however, 
their dynamic was different. The simulated specimens showed a much more linear stress-
strain behaviour, while the real-life specimens only showed linear behaviour at the 
beginning of the testing until it reached approximately 2/3 of its final tensile strength, 
where it changed to a logarithmic behaviour until it snapped. In one such comparison the 
simulated specimen reached 2000 N force with enlongation of 3.9 mm, while the real-life 
specimen reached a force of 2050 N with 3.8 mm elongation. A maximal principal stress 
map of a simulated specimen can be seen in Figure 2. 

 
Figure 2.: maximal principal stress map of simulated specimen in ANSYS Explicit Dynamics 

4. Conclusions 
As the results show, with enough tensile tests, 3D printed parts mechanical properties can 
be simulated for the examined carbon fibre-reinforced nylon filaments. To manufacture 
parts with the desired mechanical, be it the highest strength part with little give in terms 
of elongation or moderate strength but with an elastic failure in order to avoid a 
catastrophic failure type, these simulations offer a way to credibly predict the properties 
of an end product without actually printing it first. To achieve this aim, further simulations 
and real-life tests will be carried out and a boarder range of parameters and material 
groups will also be studied to further enhance the accuracy of these simulations. 
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Abstract 
The treatment of waste effluents from industrial activity is a mandatory task to protect the 
ecosphere from pollutants. However, the operation of waste treatment systems itself 
causes environmental impacts, which must be accounted for in life cycle assessment 
(LCA) studies of industrial processes. The magnitude of the environmental impacts 
caused by a particular waste treatment process is dictated by the characteristics 
(composition, physical properties) of the treated waste, since these affect the quantity of 
consumed process auxiliaries. In this work we leveraged machine learning algorithms and 
historical process data of industrial waste treatment systems to identify relationships 
between waste characteristics and process performance. The obtained correlations are 
shown to enable the calculation of waste-specific impacts of a given treatment system.  

Keywords: predictive LCI, machine learning, data-driven regression, waste treatment, 
green chemistry. 

1. Introduction 
Every year, enormous amounts of waste are generated by industrial activities, with the 
chemical industries acting as one of the key players. In 2020, the European Union 
reported the production of 55 million tons of waste for this sector alone (Eurostat, 2023).  
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Since the generated waste streams are often heavily contaminated with organic and in-
organic process residues, it is imperative that effluents are treated appropriately. Thereby 
resources can be reused within the technosphere or returned safely to the ecosphere. 
However, while the treatment of hazardous wastes serves to mitigate the industry’s 
environmental footprint, it must be recognized that waste treatment processes themselves 
consume resources and release emissions, generating an inherent environmental impact 
which is attributable to the production process that generated the waste.  

The impact incurred by the treatment of a specific waste is dependent on the waste 
category, which determines the type of required treatment processes, as well as on the 
exact waste composition, since attributes such as pollutant concentration determine the 
operational response of a given treatment system in terms of consumed auxiliaries and 
utilities. Consequently, LCAs of industrial waste treatment systems should consider 
waste-specific life cycle inventories (LCIs) to obtain reliable impact estimations. 
However, waste-specific process data for waste treatment systems is not easily 
obtainable, particularly during early-stage process design, and the availability of waste-
specific LCI estimation tools is rather low (Köhler et al., 2007; Seyler et al., 2005; Struijs, 
2014). In the absence of waste-specific data, waste treatment LCIs are often estimated 
using generic datasets from commercial databases (Moreno Ruiz et al., 2022), calculated 
through time-consuming process modelling, or omitted from the study scope, all of which 
can introduce significant skew into LCA results. In this work we aimed to close this 
knowledge gap by developing waste-specific predictive LCI tools for a given waste 
treatment process from historical process datasets through the application of machine 
learning techniques. 

2. Methods 
A data-driven approach was employed to quantify the relationships between waste 
characteristics and the responses of the investigated waste treatment system. The data was 
sourced from industry logs of real-time in/on-line monitoring and control measurements, 
which provide a transparent account of system operation over extended time periods. 
Logged characteristics of the waste feed (quantity, physical properties) were identified as 
system inputs, while records of the system’s resource and utility consumptions were 
classified as system outputs. Correlating the system outputs to the variation in waste 
characteristics was treated as a machine learning regression problem, with the system 
inputs serving as numerical features.  

The presented method builds on the approach taken by Seyler et al. (2005) and Köhler et 
al. (2007) for the development of waste-specific LCI prediction tools, who conceptualised 
that every consumption of a waste treatment process can be attributed to one or more 
specific waste characteristics. However, while previous tools relied on averaged annual 
production data and required fundamental hypotheses on input-output relationships, this 
work benefits from access to more granular datasets and the leveraging of machine 
learning to more accurately model the true impact of multiple waste features on the 
system’s outputs.  

The hypothesis was conceptualised on the case study of an industrial wastewater 
neutralisation system employed by Boehringer Ingelheim. For this purpose, process data 
logged by the system’s control instruments were extracted for the years 2021 and 2022 at 
30 second intervals. Data curation and analysis, as well as model screening, training and 
tuning was implemented in Python.  
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The available dataset was supplemented with artificial data generated by a physical model 
emulator to explore its benefits in situations of data scarcity.  

3. Case study results 
The investigated waste treatment system consisted of unit processes for mixing, pH 
neutralization and cooling. Accordingly, the waste characteristics that determine the 
system’s operational response were established as waste pH, temperature, and volume. 
As such, measured values of these quantities were curated to make up the feature space 
of the regression problem. Equally, the process consumptions that constitute the gate-to-
gate LCI for the investigated process were identified as the consumption of neutralizing 
agents (HCl and NaOH), cooling power (in the form of cooling water and chilling power) 
and electricity, all of which were regarded as the outputs of the desired machine learning 
models. Data curation was found to be a crucial stage of the project, revealing limitations 
and challenges of working with real industrial data.  
 
To determine the relationships between the waste characteristics and process 
consumptions, the importance of each feature on the magnitude of each consumption was 
identified via multi-feature single-output regression models on the industrial process data. 
The obtained fits were used to generate waste-specific LCIs for a range of scenarios 
ranging from extremely acidic to extremely basic pH, and considering various 
temperatures and process volumes. For comparison, a non-specific “baseline” LCI dataset 
was calculated as the process consumptions per m3 of wastewater treated across the entire 
measurement period of two years. Benchmarking the waste-specific LCIs against the non-
specific baseline inventory, significant differences in predicted process consumptions 
were observed. This was especially apparent in LCIs generated for wastes of different pH 
values, where the multi-feature regression models could differentiate waste-specific acid 
and base consumptions, and thus allocate different environmental impacts for different 
wastes processed by the system, while also capturing non-intuitive consumptions such as 
compensation for overshoots in neutralization, which was not captured to the same 
granularity in the baseline LCI. 

4. Conclusions 
The symbiotic use of large historical datasets, statistical and physical models yielded a 
predictive tool that supports the LCA practitioner in the rapid assessment of waste-related 
emissions. Specifically, the models were able to generate waste-specific LCIs that allow 
to differentiate between the impacts caused by wastes of different compositions and 
physical properties. Understanding the influence of waste characteristics on the 
environmental process impacts is crucial to enable accurate and fair allocation of waste-
related process impacts to the waste-generating production processes. 
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Abstract 
The design and operation of the next generation of waste management and energy supply 
systems should ensure the industrial Global Warming Potential (GWP) reduction targets 
agreed internationally and enable transition towards a circular economy of materials. To 
that end, quantitatively rigorous assessment of industrial decarbonization and value 
recovery pathways is critical, while many challenges stem from the range and complexity 
of involved technologies and engineering domains, variety of possibly conflicting 
performance criteria, and interaction potential within the system as well as with external 
interfaces, in the context of uncertain energy supply markets. In this contribution, a 
versatile simulation and decision support platform is developed for the design and 
scheduling of municipal solid waste (MSW) treatment technologies from an industrial 
point of view, including short to long-term energy storage capacity and renewable energy 
production to offer flexibility in the integration of such systems. The methods aim at 
simultaneous financial, environmental, and thermodynamic simulation and optimization 
of modularly complex system models, evaluating unsteady operations and uncertain, 
time-variant input data. The inferred transparency is reinforced by joining all 
functionalities into a unique workflow, improving technology development consistency 
and reliability. This work presents the modeling structure and platform features, 
demonstrated for the design and system integration of a specific multi-energy case of oxy-
enhanced MSW incineration plant. 

Keywords: Waste-to-X, Co-optimization, Decision Support Platform, OpenModelica 

1. Introduction 
Although waste treatment systems have been extensively studied (Niziolek et al., (2017), 
Puchongkawarin et al., (2020)), a large range of alternative integration strategies, 
recovery products, and performance criteria specifically for environmental indicators 
remains to be studied, including uncertainties assessment. Particularly when including 
intermittent renewable energy production as energy utilities and power grid integration 
potential, dynamic control and flexible operation of Waste-to-X systems become essential 
(Abdelghany et al., (2021)). Consequently, industrial waste treatment projects require 
robust computational tools covering both short-term variability and long-term aspects 

130



   

(cycling effects, seasonal storage, etc.) to support investment planification via validated 
digital twins.  
This work proposes a flexible and transparent framework for simultaneous process 
integration and optimal control, detailed financial analysis, and Life-Cycle Impact 
Assessment (LCIA). A typical system flowsheeting interface is displayed in Figure 1 for 
the analysis of a specific Waste-to-X system, including oxy-enhanced MSW combustion 
with flue gas recirculation, flue gas treatment technologies, post-combustion carbon 
capture, alkaline water electrolysis (AEL), catalytic CO2 methanation and a selection of 
heat, cold and power utilities.  

 
 

Figure 1: MSW incineration system integrated with carbon capture, alkaline electrolysis, and 
catalytic CO2 methanation. 

 

2. Methods 
Technology modeling is done primarily in the open-source software OpenModelica (OM) 
(Fritzson et al., (2020)), implemented in the object-oriented modeling language Modelica 
for equation-based modeling. A new library of stream definitions and technology models 
is developed following a set of defined conventions for variable naming, model 
versioning and documentation (scope, level of abstraction, following Eddy et al., (2012)), 
and database links. Systematic modeling structures include class attributes of streams, 
control and energy (heat, exergy) flow structures, as well as consistent accounting and 
inventory of cash-flows and life-cycle flows. Since the simulation platform is focused on 
processes and recovery of resources in waste treatment systems, all involved stream 
definitions include physical state and detailed chemical composition. This respectively 
enables the understanding of energy flows and contaminants propagation through the 
system, which is critically important for design of cleaning and feedstock pre-processing 
stages shown in Figure 1, as well as for evaluation of economic (e.g. quality of products) 
and environmental impact of the resulting system.    
OpenModelica technology models are wrapped in a Python-written environment, forming 
an interface for input data selection, model compilation and simulation, and selected 
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results retrieval. Figure 2 leads through these assessment stages, constituting the platform 
workflow. A single record sheet is used throughout for full traceability of input data, 
model assumptions and meta-data, including analysis results storage. Workflow 
functionalities include LCIA, for which the methods follow the ISO14040 norms and use 
external life-cycle inventory databases for cradle-to-gate activities and End-of-Life 
assessments.  

 
Figure 2: Simulation and optimization workflow functionalities of the computational platform. 
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The workflow includes 2 functionalities for optimization of the analyzed system based 
on any combination of thermodynamic/process, economic or environmental indicators 
(included in Figure 2): 

- The model/system parameter sweep modifies simulation input data to evaluate 
a set of different process conditions or design. Optionally, objectives or 
constraints on the process characteristics or performance indicators may be 
formulated, to optimize the system in a derivative-free approach with a genetic, 
evolutive algorithm (currently implemented with NSGA-II).  

- The system topology optimization takes as input a set of technology models from 
the platform library. Each model in the set is linearized around selected nominal 
operating point(s), thereby verifying the validity range of the linearization, and 
generating a new library of black-box technology models. The Mixed-Integer 
Linear Program (MILP) formulation described by Kantor et al., (2020) is applied 
to generate Pareto-optimal system configuration solutions through multi-
objective optimization. 

Computational runtime bottlenecks of the platform are identified and tackled through 
efficient data handling and software interfacing, avoided model re-compilation, solver 
outputs selection, and other measures. 

3. Illustrative case: extract of typical results 
This section illustrates several steps and types of analyses enabled by the workflow. As 
an example of unit model implementation in the platform, process modeling and 
validation is demonstrated for the alkaline electrolysis stack model, sub-system of the 
example case of Figure 1. An electrochemical model of the alkaline electrolyzer stack is 
built in OM based on the work of Sakas et al., (2022). The parameter sweep optimization 
workflow is applied to tune model parameters of a proportional-integral (PI) controller of 
the electrolysis feed lye mass flow, fitting the stack measured temperature reported in 
literature data. After validation of the AEL stack model with literature data, the input 
parameters are modified to correspond to the characteristics of an existing demonstration 
plant stack. The measured stack temperature is compared to the fitted model simulated 
results in Figure 3, varying in time between hot standby mode and nominal operation 
temperature as a result of flexible operation.  

 
Figure 3: Measured (on an existing demonstration facility) and simulated AEL stack temperature. 
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Figure 4: Composite curves for the Waste-to-X system of Figure 1 at nominal operation, equipped 
with an air-cooling tower. Axis values are kept confidential. 

 

 
 

Figure 5: Typical power exchange profile at the power grid connection for 2 months of winter 
operation.  

 
Systemic analysis of cases such as in Figure 1 includes typically optimal resources 
integration for the technology system, as well as with external interfaces. As part of the 
heat and power utilities integration, the results presented here include District Heating 
Network (DHN) and Water Steam Cycle (WSC). Figure 4 displays the pinch analysis 
results for heat recovery assessment, with hot and cold composite curves for the entire 
system of the Figure 1 at nominal operation. It is a snapshot of the heat flows at a given 
time of the year and does not represent an optimized design. The Minimum Energy 
Requirement (MER) of the plant in this configuration is composed of cooling 
requirements only, for which an air-cooling tower is correspondingly sized. The system 
interaction with the power grid is illustrated with the power exchange at the connection 
node in Figure 5.  

4. Conclusions and perspectives 
At current development stage, the described platform has been applied on practical 
industrial cases, with the benefit of a unique environment covering all aspects of system 
design and operational strategy optimization in a consistent workflow. Transparency is 
harnessed in the different analysis stages by systematic modeling practices and structures, 
documentation and validation, and holistic approaches providing decision-makers with 
comprehensive performance indicators.  
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Flexibility of assessment is provided both through the large portfolio of technologies 
modeled and integration possibilities, and the workflows developed around the 
simulations to optimize the complex and interlinked systems.  
For the specific case study analyzed, further work is needed to modify setpoints on the 
controllers, but overall accuracy of the simulated results is promising. On the system 
integration, the potential for improved seasonal integration of heat and power needs to be 
further investigated to optimize year-round performance for longer term planification of 
the industrial infrastructure. Forecast capabilities on a range of input (power supply, price 
and time-dependent emission factor, heat demand, waste composition) may be harnessed 
to improve the system performance, implementing predictive control in the system 
operations, and evaluating robustness against deviations. To evaluate a larger technology 
integration potential via the topology optimization, the model set of Waste-to-X 
technologies will grow to include more synthetic fuels generation processes, storage 
units, and other more novel technologies. The MILP formulation will be adapted to 
include typical days chronology (Blanke et al., (2022)) for more accurate resolution, and 
a strong focus will be put on the development of algorithms handling the operational 
strategy within the topology optimization problem, including input parameter 
uncertainties and model complexity (including surrogation strategies). 
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Abstract 
Pharmaceutical drug products in the form of tablets are produced via a series of 
manufacturing steps, transforming powder blends to compacted granules with carefully 
selected properties such as tensile strength and dissolution time. Typical manufacturing 
routes include roller compaction and continuous direct compression (CDC). Design of 
each process step is required to achieve end-product quality for the specific material 
properties and available equipment, although design decisions are typically made without 
a quantitative understanding of the impact on product environmental footprint.   Using a 
‘cradle to gate’ life cycle assessment (LCA) methodology, a quantitative sustainability 
comparison has been made between standard oral solid dosage (OSD) form 
manufacturing platforms.  Data from these models has been combined with systems 
models of the manufacturing processes.  These combined models are used to demonstrate 
the optimisation of processes to meet robust product quality attribute targets whilst 
identify opportunities to minimise the impact of global warming potential. 

Keywords: Pharmaceutical Processing, Tablets, Life Cycle Assessment, Systems 
Modelling 

1. Introduction 
Pharmaceutical drug products in the form of tablets are produced via a series of 
manufacturing steps, transforming powder blends to compacted granules with carefully 
selected properties such as tensile strength and dissolution time. Typical manufacturing 
routes include roller compaction and continuous direct compression (CDC). Design of 
each process step is required to achieve end-product quality for the specific material 
properties and available equipment. Increasingly, experimental development is 
complemented by predictive simulations with the aim to support robust process design 
and optimization with minimal API-, energy- and labour-intensive physical trials. 
Connected, calibrated mechanistic process models (so-called process digital twins) for 
multiple manufacturing stages provide an effective system description, enabling 
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prediction of end-product critical quality attributes as a function of material properties 
and process settings. As this approach to design becomes more established, the scope of 
systems modelling can be widened to provide a more wholistic assessment of the end-to-
end manufacturing process.  
Life cycle assessment (LCA) evaluates the environmental impacts a product has over its 
lifetime, producing a quantitative measure which can be used to drive sustainable 
development (Hadinoto, Tran et al. 2022). Using a ‘cradle-to-gate’ LCA methodology, a 
quantitative sustainability comparison has been made between standard oral solid dosage 
(OSD) form manufacturing platforms, roller compaction, direct compression, high shear 
granulation and CDC.  
With the growing focus on sustainability, it is attractive to use systems models as a tool 
to understand and reduce the environmental cost of pharmaceutical manufacture.  As a 
proof of concept, the LCA methodology and models were incorporated into systems 
models of tablet manufacturing processes, with a specific example of continuous direct 
compression presented here.  These combined models were used to demonstrate the 
optimisation of processes to meet robust product quality attribute targets whilst 
identifying opportunities to minimise the impact of global warming potential. 

2. Materials and Methods 
2.1. LCA Methodology 
A ‘cradle-to-gate’ approach was used to define the system boundary for the LCA, with 
the functional unit consisting of the production of 1 kg coated tablets. The scope of the 
LCA is demonstrated in Figure 1. Life cycle inventory data was sourced from the 
Ecoinvent database where possible for excipients, auxiliary materials and electricity 
(Wernet, Bauer et al. 2016).  For excipients not available within the ecoinvent database, 
a similar material with LCI data was used as a ‘surrogate’. API contribution was modelled 
using a value of 1500 kgCO2eq/kg, based on medium emission API data obtained from 
the Association of the British Pharmaceutical Industry Blister Pack Carbon Evaluation 
Tool (ABPI and CarbonTrust). Models for each manufacturing platform were analysed 
using SimaPro 9.4 LCA software (Pré Sustainability B.V.), along with the The ReCiPe 
2016 Midpoint (H) V1.05 / World (2010) H calculation method, to calculate the global 
warming potential (GWP) as the key impact category for this assessment. A generic 
coated tablet formulation was used for all platforms to measure the influence of process 
yields alongside non-material sources of GWP. Typical process yields were incorporated 
into each unit operation, with the impact of yield loss material disposal assessed through 
a hazardous waste incineration step, sourced the EcoInvent database, modified to account 
for molecular carbon release being calculated separately, assuming complete combustion. 

 
Figure 1 Outline of LCA scope 
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Energy consumption was assessed both on a unit operation basis, considering unit 
operation energy requirements, in addition to a facility basis, considering the energy 
requirement of heating, lighting and air handling within the production facility. Unit 
operation energy use was calculated using three key methods. The first method relates to 
equipment where the motor component is the main contribution to power consumption, 
for example in screw feeders. Assuming that the maximum equipment power is reached 
at the maximum motor speed, a linear correlation is used to estimate equipment power at 
given operating parameters. For equipment typically operated at fixed speeds and for a 
set duration where the major power contributor is torque, such as blenders, a similar 
method was applied, although maximum power is correlated with maximum load. Finally, 
for equipment with a heating or drying element, such as coaters, it is assumed that primary 
energy contribution is required to heat the incoming air. Power use is therefore calculated 
based on an enthalpy balance of the air, and the subsequent electricity requirement 
assuming a heater with 100 % efficiency. Facility energy contribution was modelled using 
a ‘building energy intensity’ value, calculated using annual electricity meter and building 
footprint data from a representative OSD manufacturing facility. Space requirements for 
each unit operation were estimated based on an assumed constant ‘dirty room’ area, plus 
a ‘clean room’ area scaled for relative equipment size and complexity. Facility energy 
contribution calculated using the building energy intensity and room size, multiplied by 
processing or cleaning durations, to account for overheads during both stages. Cleaning 
contribution was built into the models using LCA data from a commercial coater, with 
solvent use and carbon emissions scaled for other equipment according to relative size 
and complexity.  

2.2. Systems Modelling 
Pharmaceutical process design and optimization is increasingly guided by digital 
activities such as systems modelling. System models are created by the connection of 
process models for multiple unit operations, connected as in the physical system. This 
enables simulation of the relationship between material properties and process settings 
across different process stages, and end-product qualities.   Inclusion of LCA models in 
system models is a natural extension, allowing a more holistic assessment that includes 
the impact of material and process choices on the sustainability of the overall process.  
Here, we demonstrate this approach for the example of a continuous direct compression 
(CDC) system model for manufacture of 100 mg tablets (Table 1). A number of such 
CDC system models have been described in the recent literature, for example by García-
Muñoz et al. (García-Muñoz, Butterbaugh et al. 2018), Tian et al. (Tian, Koolivand et al. 
2021), and Moreno-Benito (Moreno-Benito, Lee et al. 2022). For the purpose of 
demonstration, the system model was developed in gPROMS Formulated Products 
(v2023.1.0, Siemens), using the standard model libraries without customization.  
Table 1: Tablet composition and LCA contributions 

Component Mass fraction CO2e per kg 
API 0.200 1500 
MCC 0.504 71.69 
Lactose 0.231 0.96 
Crospovidone 0.050 6.71 
Magnesium Stearate 0.015 0.48 

 
The CDC system model (Figure 2) comprises individual material feeders for each 
component, with API, fillers and disintegrant fed into blender 1, and the ensuing powder 
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blend combined with lubricant in blender 2. The feeders were modelled as continuously 
stirred tank reactors with gravimetric screw control and a fixed feed factor of 2 g/rev. 
Feed factor variability was introduced in the API feeder to assess its impact on the 
sustainability calculations, whilst variability was neglected for the other feeders. The two 
horizontal blenders were modelled using the axial dispersion model, with mean residence 
time calculated based on the total throughput and residence mass.  Tablet compression in 
the tablet press was modelled using the Reynolds (2017) (Reynolds, Campbell et al. 2017) 
model to calculate tablet porosity and tensile strength, based on generic compressibility 
properties for the blend. The API content of the tablets was monitored, and the time spent 
out of specification was recorded to determine the quantity of acceptable material 
produced during operation. The operating window was defined by excluding the first 
three residence times to approximate onset of steady state operation and calculating the 
end time needed to achieve a fixed mass of material. LCA calculations were performed 
for the material (emissions per kilogram) and the process (emissions due to feeder, 
blender, and tablet press operation).  

 
Figure 2: Flowsheet for CDC system model developed in gPROMS Formulated Products 

2023.1.0. 

3. Results and discussion 
3.1. OSD platform comparison  

When performing the LCA, all impacts were normalised per kg coated tablets, to allow 
for comparison to be made across batch sizes. Figure 3 shows the global warming 
potential added to the baseline formulation contribution for production of one kg of coated 
tablets across each manufacturing platform and batch size. The results demonstrate that 
at small batch sizes CDC is the most carbon intensive manufacturing process, although 
this is highly dependent on batch size, with CDC having the lowest GWP impact at batch 
sizes above 200 kg. This batch size dependency results from the fixed start up loss 
assumptions made for process yield, and since API typically has the largest contribution 
to GWP, increased process yields result in significant GWP reductions. For other 
platforms, larger batch sizes are favourable for carbon emission reduction as fixed 
contributions such as cleaning become relatively lower per kg at larger batch sizes.  
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When assessing batch manufacturing platforms, direct compression has the lowest GWP 
when compared to granulation processes such as roller compaction. This is largely due to 
the cumulative effect of additional unit operations on the overall process yield, although 
in the case of high shear granulation, there is also the influence of the energy intensive 
drying process.  
 

 
Figure 3 Comparison of global warming potential impacts from different OSD manufacturing 

platforms and batch sizes. The baseline formulation contribution of 325 kgCO2eq per kg coated 
tablets has been removed to allow better visualisation of differences as it is constant for all results. 

3.2. System model analysis 

 
Figure 4 Contour plot of predicted global warming potential (in kg CO2e per kg of formulated 

tablets) as a function of throughput and feeder variability (RSD).  The baseline formulation 
contribution has been subtracted for visualization. 

To illustrate the output from the system model, the influence of the overall process 
throughput and the RSD of the API feeder on GWP is shown in Figure 4.  In this example, 
the model was run to process the same amount of material (100 kg) across all conditions, 
with a constant residence mass.  The figure shows that the variability from the feeder has 
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a significant influence on the global warming potential of the product.  As the variability 
in the feeder increases, the composition of the resultant tablets starts to deviate from the 
control limits, resulting in rejection and therefore an increase in waste from the process.  
There is also an interaction with throughput observed.  At low feeder variability, 
throughput has very little influence on the global warming potential of the product.  In 
this case, the time to steady state (3 mean residence times) scales resulting in the same 
mass of wasted tablets (equivalent to 3 residence masses).  At low feeder variability there 
is zero or limited waste from out of specification tablets.  At higher feeder variability, a 
higher throughput typically produces a lower global warming potential.  This is due to 
the overall process running for a shorter period of time and therefore reducing the 
frequency of composition excursions and rejected tablets.  Although additional 
contributions from the LCA were not included in the system model for this illustration, a 
higher throughput would also be expected to result in lower facility energy contribution 
due to a shorter production time. 
Further development of the system model can include the addition of factors related to 
equipment set-up and operation, which would influence the residence mass and therefore 
the degree of mixing in the process as well as inclusion of additional LCA contributions. 

4. Conclusions 
A detailed cradle to gate life cycle analysis of pharmaceutical tablet manufacturing has 
been developed.  The LCA methodology has included contributions from raw materials, 
process equipment energy, facilities, cleaning and waste.  This has been used to compare 
the global warming potential of several typical tablet manufacturing platforms.  Data and 
models from the LCA have been incorporated into a system model of a continuous direct 
compression process to demonstrate how optimisation of these processes can include a 
quantitative assessment of the global warming potential of the product.  This approach 
provides an enhanced capability to support the development of more sustainable 
pharmaceutical manufacturing processes. 
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Abstract 
The increasing growth of data centers worldwide has ushered in an era of unprecedented 
data processing and storage capabilities. As data centers play a pivotal role in the ever-
increasing use of cloud computing, social media, and online services in general, their 
energy consumption continues to rise, accounting up to 1-1.13% of the global electricity 
demand. Data centers produce low-grade heat. The energy-intensive operations of data 
centers have spurred a growing interest in waste heat recovery technologies as a means 
to enhance energy efficiency by usage of this waste heat for electricity generation and 
district heating. This study examines the waste heat potential of a 5MW data center that 
primarily employs liquid chip-level cooling to convert waste heat into electricity using an 
organic Rankine cycle (ORC). By comparing the performances of different working 
fluids such as R245fa (dry), R134a (wet) and R1234zeE (isentropic) in ORC systems 
optimized to have the lowest operating cost, this study attempts to understand the 
operating conditions that maximize the energy savings and improve the Energy Reuse 
Efficiency (ERE) indicator in datacenters, aiming to reduce the environmental impact. 

Keywords: Data Centres, ORC System, Working fluids, System Modelling. 

1. Introduction and background 
In an era dominated by the unprecedented proliferation of digital data; data centers have 
emerged as the linchpin of our global information ecosystem. However, the digital 
renaissance comes with a daunting challenge—the efficient management of the 
substantial waste heat produced by data centers. The EU has set a goal for the year 2030 
in which it aims to reduce the greenhouse gas (GHG) emissions by 40%1. A large amount 
of this could be reduced by reducing the energy consumption of the district heating (DH) 
systems. Waste heat from the data centres offers the opportunity to reduce the DH load 
and thereby reducing the overall energy consumption for DH, as discussed by Oro et al 
(2019)2. The heat available from the data centers would still be available during summer 
when there is not much need for direct heating applications. This heat could then be used 
to produce electricity by the use of an organic Rankine cycle (ORC). Figure 1 (a) shows 
a simple schematic diagram of how the waste heat from the data centre can be used to 
produce work using an ORC. In this study we intend to analyze different working fluids, 
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which are selected for the case of data centers using a prescreening tool suggested in 
Kermani et. al (2018)3, in an ORC superstructure that operates optimally between 5 
different pressure levels by optimizing the overall operating cost of the system. The 
choice of working fluid becomes critical to the ORC’s efficiency, as discussed by Herath 
et. al (2020)4. The working fluids are largely classified as dry, wet and isentropic fluids. 
Figure 1 (b), (c) and (d), show the TS diagram of these fluids along with a simple ORC 
with superheating for dry, wet and isentropic fluids correspondingly. 
 

 
 

Figure 1 (a) A schematic diagram of simple Organic Rankine Cycle (b) TS diagram for a dry 
working fluid (c) TS diagram for a wet working fluid (d) TS diagram for an isentropic working 

fluid 
 

2. Problem Formulation 
In this study, we focus on harnessing the potential of R134a (wet), R245fa (dry), and 
R1234zeE (isentropic) within the context of ultra-low heat recovery applications, 
specifically in conjunction with a data center's waste heat. Our primary objective is to 
leverage these three distinct refrigerants, each optimized for heat integration using 
OSMOSE, a decision support tool, to maximize energy recovery from the data center, 
maintained at a steady temperature of 85 oC. Complementing this, we utilize lake water 
as our cold source, with an assumed inlet temperature of 15oC. This temperature 
differential between the heat source and the cold source forms the crux of our integrated 
composite curve, allowing us to efficiently extract and convert waste heat into electricity 
which is then either to partially power the data centre again or integrated to the grid as 
shown in Figure 2. By focusing on this temperature range, our research seeks to better 
understand factors that affect ultra-low heat recovery and promote sustainable energy 
practices within data center operations, as discussed by Montalya et al (2023)5. Some of 
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the key fluid properties of the different fluids chosen for this study are summarised in 
Table 1 
 
Table 1: Summary of working fluids chosen for ORC. Bell et. al (2014) 6 
 

 

 
 

Figure 2  A simplified schematic of the overall process system showing heat removal from the 
data centre and electricity generation 

3. Results and Discussion 
By calculating the amount of electricity produced with each of these working fluids, we 
were able to calculate the efficiency of electricity production in each case. Assuming that 
the data centre has a power usage effectiveness of 1.58 and a system heat recovery 
potential of 0.96, we estimated that the heat available to be converted to actual work in 
the system was only about 3038 kW. The electricity produced and the efficiency is 

 
R134a R245fa R1234zeE 

Type Wet Dry Isentropic 

Boiling Point 
(0C)  

-26.3 14.72 -19.27 

Critical 
Temperature 
(0C) 

101.06 153.86 109.37 

Critical Pressure 
(bar) 

40.59 36.51 36.36 

Global Warming 
Potential 
(GWP100) 

3830 3380 - 
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tabulated in Table 2 below. The efficiencies as calculated here for an ultra-low grade 
waste heat recovery scenario for the different working fluids, seems to also conform with 
the findings of  Vittorini et al (2019)7. and Dai et. al(2009) 8 
 
 Table 2: Efficiency of ORC system with different working fluids 

 
 
2.1 Thermal Efficiencies comparison 
 
Furthermore, the efficiencies of these fluids, as delineated in Figure 2 (a), provide critical 
insights into the thermodynamic characteristics of each working fluid, thereby aiding in 
the selection of the most suitable medium for waste heat recovery. In the context of waste 
heat recovery for data centres, thermal efficiency and electric power generation are 
paramount. A high thermal efficiency signifies the effective utilization of waste heat, 
reducing operational costs and environmental impact. This is particularly vital for data 
centres with their energy-intensive operations. The electric power generated by the 
Organic Rankine Cycle (ORC) system represents a tangible output that can offset 
electricity consumption within data centres, enhancing their Power Usage Effectiveness 
(PUE), sustainability and reducing their reliance on conventional power sources, like 
discussed in Lei et.al (2020)9. In this regard, optimizing the thermal efficiency of ORC 
systems holds significant promise for the efficient and eco-friendly operation of data 
centres and of the three fluids considered in this study, R245fa like mentioned before, 
seems to have the most electricity generation for a given amount of heat supplied between 
these temperature limits.  
 
2.2 Integrated Composite Curves 
 
Integrated composite curves provide a graphical representation of heat exchange profiles 
in energy systems, revealing temperature pinch points and aiding in optimization. In the 
context of Organic Rankine Cycles (ORCs) operating between a waste heat source at 85 
°C and a cold stream at 20 °C, the integrated composite curves, as depicted in Figure 2 
(b), (c), and (d), serve as vital tools for optimizing energy recovery systems. These curves 
offer a comprehensive visual representation of heat exchange dynamics, enabling the 
identification of temperature pinch points and facilitating the assessment of energy 
utilization. Particularly, in the comparison of three distinct working fluids R245fa, 
R1234zeE, and R134a, it is evident, as illustrated in Figure 2 (b), that R245fa yields the 
highest power output, underscoring its better performance in this specific application.  

 
R134a R245fa R1234zeE 

Heat available from system (kW) 3038 3038 3038 

Temperature of hot source (oC)  85 85 85 

Temperature of cold sink (oC) 15 15 15 

Electricity produced (kW) 268.3 270.8 267.5 

Efficiency (%) 8.83 8.91 8.8 
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Figure 2: (a) Thermal efficiencies of the ORCs, when using these fluids. Integrated Composite 
Curves of a (b) R245fa (dry), (c) R134a (wet) and (d) R1234zeE (isentropic) working fluids with 

in the same temperature bounds 

4. Conclusions 
In summary, the investigation of three distinct working fluids in the context of waste heat 
recovery from data centers using Organic Rankine Cycles has revealed their comparative 
performance. Despite variations in efficiency, these fluids demonstrate nearly equivalent 
overall efficacy, affording the opportunity to consider other critical factors in the selection 
process. Such factors encompass environmental impact like the GWP100, specifically in 
the event of a leakage, as well as the optimization of the system with regard to objective 
functions extending beyond operational expenses. This study serves as a catalyst for 
forthcoming research endeavours in the realm of waste heat recovery, advocating a 
comprehensive approach to decision-making and the exploration of diverse avenues for 
advancing the sustainability of data center operations. Future research directions may 
encompass a more profound exploration of the long-term environmental repercussions, 
system reliability, and multi-objective optimization techniques, contributing to the 
refinement of working fluid selection and its implementation in waste heat recovery 
systems. 
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Abstract 
The optimal operation of multiple electrolyzers working in parallel poses challenges 
when modeled as a mathematical programming problem, often introducing numerous 
auxiliary binary variables. In this paper, we propose a novel formulation that leverages 
the convex nature of the non-linear performance curve of electrolyzers. This new 
formulation concisely describes the optimal operation of electrolyzers without 
compromising accuracy. The results demonstrate the efficient solvability of the novel 
formulation using off-the-shelf solvers. We have also observed that considering multiple-
unit operation enables a more rational use of hydrogen storage, helping to mitigate the 
need for frequent start-ups of electrolyzers. 

Keywords: Optimal operation; green ammonia production system; multiple-unit 
electrolyzer operation; partial-load efficiency 

1. Introduction
A typical green ammonia production plant, as shown in Fig.1, comprises three main 
components: renewable energy generation, green hydrogen production, and green 
ammonia production. The system may also be equipped with electric and hydrogen 
storage. However, the 
intermittent nature of 
renewable electricity
introduces challenges, causing 
the load rate of electrolyzers 
to vary significantly over 
short periods. Managing the 
state transfer and partial-load 
efficiency of multiple 
electrolyzers in a system 
remains a difficult task. In the 
literature, various
approaches aim to simplify 
this challenge, including Figure 1. Structure of a green ammonia production system 
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the aggregation of electrolyzers and linearization of performance curves. In a recent work 
of Varela (2021), authors proposed to use binary variables in a Mixed-Integer Linear 
Programming (MILP) model to represent the state of electrolyzers. It is worth noting that 
the computational burden increases exponentially with the growing number of 
electrolyzers. 
In this paper, we introduce a novel MILP model for optimizing the operation of multiple 
electrolyzers in the system. First, we apply a piecewise linear approximation to address 
the non-linear performance curve. Then, by leveraging the convex nature of the 
performance curve, we represent the states of electrolyzers without using binary variables 
for each of them. This approach not only provides a more precise description of the 
operation of the electrolyzer, but also reduces the size of the problem and improve 
resolution efficiency. 

2. Problem Description
2.1. Renewable energy 
Renewable energy is generated through existing wind turbines and PV panels in the area. 
The produced renewable electricity can either be utilized within the system or sold to the 
grid at a predefined price. Given the intermittent nature of the renewable energy source, 
the system is allowed to import electricity from the national grid when the renewable 
energy is insufficient to sustain its operation. The objective of the operational 
optimization is to minimize the total cost, calculated as the cost of purchasing electricity 
from the grid subtracted by the revenue generated from selling green electricity to the 
grid. 
2.2. Green hydrogen 
At the green hydrogen production stage, the system is equipped with multiple 
electrolyzers and a hydrogen storage. All electrolyzers are assumed to share the same 
technical parameters, including capacity, performance curve and starting-up cost. The 
hydrogen produced can be stored partially in the hydrogen storage and partially directed 
to the ammonia synthesis unit. 
Each electrolyzer has three different states: production, hot stand-by (HSB), and idle. In 
the production state, an electrolyzer operates above its minimum load rate to generate 
hydrogen output. The load rate must not fall below the minimum to avoid safety risks. In 
the HSB state, an electrolyzer consumes a small amount of power to maintain the suitable 
temperature of the liquid. While it doesn't produce hydrogen in the HSB state, it can 
switch to the production state within minutes and without extra energy consumption. An 
electrolyzer is completely turned off in the idle state and doesn't consume any electric 
power. When it switches to HSB or production state, it needs time and electric power to 
heat the liquid, so we need to consider a starting-up cost in this case. 
The performance curve of an electrolyzer illustrates the relationship between the 
production rate and electricity consumption. Typically nonlinear, the performance curve 
exhibits decreasing marginal efficiency as the production rate rises. Therefore, the 
performance curve forms a convex curve between its minimum and maximum production 
rate. 
2.3. Green ammonia 
The green ammonia production stage consists of a cryogenic air separation unit, utilized 
to extract nitrogen from the air, and a synthesis reactor where hydrogen and nitrogen react 
to produce ammonia with the assistance of a catalyst under specific temperature 
conditions. In this paper, we aggregate these components into a unified unit, treated as a 
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process that consumes electricity and hydrogen to produce ammonia. It's crucial to ensure 
that the ammonia synthesis unit operates between its working range. The startup time for 
an ammonia synthesis unit, transitioning from a completely off state to full operation, 
typically exceeds one day. To maintain the stability of the ammonia synthesis reactor, we 
assume the ammonia synthesis unit operates continuously within its working range 
throughout the investigated time horizon. 

3. Mathematical model
Parameters 

𝑃𝑃𝑡𝑡𝑅𝑅𝑅𝑅  Available renewable energy in time step 𝑡𝑡 (kWh) 
𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏/𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  Price per kWh of importing/selling electricity to/from 

the national grid (RMB/kWh) 
𝑄𝑄𝐻𝐻2,𝑚𝑚𝑚𝑚𝑚𝑚/𝑄𝑄𝐻𝐻2,𝑚𝑚𝑚𝑚𝑚𝑚 Minimum/maximum hydrogen production rate of 

electrolyzers (t) 
𝐵𝐵 Number of segments used for piecewise linear 

approximation 
𝑎𝑎𝑏𝑏 /𝑜𝑜𝑏𝑏 Slope/intercept of segment 𝑏𝑏 
𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻/𝑃𝑃𝑆𝑆𝑆𝑆 Fixed electricity consumption of HSB state/starting-up 

(kWh) 
𝑁𝑁𝐸𝐸𝐸𝐸 Number of electrolyzers in the system 

𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝜂𝜂𝐻𝐻2 Efficiency coefficient of the electricity/hydrogen input 
of the ammonia synthesis unit 

𝑄𝑄𝑁𝑁𝑁𝑁3,𝑚𝑚𝑚𝑚𝑚𝑚/𝑄𝑄𝑁𝑁𝑁𝑁3,𝑚𝑚𝑚𝑚𝑚𝑚 Minimum/maximum ammonia production rate (t) 

𝑄𝑄𝑁𝑁𝑁𝑁3,𝑜𝑜𝑜𝑜𝑜𝑜 Annual ammonia production plan (t) 
Variables 

𝑃𝑃𝑡𝑡
𝑅𝑅𝑅𝑅 ,𝑢𝑢𝑢𝑢𝑢𝑢/𝑃𝑃𝑡𝑡

𝑅𝑅𝑅𝑅,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Renewable energy for self-use/selling to the grid in 
timestep 𝑡𝑡 (kWh) 

𝑃𝑃𝑡𝑡
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 Electricity imported from the national grid in timestep 𝑡𝑡 

(kWh) 
𝑃𝑃𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 Total electricity consumed by the system in timestep 𝑡𝑡 

(kWh) 
𝑃𝑃𝑡𝑡𝐸𝐸𝐸𝐸/𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 Electricity consumed by electrolyzers/ammonia 

synthesis unit (kWh) 
𝑄𝑄𝑡𝑡
𝐻𝐻2/𝑄𝑄𝑡𝑡

𝑁𝑁𝑁𝑁3 Production of hydrogen/ammonia produced by the 
system in timestep 𝑡𝑡 

𝑊𝑊𝑡𝑡/𝐻𝐻𝑡𝑡/𝐼𝐼𝑡𝑡 Number of electrolyzers in production/HSB/idle state in 
timestep 𝑡𝑡 

𝑆𝑆𝑈𝑈𝑡𝑡  Number of starting-up electrolyzers in timestep 𝑡𝑡 
𝑃𝑃𝑡𝑡
𝐸𝐸𝐸𝐸,𝑊𝑊/𝑃𝑃𝑡𝑡

𝐸𝐸𝐸𝐸,𝑆𝑆/𝑃𝑃𝑡𝑡
𝐸𝐸𝐸𝐸,𝑆𝑆 Electricity consumption by production-state/HSB-

state/starting-up electrolyzers (kWh) 
𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡

𝐻𝐻2/𝑆𝑆𝑡𝑡
𝐻𝐻2,𝑖𝑖𝑖𝑖/𝑆𝑆𝑡𝑡

𝐻𝐻2,𝑜𝑜𝑜𝑜𝑜𝑜 Storage level/input mass flow/output mass flow of 
hydrogen storage 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝑆𝑆𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖𝑖𝑖/𝑆𝑆𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑜𝑜𝑜𝑜𝑜𝑜 Storage level/input energy flow/output energy flow of 
battery storage 

3.1. Objective function 
We aim to minimize the total electricity cost of the system. Other operational costs, such 
as labor and water, are considered constant due to the fixed ammonia production objective. 
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𝑂𝑂𝑂𝑂𝑂𝑂 ∶=  ��𝐶𝐶𝑏𝑏𝑏𝑏𝑏𝑏𝑃𝑃𝑡𝑡
𝑅𝑅𝑅𝑅,𝑢𝑢𝑢𝑢𝑢𝑢 −  𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑡𝑡

𝑅𝑅𝑅𝑅 ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�
𝑇𝑇

𝑡𝑡=1

 (1) 

3.2. Constraints 
The total electricity consumed by the system and sold to the grid should not exceed the 
generated renewable energy. 

𝑃𝑃𝑡𝑡𝑅𝑅𝑅𝑅 ≥  𝑃𝑃𝑡𝑡
𝑅𝑅𝑅𝑅 ,𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑃𝑃𝑡𝑡

𝑅𝑅𝑅𝑅 ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  (2) 

The energy balance involves the system's energy consumption, the self-use portion of 
renewable energy, imported grid electricity, and the utilization of battery storage. 

𝑃𝑃𝑡𝑡
𝑅𝑅𝑅𝑅,𝑢𝑢𝑢𝑢𝑢𝑢 + 𝑃𝑃𝑡𝑡

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑆𝑆𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑃𝑃𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (3) 

The electricity consumption of the production plant comprises two components: the 
electrolyzers and the ammonia synthesis unit. 

𝑃𝑃𝑡𝑡
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑃𝑃𝑡𝑡𝐸𝐸𝐸𝐸 +  𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 (4) 

The electricity consumption of the electrolyzers is characterized by a non-linear 
performance curve, which is approximated piecewise-linearly with 𝐵𝐵  segments. Liu 
(2021) has proved that in the optimal operation solution, all identical conversion units 
with convex performance curves in the production state have the same workload. This 
enables us to aggregate the consumption and production of production-stat electrolyzers 
as 𝑃𝑃𝑡𝑡

𝐸𝐸𝐸𝐸,𝑊𝑊  and 𝑄𝑄𝑡𝑡
𝐻𝐻2 . By the nature of the minimization problem, Eq. (5) will yield an 

equation at the optimal solution. 

𝑃𝑃𝑡𝑡
𝐸𝐸𝐸𝐸,𝑊𝑊 ≥  𝑎𝑎𝑏𝑏 𝑄𝑄𝑡𝑡

𝐻𝐻2 +  𝑜𝑜𝑏𝑏 𝑊𝑊𝑡𝑡 ∀𝑏𝑏 ∈ {1,⋯ ,𝐵𝐵} (5) 

𝑄𝑄𝐻𝐻2,𝑚𝑚𝑚𝑚𝑚𝑚𝑊𝑊𝑡𝑡 ≤ 𝑄𝑄𝑡𝑡
𝐻𝐻2 ≤  𝑄𝑄𝐻𝐻2,𝑚𝑚𝑚𝑚𝑚𝑚𝑊𝑊𝑡𝑡 (6) 

Electrolyzers in the HSB state consume a minimal amount of energy to maintain the 
temperature of the liquid. Starting up an electrolyzer from the idle state requires additional 
energy to heat the liquid and prepare the electrolysis conditions. 

𝑃𝑃𝑡𝑡
𝐸𝐸𝐸𝐸,𝑆𝑆 = 𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡  (7) 

𝑃𝑃𝑡𝑡
𝐸𝐸𝐸𝐸,𝑆𝑆𝑆𝑆 = 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡 (8) 

The number of electrolyzers in different states should be consistent with the total number 
of electrolyzers. 

𝑊𝑊𝑡𝑡 + 𝐻𝐻𝑡𝑡 + 𝐼𝐼𝑡𝑡 = 𝑁𝑁𝐸𝐸𝐸𝐸 (9) 

The number of units starting up is equal to the decrease in idle units. 

𝑆𝑆𝑈𝑈𝑡𝑡 ≥ 𝐼𝐼𝑡𝑡 −  𝐼𝐼𝑡𝑡+1  ∀𝑡𝑡 ≤ 𝑇𝑇 − 1 (10) 

𝑆𝑆𝑈𝑈𝑡𝑡 ≥ 0 (11) 

The inventory balance constraints for electric storage and hydrogen storage. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡
𝐻𝐻2 + 𝑆𝑆𝑡𝑡

𝐻𝐻2,𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑡𝑡
𝐻𝐻2,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡+1

𝐻𝐻2 ∀𝑡𝑡 ≤ 𝑇𝑇 − 1 (12) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑆𝑆𝑡𝑡
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖𝑖𝑖 − 𝑆𝑆𝑡𝑡

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡+1𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∀𝑡𝑡 ≤ 𝑇𝑇 − 1 (13)
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The electricity and hydrogen consumption of the ammonia synthesis unit. 

𝑄𝑄𝑡𝑡
𝑁𝑁𝑁𝑁3 = 𝜂𝜂𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑃𝑃𝑡𝑡𝐴𝐴𝐴𝐴 (14) 

𝑄𝑄𝑡𝑡
𝑁𝑁𝑁𝑁3 = 𝜂𝜂𝐻𝐻2(𝑄𝑄𝑡𝑡

𝐻𝐻2 − 𝑆𝑆𝑡𝑡
𝐻𝐻2,𝑖𝑖𝑖𝑖 + 𝑆𝑆𝑡𝑡

𝐻𝐻2,𝑜𝑜𝑜𝑜𝑜𝑜) (15) 

The ammonia synthesis unit should operate within its working range and achieve the total 
production objective. 

𝑄𝑄𝑁𝑁𝑁𝑁3,𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑄𝑄𝑡𝑡
𝑁𝑁𝑁𝑁3 ≤ 𝑄𝑄𝑁𝑁𝑁𝑁3,𝑚𝑚𝑚𝑚𝑚𝑚 (14) 

�𝑄𝑄𝑡𝑡
𝑁𝑁𝑁𝑁3

𝑇𝑇

𝑡𝑡=1

≥ 𝑄𝑄𝑁𝑁𝑁𝑁3,𝑜𝑜𝑜𝑜𝑜𝑜 (15) 

4. Results
We tested the model, as defined in Section 3, on an actual green ammonia production 
system located in northern China over one year. In this region, we have a wind farm with 
a generation capacity of 1.5 GW and 15 MW of PV panels. In the hydrogen production 
stage, there are 150 electrolyzers, each capable of producing a maximum of 83.75 
kilograms of green hydrogen per hour. The working range of each electrolyzer is between 
50% and 100%, and the nonlinear performance curve, as well as the piecewise linear 
approximation, is illustrated in the Fig.2. The ammonia synthesis unit can produce a 
maximum of 75 tons of ammonia per hour and should operate between 10% and 100% of 
its capacity. The system is also equipped with a 150 MWh battery storage and a 10-ton 
hydrogen storage tank. The electricity price 
purchased from the grid is 0.5 RMB/kWh, 
and the selling price of green electricity is 
0.2829 RMB/kWh. We consider a one-year 
time horizon and the annual production 
objective is 3.9 × 105 tons. 
The proposed MILP model is optimized 
with solver CPLEX on a computer with 
16GB RAM and Intel i9-12900H CPU. The 
resolution time is 507 seconds, and the 
solver returns the optimal solution. In 
contrast, the model employing conventional 

binary variables ran out of memory without finding a feasible solution. 
The total cost of purchasing electricity from the gird is 1.25 × 108 RMB, and the total 
revenue from selling renewable energy is 3.92 × 108 RMB, resulting in a total revenue 
of 2.68 × 108 RMB. The total input of renewable energy for the year is 5274 GWh, of 
which 1387 GWh is sold to the grid and 3887 GWh is consumed by the system. The self-
use rate is 73.7%. Due to the intermittency of available renewable energy, the system also 
needs to purchase 249 GWh of electric energy from the grid, leading to a grid dependency 
of 6.4%. 

Figure 2. Nonlinear performance curve of 
electrolyzers and the piecewise linear 
approximation 
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In Fig.3, we illustrate the detailed operation of the system over three consecutive days, 
from March 7th to March 10th.  We observe that there are mainly two periods, on the first 
day and on the second 
day, in which the 
availability of renewable 
energy is limited. The 
profile of ammonia 
production follows the 
same trend as the 
availability of renewable 
energy. Regarding the 
operation of
electrolyzers, we 
observe that during the 
long period of limited 
renewable energy, from 
12:00 March 7th to 3:00 
March 8th, the optimal operation 
prefers to switch off the electrolyzers. During the shorter period of limitation, from 18:00 
March 8th to 1:00 March 9th, the optimal operation decides to keep electrolyzers in HSB 
state. The battery storage is charged when sufficient renewable energy is available and 
discharged when the renewable energy source is limited, resulting in a storage level 
profile similar to the profile of available renewable energy.  The hydrogen storage is 
utilized in a similar manner, but it is also employed to mitigate frequent starting-up of 
electrolyzers, as observed from 12:00 March 7th to 3:00 March 8th. 

5. Conclusions
In this paper, we developed a novel mixed-integer linear programming model for 
optimizing the operation of a green ammonia production system. This model considers 
the partial-load efficiency and state transfer of multiple alkaline electrolyzers. Leveraging 
the convex performance curve, we establish a priori that all electrolyzers in working state 
should have the same production rate. Consequently, we can avoid the use of binary 
variables for each individual electrolyzer, presenting a more concise yet accurate 
formulation. 

The results demonstrate the efficiency of this new model, which can be solved by an off-
the-shelf commercial solver in 507 seconds to obtain the optimal operation solution of 
one year. Furthermore, we have observed that considering the non-linear performance 
curve and the multiple-unit operation of electrolyzers not only enhances the precision of 
the model but also allows for a more rational utilization of hydrogen storage in the system, 
reducing the need for frequent start-ups of the electrolyzers. 
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Figure 3. Operation results of three consecutive days 

153



Flavio Manenti, Gintaras V. Reklaitis (Eds.), Book of Abstract of the 34th European 
Symposium on Computer Aided Process Engineering / 15th International Symposium on 
Process Systems Engineering (ESCAPE34/PSE24), June 2-6, 2024, Florence, Italy. 

Numerical Simulation of the L-V Equilibrium 
within a Stage in a Distillation Column using Cfd 
Perla G. Canchola-Lópeza, Ariadna E. Vázquez-Hernándeza, Jazmín Cortez-
Gonzáleza, Rodolfo Murrieta-Dueñasa, Roberto Gutiérrez-Guerrab, Carlos E. 
Alvarado-Rodríguezc 
a Tecnológico Nacional de México/ Irapuato, Ingeniería Química y Bioquímica,; 
Carretera Irapuato-Silao Km. 12.5, C.P:36821 Irapuato, Guanajuato, MEXICO;  
b Universidad Tecnológica de Leon, Departamento de Sustentabilidad para el 
desarrollo. Blvd. Universidad Tecnológica 225, Universidad Tecnologica, San Carlos 
la Roncha, 37670 León, Gto. 
c Departamento de Ingeniería Química, División de Ciencias Naturales y Exactas, 
Universidad de Guanajuato, Noria Alta S/N, C.P. 36050, Guanajuato, Guanajuato, 
México. 
jazmin.cg@irapuato.tecnm.mx 

Abstract 
This work presents the numerical simulation in L -V equilibrium stage in a Sieve plate 
distillation column using the SPH method. To perform the simulation of the equilibrium 
stage, periodic conditions in temperature were established. The sizing of the column 
was performed in Aspen One considering an equimolar mixture of Benzene-Toluene 
and an operating pressure that guarantees that the cooling water temperature of the 
condenser is 120°F, the thermodynamic model used was Chao-Seader. With this 
information, the following was obtained: liquid velocity and vapor velocity per stage, 
viscosity and density of the mixture, operating pressure and column diameter. The 
geometry of the stage in the distillation column and the sieve plate were made in 
SolidWorks. The CFD simulations were performance using DualSPHysics. The results 
show the effects of sieve plate design on the velocity and temperature distribution in the 
stage, lead to information to improve the design and efficiency of the stage. 
 
Keywords: CFD, Simulation of Distillation, thermal equilibrium. 

1. Introduction 
Distillation stands as the most extensively employed unit operation within the field of 
Chemical Engineering, primarily due to its remarkable capability for product 
purification. Traditional distillation processes, however, exhibit notable inefficiencies, 
prompting the exploration of alternative approaches to enhance their thermodynamic 
efficiency in equipment design and operation. Many of these alternatives have 
undergone scrutiny through the MESH equations and sequential simulators, while less 
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attention has been devoted to their modeling with Computational Fluid Dynamics 
(CFD), mainly due to its inherent complexity. CFD employs methods of either Eulerian 
or Lagrangian nature. Eulerian methods utilize a mesh for medium discretization, 
resulting in spatial averages at transfer interfaces between fluids. Noteworthy examples 
include finite volume and finite element methods, with the former being the preferred 
choice for simulating hydrodynamics, mass transfer, and momentum within distillation 
columns (Haghshenas et al., 2007; Lavasani et al., 2018; Zhao, 2019; Ke, 2022). 
However, this method is not without its drawbacks, encompassing challenges in 
interface modeling, convergence, and the selection of appropriate turbulence models to 
simulate turbulent flow. 
 
Conversely, Lagrangian methods afford a detailed view of phenomena at interfaces, 
discretizing the continuous medium through non-meshed points. This characteristic 
enables the assessment of flow, concentration, or temperature distribution within a 
system. Smoothed Particle Hydrodynamics (SPH) emerges as a Lagrangian method that 
adeptly represents discontinuous media and intricate geometries using particles, 
avoiding the need for a mesh. It has found applications in modeling diverse scenarios, 
including microbial growth (Martínez-Herrera et al., 2022), sea wave dynamics 
(Altomare et al., 2023), and stellar phenomena (Reinoso et al., 2022), showcasing its 
versatility and robustness. In light of these considerations, this study presents a 
numerical simulation of a liquid-vapor (L-V) thermal equilibrium stage within a plate 
distillation column employing the SPH method, specifically examining Sieve and 
Bubble cap plates. Periodic temperature conditions were imposed to facilitate the 
equilibrium stage simulation. 

2. Methodology  
 
In this work a methodology for the simulation of the hydrodynamics and thermal 
equilibrium of plate distillation columns is proposed. This methodology consists of 3 
stages: rigorous design of the distillation column in Aspen Plus, 3D design of the 
column - sieve plates and hydrodynamic analysis of the columns using the SPH method. 
The Aspen Plus simulation results were used as input data for SPH. The 3D design was 
performed in SolidWorks. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Methodology for the numerical simulation of the hydrodynamics and equilibrium of 

distillation columns. 
 
 

Design 
variables

Design 3D 
column - plates

Hydrodynamic 
and heat 
transfer 
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2.1. Rigorous design of the distillation column in Aspen Plus 
 
The column's sizing was conducted using Aspen One, considering an equimolar mixture 
of Benzene-Toluene and an operational pressure guaranteeing a condenser cooling 
water temperature of 120°F. The thermodynamic model applied was Chao-Seader, and 
sieve plates were employed. The column featured ten stages, with stage 5 designated for 
feeding, and both components assumed a 98% purification and recovery rate. This 
information yielded crucial data, including liquid and vapor velocities per stage, mixture 
viscosity and density, operating pressure, and column diameter. Three-dimensional 
CAD files of the distillation column and the sieve and bubble cap plates were developed 
using SolidWorks. Subsequently, these files were imported into DualSPHysics 
(Domínguez et. al., 2022) for CFD numerical simulation to ascertain flow and 
temperature profiles at an equilibrium stage. Stage 6 and 7 were selected for analysis, 
given their position below the feed stage.  
 
2.2. Column and sieve plate sizing 
 
The 3D design of the column and plates was carried out in SolidWorks. The design 
parameters used were: column diameter, effective and downspout areas, obtained in 
Aspen Plus. The distance between plates was proposed to be 0.15m. Stainless steel 
316L was chosen as construction material. Figure 1 show, from left to right, the 3D 
design of the plate, the stage and the initial conditions . 

 

 

 

  
Figure 1. From left to right: 3D Sieve plate design, stage design and initial conditions of 

simulation. 
 

Table 1. Results of the rigorous simulation of the distillation column in Aspen Plus. 
 

Parameter Líquid Vapor 

Density (kg/m3) 783.8023 4.0206 
Viscosity (Ns/m2) 2.5x10-4 9.5x10-6 
Temperature (oC) 105.99 115.42  

Mass fraction 0.5886 0.5405 
Velocity (m/s) 0.0261 0.0214 

Coefficient of thermal diffusivity (m2/s) 7.9247x10-8 
Surface tension 0.018 N/m 0.018 N/m 

 
 

TS0=115.42 oC

TL0=115.42 oC

vS0= 0

vL0= 0
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2.3. Hydrodynamics and heat transfer in SPH 
 
SPH is a Lagrangian, meshless method with applications in the field of Computational 
Fluid Dynamics. Originally invented for astrophysics in the 1970s (Monagan J, 1992) it 
has been applied in many different fields, including  fluid dynamics (Alvarado-
Rodríguez C.E. et al., 2019). The method uses points named particles to represent the 
continuum and these particles move according to the governing equations in the fluid 
dynamic. When simulating free-surface flows, no special surface treatment is necessary 
due to the Lagrangian nature of SPH, making this technique ideal for studying violent 
free-surface motion. The SPH formalism used in the simulations is reported by 
(Dominguez et al., 2021) which is set in the DualSPHysics code, in this work only the 
continuity (Eq. 1), the momentum (Eq. 2) and equation of state (Eq. 3) in the SPH 
formalism are reported. For this work, the heat equation (Eq. 4) was implemented on the 
DualSPHysics code to calculate the temperature variation in the stage. 

𝑑𝑑𝐯𝐯𝑎𝑎
𝑑𝑑𝑑𝑑

= −∑ 𝑚𝑚𝑏𝑏𝑏𝑏 �𝑃𝑃𝑎𝑎+𝑃𝑃𝑏𝑏
𝜌𝜌𝑎𝑎𝜌𝜌𝑏𝑏

+ ∑ 𝑚𝑚𝑏𝑏 �
4𝑣𝑣0𝒓𝒓𝑎𝑎𝑎𝑎∙𝛻𝛻𝑎𝑎𝑊𝑊𝑎𝑎𝑎𝑎

(𝜌𝜌𝑎𝑎+𝜌𝜌𝑏𝑏)(𝑟𝑟2𝑎𝑎𝑎𝑎+𝜂𝜂2)� 𝐯𝐯𝑎𝑎𝑎𝑎𝑏𝑏 + ∑ 𝑚𝑚𝑏𝑏 �
𝜏𝜏�⃗ 𝑎𝑎𝑎𝑎
𝑗𝑗

𝜌𝜌𝑏𝑏2
+𝑏𝑏

𝜏𝜏�⃗ 𝑎𝑎𝑎𝑎
𝑖𝑖

𝜌𝜌𝑎𝑎2
� ∇𝑎𝑎𝑊𝑊𝑎𝑎𝑎𝑎� ∇𝑎𝑎𝑊𝑊𝑎𝑎𝑎𝑎 + 𝑔𝑔 , 

 

(1) 

𝑑𝑑𝜌𝜌𝑎𝑎
𝑑𝑑𝑑𝑑

= −𝜌𝜌𝑎𝑎 ∑
𝑚𝑚𝑏𝑏

𝜌𝜌𝑏𝑏
(v𝑏𝑏 − v𝑎𝑎)𝑏𝑏 ∙ ∇𝑎𝑎𝑊𝑊𝑎𝑎𝑎𝑎 , (2) 

𝑃𝑃 = 𝐵𝐵 �� 𝜌𝜌
𝜌𝜌0
�
𝛾𝛾
− 1� , 

 
(3) 

𝑑𝑑𝑇𝑇𝑎𝑎
𝑑𝑑𝑑𝑑 =

1
𝐶𝐶𝑝𝑝
�

𝑚𝑚𝑏𝑏(𝑘𝑘𝑎𝑎 + 𝑘𝑘𝑏𝑏)(𝑟𝑟𝑎𝑎 + 𝑟𝑟𝑏𝑏) ∙ ∇𝑎𝑎𝑊𝑊𝑎𝑎𝑎𝑎

𝜌𝜌𝑎𝑎𝜌𝜌𝑏𝑏(𝑟𝑟2𝑎𝑎𝑎𝑎 + 𝜂𝜂2)
𝑏𝑏

(𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑏𝑏). (4) 

 
where the subscripts a and b are denoted for the mean particle “a” and the neighbors 
particles “b”, v is the velocity, t is time, m is mass, P is pressure, ρ is density, υ0 is the 
kinematic viscosity, r is the vector position, τ is the stress tensor, 𝐵𝐵 =  𝑐𝑐02𝜌𝜌0/𝛾𝛾, c0 is 
and artificial sound speed, and γ = 7, T is temperature, k is the conductivity constant, Cp 
is the heat capacity at constant pressure, and W is the kernel function defined in the 
SPH method. 
 
This method was implemented for the numerical analysis of the distillation columns 
under the following considerations: periodic conditions were used to perform the 
hydrodynamic and equilibrium analysis. Equivalent boundary conditions at zero 
pressure, P=0, were considered at the exit of the stage. The initial properties of the 
fluids are shown in Table 1. In all cases, no-slip boundary conditions were considered in 
the interaction between fluid and boundary particles using the dynamic particle method.  

3. Discussion of results 
From the results obtained SPH method in the numerical simulations, it is possible to 
analyze the velocity profile and the temperature profile inside the stage. In addition, it is 
possible to approximate the time it requires for the stage to reach equilibrium under the 
initial conditions established. 
The simulation was performed with a total of 7,261,750 fluid particles of which 
1386940 are bound particles, 4230940 liquid and 1,643,870 are vapor. 60 seconds of 
real time were simulated.  The simulation was completed in a total of 17.5h on the GPU 
NVIDIA GeForce 3060 of ITESI. In Figure 1 is shown the evolution of velocity field 
obtained in the simulation. A higher velocity is obtained in the area where the fluid 
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enters from the downspout, the velocity distribution is not completely homogeneous, 
however, there are not dominant streamlines in the stage, meaning a good distribution of 
the flow in the stage. In Figure 3 is shown the evolution of the temperature in the stage 
which due to the good flow get the equilibrium temperature in the simulated time.  
 

 
Figure 2. 3D perspective of the velocity field evolution in the stage, each frame correspond to 7.5 

seconds. 

 
Figure 3. Lateral perspectives of the velocity and temperature fields in the stage., each frame 

correspond to 7.5 seconds. 

t = 0s

Velocity (m/s)

t = 7.5s t = 15 s

t = 22.5s t = 30s t = 37.5s

t = 45s t = 52.5s t = 60s

Temperature (oC)

t = 0s t = 7.5s t = 15 s

t = 22.5s t = 30s t = 37.5s

t = 45s t = 52.5s t = 60s
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4. Conclusions 
In this work the CFD numerical simulation of a stage inside a distillation column is 
presented. The geometry of the column and the plates were made in SolidWorks. Then, 
the geometries were exported to DualSPHysics to perform the corresponding 
simulations, based on the parameters obtained with the rigorous simulation in Aspen 
Plus.  
The numerical simulations supply data to analyze the flow and heat transfer in the stage, 
considering the flow of two faces, steam and liquid, and the change of the temperature 
of each one. With this data is possible to perform a new methodology to calculate the 
global heat transfer coefficient in the stage, this parameter could heat to improve the 
plate design used in the column and to compare between different kind of plates. In 
summary, the findings underscore the effectiveness of implementing initial and 
boundary conditions in distillation columns to simulate thermal equilibrium. 
Furthermore, the SPH method emerges as a potent and versatile tool for conducting 
numerical simulations of fluid dynamics and thermal equilibrium within distillation 
columns. 
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Abstract 

Formulation and solution of superstructure optimization problems for process synthesis 

is still challenging. This concerns both the formulation of suitable mathematical models 

and optimization problems as well as their solution. Here, the focus lies on the 

formulation and code generation to facilitate subsequent solution. As a novelty, 

superstructures are generated in MathML / XML form, which are then used to 

automatically formulated MINLP problems with interfaces to accurate thermodynamic 

functions. For these large-scale problems, code consistency needs to be addressed early 

on. MOSAICmodeling’s capabilities for processing MathML / XML models are 

exploited to this end using language specificators for automatic code generation towards 

target languages and respective frameworks for solution of the MINLP problems. The 

feasibility of the novel approach is highlighted with an example of a superstructure with 

phenomena-based building blocks. 

Keywords: superstructure, process synthesis, automatic code generation 

1. Challenges in Optimal Process Synthesis 

Optimal process synthesis requires the formulation and solution of complex optimization 

problems. An example is the generic network of phenomena-based building blocks as 

demonstrated by Kuhlmann and Skiborowksi (2017). These problems are typically large 

and frequently require accurate thermodynamic property information, e.g., to predict 

vapor liquid equilibria (Krone et al., 2022). This can either be achieved by incorporating 

the thermodynamic models into the process synthesis problem or by interfacing with 

external tools. Both cases are challenging during the formulation and implementation of 

synthesis problems. 

For process synthesis problems as in (Kuhlmann and Skiborowski, 2017) and (Krone et 

al., 2022) there is usually a split between the software used for formulation and solution 

of the MINLP problem and the tool employed for dedicated solution of thermodynamic 

equations and properties. The former are typically tools such as GAMS, AMPL, or 

PYOMO, while the latter are frequently specialized thermodynamic property packages 

such as Aspen Properties, KBC’s MultiFlash, or AmsterChem’s TEA, which perform 

tasks such as determination of the number of phases, computing phase equilibria, etc. 
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Interfacing between these heterogeneous tools is an error-prone process with disastrous 

effects for the reliability of results. 

MOSAICmodeling (Esche et al., 2017) is a collaborative modeling platform, which 

follows the paradigm of modelling at the documentation level, i.e., an identity of model 

formulation and documentation. Models are formulated in MathML / XML, i.e., 

standardized descriptive markup language, which is flexible and independent of the final 

implementation in a target language. The backend of MOSAICmodeling instantiates 

systems according to user specifications regarding index sets and the translation engine 

converts these instances into programming code (C, C++, Python, Fortran, etc.) or 

modeling language (GAMS, Pyomo, AMPL, Matlab, etc.). This strategy allows for error-

free implementation of models in the form of code but was in the past limited to single 

language settings. 

In the present contribution, we elaborate an approach to exploit the capabilities of the 

aforementioned thermodynamic property packages for rigorous process synthesis tasks in 

an error-free fashion. This entails the formulation of synthesis problems as MINLP in 

MOSAICmodeling with interface definitions for all state variables computed externally. 

Afterwards, an automatic model decomposition is carried out at the MathML / XML level, 

which separates the MINLP into two parts: (1) the actual MINLP problem, and (2) the 

list of required external function calls and their derivatives. These parts are then 

automatically exported for desired target languages. 

Novel decomposition techniques regarding model hierarchy and classifications of 

variables have been implemented on the MathML / XML level for superstructure 

problems, which ensures rigor regarding model consistency across heterogeneous target 

languages. 

2. Methodology and Implementation 

2.1. Setting 

Of interest in this setting are formulations for superstructure optimization problems for 

general process synthesis which consist of model equations describing at least mass and 

energy balances for units or phenomena-based building blocks (PBBs), algebraic 

constraints governing which parts of the superstructure should be activated or deactivated 

given their connection to others, and an objective function minimizing, e.g., total 

annualized costs. In general, these types of problems will amount to large-scale MINLP 

formulations. A specialty in the work of Kuhlmann and Skiborowski (2017), later adapted 

by Krone et al. (2022) is the inclusion of accurate thermodynamics in these models. 

Naturally, this leads to a further increase in the computational complexity of the MINLP 

formulation. To alleviate the situation, Kuhlmann and Skiborowski (2017) suggested 

outsourcing thermodynamics to an external engine, e.g., Aspen Properties, 

AmsterChem’s TEA, KBC’s multiflash, or similar. These external engines ensure 

solution of the thermodynamic relationships. Nevertheless, setting up the MINLP with 

external function calls puts an extra burden on the user formulating and solving the overall 

MINLP. 

2.2. Modeling in MathML / XML 

In the scope of the here presented work, we exploit the capabilities of the MathML / 

XML-based model formulation within MOSAICmodeling and extend it towards 

superstructure problems. During the model formulation of the above described MINLP, 

all equations and inequality constraints are entered in LaTeX and then automatically 

translated to MathML. Regarding the thermodynamic function calls, an alternative 

strategy is pursued. Instead of directly implementing functions or equations, the users 
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may specify for each that this is to be implemented externally, e.g., in compliance with 

the CAPE-OPEN standard (COLaN, 2023). For example, in case a liquid phase enthalpy 

is required, the user specifies as part of an equation system, that this enthalpy is a function 

of the respective temperature, pressure, and liquid-phase composition. The information is 

stored in an interface element in XML linking the variables in the equation system to an 

– as of yet unknown - external engine. In general, this can be done for all thermodynamic 

properties, which are needed within the model formulation, i.e., enthalpies, entropies, 

temperatures or pressures of boiling point or dew point, equilibrium coefficients, etc. This 

way, the model formulation in MathML / XML stays efficient, remains lean, and is still 

easily understandable to the person formulating the model. 

2.3. Model Decomposition and Code Generation 

In examples of Kuhlmann and Skiborowski (2017) and Krone et al. (2022), a hierarchical 

structure is present in the MINLP: A distribution network connects feed nodes and 

splitters to product nodes and mixers. An example hereof will be given in section 3. Mixer 

nodes link to individual PBBs and the outlets of PBBs connect to the splitter nodes of the 

distribution network. The structure is also present in the MathML / XML formulation as 

model hierarchy. Naturally, the same types of interfaces for thermodynamics reappear 

everywhere. On all levels of this hierarchy, there may be interfaces to thermodynamic 

function calls. Also, nonlinear constraints, integer, and continuous variables can appear 

throughout. 

The modeling engine of MOSAICmodeling simultaneously holds a flat version, e.g., all 

variables numbered globally, as well as a fully hierarchical version, e.g., model equations 

and variable namings retain hierarchical structure, of the instantiated MathML / XML 

model while processing it. Instantiated means that the numbers of PBBs, number of 

components, product nodes, etc., are already confirmed. This dual representation is 

exploited for code generation and can be of help during the subsequent solution of the 

MINLP. 

First, thermodynamic calls are captured by the modeling engine across all hierarchy levels 

and two maps are built. The first links the variable namings of the flat to the hierarchical 

version. The second lists each function call type (boiling point temperature, liquid 

enthalpy, etc.) and for each instance (i.e., function call) clearly marks all required 

variables with their type (temperature, pressure, enthalpy, entropy, liquid/vapor 

composition, boiling point temperature, ), their engineering unit (K, Pa, kJ/kmol, etc.), 

their direction from the perspective of the function call (input or output), and their 

dimensionality (scalar or vectorial). 

Second, the MathML / XML model is decomposed in such a fashion that function values 

and derivatives can be computed externally and linked back to the occurrences within the 

hierarchy. This entails a complete separation of the function calls from the rest of the 

model. The link between both separated parts is based on the hierarchical variables in the 

MathML / XML structure. Based on the structure of the target code, maps are built for 

the derivatives either based on the flat (numbering scheme) or the hierarchical variable 

names. To generate code for the solution of the MINLP, two aspects need to be 

considered: (1) the environment for the solution and (2) the framework for the external 

function calls. The translation from MathML / XML form to a target language is governed 

by language specificators (LS) (Tolksdorf et al., 2019). These can be defined and adjusted 

by the users and are specified in XML form themselves. In general, an individual LS is 

required per target language, i.e., AMPL, GAMS, Pyomo, C++, FORTRAN, etc. 

For the generation of MINLP problems with external function calls, this is augmented to 

exploit the hierarchical structure and the aggregation of thermodynamic calls as detailed 
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above. In practice, this means that the code generation is split between MINLP problem 

on the one hand side and calls to external functions on the other. The aforementioned 

maps are used to link these different sides governed by the properties of the target code. 

For each an LS is set-up to generate the specific, executable code. Further details hereon 

will be given below. 

3. Case Study 

3.1. Example Superstructure and Component System 

The methodology outlined in section 2 is here presented for a process synthesis problem 

involving phenomena-based building blocks (Krone et al., 2022; Krone et al., 2023). This 

is applied on a feed stream of n-pentane, n-hexane, and n-heptane, which is to be 

separated. The optimization problem consists of 1,303 (in-)equality constraints, 62 

binary, and 1,123 continuous variables. The superstructure is depicted in Fig. 1.  

 

Figure 1. Generic superstructure with vapour-liquid equilibria blocks (VL-U). The left-hand side 

shows the distribution network with the connected VL-U PBB and the right-hand side a close-up 

of the connection of splitter nodes to mixer nodes. Red dashed lines signal vapor phase, blue solid 

lines liquid phase. 

The left-hand side shows the distribution network (blue box) with all possible connections 

between feed, product nodes, splitters, and mixers, as well as the attached PBBs, which 

here are countercurrent vapor-liquid contactors, depicted as VL-Us (Krone et al., 2023). 

These could present sections of, e.g., a distillation column. The whole superstructure is 

implemented in MOSAICmodeling. 

3.2. Implementation and Solution of the MINLP 

For the solution of the MINLP, GAMS is selected, while the external function calls are 

implemented using CAPE-OPEN’s binary interop architecture (COBIA) (COLaN, 2023). 

GAMS and COBIA are connected by a dynamic-link library (DLL), which is 

programmed in C++. On the GAMS side, a solution strategy involving branch & bound 

algorithms, DICOPT, CONOPT, and IPOPT, is implemented, which is detailed in (Krone 

et al., 2023). Here, the focus lies on the code generation and connection of GAMS and 

COBIA. On the GAMS side, our translation engine inside of MOSAICmodeling 

translates the interface definitions for the thermodynamic function calls into “external 

equations”, see Fig. 2. For this, the mapping between system variables and interfaces for 

function calls is used and translated into consistent code. In this case, GAMS operates on 

a numbering scheme regarding external communication, while internally using the 

hierarchical variable namings. In Fig. 2, the numbers before the multiplication sign are 

the IDs of each variable for external communication with the DLL, while the strings after 

the sign are the hierarchical names of the model as translated from MathML into GAMS-
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friendly form. For instance, e0s5_p is the pressure of stream 5 and e0e0e2_x_VL_i1_j2 

is the liquid mole fraction of component 1 on the second tray of the VL-U 2. 

 

 

Figure 2. Example of automatically generated external equations in GAMS. 

On the C++ / COBIA side, a case differentiation needs to be performed. For those cases, 

where there is a direct match between XML interfaces and CAPE-OPEN specifications 

little needs to be done: on the C++ side the components need to match the physical 

components in the CAPE-OPEN specification and the derivatives need to be structured 

in the correct way to suit GAMS. This is now automatically done by MOSAICmodeling’s 

translation engine. For all other cases, reformulations are required to match CAPE-

OPEN-compliant function calls. This implies deriving functional dependencies and 

derivatives via the implicit function theorem. These need to be derived once and 

implemented directly in the LS in MOSAICmodeling, which then generates consistent 

code for each call. Fig. 3 depicts an example of an external function implementation on 

the C++ side. mylocalThermoObj is a COBIA object. x is the vector of all variables at 

the interface between GAMS and DLL, f the return vector of residuals for all external 

function calls, and d the derivative vector. 

 

 

Figure 3. Example of automatically generated C++ and COBIA code for external function calls. 

The proposed methodology and described implementation have been tested with a 

varying number of components (2-3) and number of PBBs (2-6). Consistent, error-free 

code was generated by the translation engine in MOSAICmodeling for both GAMS and 

C++. A number of these example MINLP have been successfully solved. At this point we 

will limit ourselves to showing one cost optimal superstructure which was obtained after 

172 h CPU time. Therein, AmsterChem’s TEA supplies the thermodynamic properties 

via COBIA. Fig. 4 shows the result for four vapor-liquid-type PBBs with a fixed number 
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of five equilibrium stages, which separate a 

ternary mixture of n-pentane, n-hexane, and n-

heptane. The validity of this optimum has been 

confirmed by comparison with a commercial 

process simulator. Further details on the optimal 

solution are published in (Krone et al., 2023). 

4. Conclusions 

Setting up and solving optimization problems for 

superstructure-based process synthesis is a 

challenging task. This is particularly the case 

when multiple software tools are required to reap 

the benefits of a state-of-the-art environment for 

solving MINLPs and efficient implementations 

for complex thermodynamics. With the here 

presented solution implemented in the translation 

and code generation engine within 

MOSAICmodeling a methodology is available to 

generate highly complex, large MINLP problems. 

The proposed procedure can be guaranteed to be 

error-free regarding code implementation and 

interfacing of different tools. The results validate 

the reliability of the decomposition and code 

generation provided by the novel approach and 

promise even larger process synthesis applications 

as a next step. In future work we will extend this 

approach beyond the GAMS / C++ pair to other 

frameworks such as Pyomo to interface solvers for generalized disjunctive programming. 
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Abstract 
The decarbonization of the chemical industry requires carbon-neutral steam production 

either via direct electrification, e.g., using heat pumps, or via indirect electrification, e.g., 

using green hydrogen. However, due to low technology-readiness levels, the cost and 

performance of such promising technologies are subject to high uncertainties. This 

uncertainty prevents the industry from investing, fearing economic regret. This study 

proposes a method for identifying low-regret decisions based on global sensitivity 

analysis. Low-regret decisions are defined as an investment in a specific technology that 

is economically near-optimal in all future scenarios. The proposed method comprises four 

steps: 1) Uncertainty characterization, 2) Parameter sampling, 3) Identification of low-

regret decisions, and 4) Quantification of low-regret decisions. The method is applied to 

an industrial case study of a multi-energy system. We identify heat pumps and heat 

storage as low-regret decisions. The proposed method supports the decarbonization of the 

chemical industry by identifying low-regret decisions as starting points of the transition. 

1. Introduction 

Decarbonizing the chemical industry requires carbon-neutral steam production since the 

energy backbone of chemical sites is usually given by steam at different temperature 

levels. Currently, steam is usually produced at central sites by burning fossil fuels. 

Promising technologies are available to decarbonize the steam supply, e.g., via direct 

electrification by power-to-heat or indirect electrification using synthetic fuels, such as 

green hydrogen (Ruhnau et al., 2019). Today, these technologies are usually more 

expensive and require major investments. In addition, the decarbonization pathway is 

affected by substantial uncertainties, e.g., future costs and efficiencies of technologies at 

low technology readiness levels. As a result, the industry hesitates to take the required 
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capital-intensive investments, fearing economic regret and lock-in effects. However, the 

transition to a low-carbon energy system needs to start as soon as possible.  

This work presents a method that identifies and quantifies low-regret decisions for multi-

energy systems. We define a low-regret decision as an investment in a specific technology 

that is economically near-optimal in all future scenarios. Thus, investments in low-regret 

technologies can be taken today to start the transition, while the remaining multi-energy 

system can be designed later once more information is available. 

2. Method 

To identify such low-regret decisions, we would, in principle, minimize the expected 

regret in stochastic optimization or the maximum regret in robust optimization. Each of 

these problems requires the solution of a two-stage design optimization: the first stage 

would set the low-regret decision variables, and the second stage adapts the remaining 

design and operational decisions. However, if uncertainties need to be captured through 

a large number of future scenarios, the two-stage design optimization is likely too 

computationally heavy to be solved.  

In this contribution, we propose a method to identify low-regret decisions based on global 

sensitivity analysis (Saltelli et al., 2007). The proposed method comprises four steps: 1) 

Uncertainty characterization, 2) Parameter sampling, 3) Identification of low-regret 

decisions, and 4) Quantification of low-regret decisions. 

 

1) Uncertainty characterization: The uncertainty of all model parameters is 

characterized by ranges either based on a literature review or detailed, non-linear 

process models, following the procedure described in Moret et al. (2017). Therein, 

parameters are grouped, i.e., parameters with similar uncertainty are assigned the 

same relative uncertainty range. 

2) Parameter sampling: The uncertainty analysis draws samples varying all uncertain 

parameters. The resulting samples are used as input for the design optimization to 

derive each sample's optimal energy system design.  

3) Identification of low-regret decision: The most frequently selected components 

across all system designs are identified as potential low-regret decisions. Note that, 

in principle, a set of components could also be identified as a low-regret decision.  

4) Quantification of low-regret decisions: To evaluate the regret, we fix the potential 

low-regret decision in the design optimization. Subsequently, we re-optimize all 

regret samples, i.e., all samples in which the identified low-regret components have 

not been selected in the initial design optimization.  

The economic regret 𝑅 is quantified for a sample as the difference between the 

optimal total annualized cost 𝑇𝐴𝐶∗ and the total annualized cost with the fixed low-

regret decision 𝑇𝐴𝐶𝑙𝑟𝑑. Here, the maximum cost difference of one sample indicates 

the maximum regret 𝑅max, while the expected regret 𝑅 denotes the average cost 

increase across all samples. For better interpretability, we introduce the maximum 

relative regret 𝑅%
max, which is the maximum regret 𝑅max divided by the optimal total 

annualized cost of the respective sample 𝑇𝐴𝐶∗. Furthermore, the expected relative 

regret 𝑅% is obtained as the ratio of the expected regret 𝑅 related to the average total 

annualized cost in case of perfect foresight 𝑇𝐴𝐶
PF

. 
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Table 1: Probability of regret 𝑃(𝑟𝑒𝑔𝑟𝑒𝑡) as share of regret samples in all samples, average cost 

increase in case of regret 𝑇𝐴𝐶loss, maximum cost increase 𝑇𝐴𝐶loss
max, expected relative regret 𝑅%, 

and maximum relative regret 𝑅%
max for the three identified low-regret decisions (LRD). As a 

reference, the total annualized cost 𝑇𝐴𝐶 in case of perfect foresight is 𝑇𝐴𝐶
PF

=  135.4 MEuro. 

 Components 𝑷(𝒓𝒆𝒈𝒓𝒆𝒕) 𝑻𝑨𝑪𝐥𝐨𝐬𝐬 𝑻𝑨𝑪𝐥𝐨𝐬𝐬
𝐦𝐚𝐱 𝑹% 𝑹%

𝐦𝐚𝐱 

  [%] [kEuro] [kEuro] [%] [%] 

LRD-1 𝐶𝑂𝑀6 bar 9.6 2668 4487 0.19 3.1 

LRD-2 𝐻𝑆6 bar 34.3 39 820 0.01 0.6 

LRD-3 𝐶𝑂𝑀31 bar 52.1 4349 7054 1.67 5.1 

3. Case Study 

The method is applied to a case study of an industrial energy system supplying a typical 

chemical park with time-varying demands for 6-bar steam (1.64 TWh/a), 31-bar steam 

(1.55 TWh/a), and electricity (2.00 TWh/a) (Bauer et al., 2022) using the SecMOD MILP 

framework (Reinert et al., 2023). For the global sensitivity analysis, we vary the 

efficiency, investment, and maintenance costs of all components. Furthermore, we vary 

the energy prices, the interest rate, the economic payback period, and the energy demands. 

As a result, the optimization problem comprises 374 uncertain parameters, which are 

grouped into 53 uncertain parameters. For each group, the uncertainty is characterized. 

Subsequently, the parameter space is discretized by 30 trajectories, resulting in a total of 

1590 samples. These 1590 samples are used to identify low-regret decisions. 

4. Results 

The case study identifies heat pumps and heat storage as low-regret decisions (Table 1). 

Specifically, a combined-cycle heat pump for the 6-bar steam line (𝐶𝑂𝑀6 bar) with a 

capacity of 100 MW has no regret in 90 % of the samples. The combined-cycle heat pump 

comprises a subcritical heat pump and vapor re-compression unit. On the 31-bar steam 

line, a combined-cycle heat pump with a capacity of 100 MW (𝐶𝑂𝑀31 bar) has no regret 

in 48 % of the samples. This 31-bar heat pump has a higher expected relative regret of 

1.67 % and a maximum relative regret of 5.1 %. Furthermore, heat storage (𝐻𝑆6 bar) 

shows no regret in 66 % of the samples, while both average and maximum relative regrets 

are low, 0.01 %, and 0.6 %, respectively. The small regret of the heat storage demonstrates 

the advantage of making the energy system more flexible. 

Overall, all identified low-regret decisions for the three components have low expected 

and maximum cost increases. Thus, the proposed method identifies low-regret decisions 

for steam supply and can support decision-makers in accelerating the decarbonization of 

the chemical industry. 

5. Conclusions 

This study proposes a method to identify and quantify low-regret decisions for multi-

energy systems. In this context, low-regret decisions refer to investment decisions that 

are economically near-optimal across a broad range of future scenarios. The method 

employs mathematical optimization and uncertainty analysis in four steps.  
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The method is applied to a case study of a multi-energy system with time-varying 

demands for 6-bar steam, 31-bar steam, and electricity. Therein, heat pumps and storage 

are identified as low-regret decisions with minimal overall cost increases.  

In summary, the proposed method effectively identifies low-regret decisions for multi-

energy systems. Thereby, the method provides valuable support to decision-makers in 

accelerating the decarbonization of the chemical industry. 
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Abstract 

Renewable fuels enable high efficiencies in spark-ignition engines. Their combustion 

properties allow to exploit advanced engine concepts for which conventional gasoline is 

not suitable, e.g., very high compression ratios and highly boosted conditions. Fuel design 

can identify such alternative fuels. So far, fuel design utilizes models of engine 

performance fitted to experiments using moderate engine conditions and conventional 

gasoline. This work proposes an integrated design approach utilizing an engine model 

fitted to and validated with measurement data of alternative fuels in an advanced single-

cylinder research engine. Constraining volatility related properties, the optimal blend 

consists of methyl acetate and ethyl acetate and achieves a net indicated efficiency of 44% 

at high load engine operation. Without property constraints, the optimal blend consists of 

methyl acetate and methanol and achieves a net indicated efficiency of 45 %. In light of 

model uncertainties, the results require experimental validation. 

Keywords: Renewable fuels, fuel design, integrated product and process design, engine 

model, engine efficiency.  

1. Introduction 

Computer-aided product design (CAPD) can identify alternative fuels that enable superior 

engine performance in specially built engines compared to that of conventional fuels in 

conventional engines. Typically, such alternative fuels are identified based on physico-

chemical fuel properties and, in case of spark-ignition engines, the research octane 
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number (RON) is used as a proxy for high engine efficiency (Dahmen and Marquardt, 

2016, McCormick et al. 2017). CAPD studies for other products, however, suggest that 

the method can be improved by integrating a model for the product use, for example in 

solvent design for chemical processes and in working fluid design for energy processes 

(Muhieddine et al., 2022, Neumaier et al., 2023). In recent years, such approaches have 

also been applied to fuel design. Specifically, fuels for spark-ignition engines have been 

designed for maximum engine efficiency, using empirical correlations or a 

thermodynamic engine model (Gschwend et al., 2019, vom Lehn et al., 2021, Fleitmann, 

Ackermann et al., 2023). In all these cases, the models contained parameters fitted to 

engine data of conventional fuels or blends of alternative fuels with conventional fuels. 

Since models for conventional fuels cannot reliably predict the occurrence of engine 

knock for alternative fuels, it is uncertain to which extent these models can be used to 

predict the engine performance of newly designed fuels. 

2. Method 

We present a CAPD method to design fuels by maximizing the achievable indicated 

efficiency in a zero-dimensional thermodynamic engine model that was calibrated and 

validated with experimental data from alternative fuels in a spark-ignition single-cylinder 

research engine with a compression ratio of 16.4. Importantly, we include ignition delay 

models derived from kinetic simulations to accurately predict the onset of knock. We 

maximize the indicated efficiency by optimizing the compression ratio, considering 

knock and peak pressure limitations. The engine model and optimization are implemented 

in MATLAB R2020a. To design an optimal multi-component fuel, we then select 

possible alternative fuel constituents known from previous studies. We enumerate binary 

and ternary blends and use MATLAB’s local optimization solver fmincon to tailor the 

fuel composition for maximum indicated efficiency, utilizing the engine model with 

embedded optimization of the compression ratio. To design a fuel that is knock resistant 

under extreme conditions, we allow compression ratios of up to 20 and set the intake and 

exhaust pressure to 2 bar. Aiming for proper in-cylinder mixture formation, we constrain 

volatility-related fuel properties. 

3. Results and Discussion 

3.1. Fuel Design with Volatility Constraints 

The design runs for 12 CPU hours on an Intel® Core™ i5-8500 processor with 16 GB 

RAM. The optimal blends achieve an indicated efficiency of 44%, which constitutes a 

relative increase of 17% over the efficiency that conventional gasoline achieves in the 

simulation with an optimized compression ratio and at an intake pressure of 1 bar. The 

three top blends contain large shares of methyl acetate and ethyl acetate. As a pure 

component, methyl acetate violates the upper limit on the enthalpy of vaporization, 

whereas ethyl acetate violates the lower limit on the bubble point pressure. The mixture 

balances both properties and thus is feasible regarding the imposed volatility constraints.  

3.2. Fuel Design without Volatility Constraints 

In a separate design run without volatility constraints, the optimal blend consists of 60 

mol-% methyl acetate and 40 mol-% methanol and achieves a slightly higher predicted 

indicated efficiency of 45%. In the simulation, this blend outperforms its constituents as 

neat fuels by synergistically combining the charge cooling effect of methanol with the 

presumably higher knock resistance of methyl acetate. However, it should be noted that 
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for this binary blend, the change in indicated efficiency as a function of the composition 

is in the order of magnitude of the fitting error, i.e., the deviation between the 

experimental data that has been used for model calibration and the model output. 

Experimental investigations will be necessary to confirm the higher knock resistance of 

methyl acetate and the synergistic behavior of the blend. Model uncertainties can be 

caused by the reduced-order modeling approach as well as fuel specific inaccuracies 

introduced by the choice of sub-models for fuel dependant processes. For example, the 

used combustion sub-model does not account for the influence of fuel chemistry on the 

combustion process that influences the pressure trajectory and thus the efficiency. 

Similarly, the sub-model for the evaporation process influences the temperature trajectory 

and thus the onset of knock. 

4. Conclusions 

In conclusion, this study identifies alternative fuel blends for advanced spark-ignition 

engines. Future work could improve the sub-models for fuel evaporation and combustion 

processes, as well as quantify the uncertainty. Furthermore, the approach could be 

extended to design fuels for operation under lean conditions and pre-chamber applications 

to further increase the indicated efficiency of the engine.  
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Abstract 

Electro-fuels produced from electrolytic H2 and captured CO2 could play a key role in the 

sustainable energy transition as they could be directly deployed using current 

infrastructure. However, their high production costs, mainly due to the yet expensive 

green H2, could hinder their further adoption. Here we propose an alternative 

configuration for Fischer-Tropsch e-fuels synthesis based on the coupling of the standard 

process with a reverse Boudouard (RB) reactor to reduce the H2 requirements. Using 

process simulation, optimization, and life cycle assessment (LCA), our results suggest 

that the integration with the RB reactor could reduce the production costs by as much as 

24%. Moreover, considering green H2 from water electrolysis powered by wind energy, 

using biochar as feedstock alongside captured CO2 could reduce the carbon footprint 

from -6 to -27 kg CO2-eq per GJ of mixed e-gasoline, e-kerosene and e-diesel products. 

All in all, the RB reaction helps decrease H2 usage, closing the gap towards economically 

competitive e-fuels. 

Keywords: reverse Boudouard reaction, carbon capture and utilization, modeling and 

optimization, process integration, life cycle assessment (LCA) 

1. Introduction 

Electro-fuels (e-fuels) made with electrolytic H2 and captured CO2 share very similar 

properties with their fossil fuels counterparts (i.e., gasoline, kerosene and diesel) so they 

could be deployed with minimum changes in current infrastructure. Given that the 

transport sector was responsible for 21% of anthropogenic CO2 emitted in 2022, such 

renewable fuels might be necessary for achieving the climate goals. However, due to the 

very high cost of electrolytic H2, e-fuels are currently economically unappealing. 

In the Fischer-Tropsch (FT) process using CO2 as feedstock, CO2 reduction to CO is 

carried out before the e-fuels are synthesized via the reverse water gas shift (RWGS) 

reaction (Medrano-García et al., 2022). This has the drawback of generating water as a 

by-product, thus consuming costly H2 (Eq. (1)): 

2 2 2H CO CO H O+  +  (1) 

Alternatively, here we explore the integration of the reverse Boudouard (RB) reaction 

(Lahijani et al., 2015) in e-fuels production, where CO2 combined with solid carbon at 
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high temperatures yields CO, thereby reducing the H2 requirements in the overall process 

(Eq. (2)): 

2 2C CO CO+    (2) 

We study the integration of solid carbon gasification in the synthesis of FT e-fuels from 

direct air-captured (DAC) CO2 and wind electrolytic H2. We use process simulation and 

optimization, economic analysis and life cycle assessment (LCA) to evaluate two 

configurations differing in how they achieve the desired H2/CO ratio of two before the 

FT reactor: the RWGS or the RB reaction. In addition, we consider two different solid 

carbon sources for the RB reaction: fossil coal and renewable biochar. 

2. Methodology 

In order to elucidate the potential benefits of the implementation of the RB reaction in 

e-fuels synthesis. We study three scenarios: the base case FT process coupled with an 

RWGS reactor, the base case using an RB reactor with biochar and the same configuration 

with coal as the solid carbon source. 

The base case FT process starts by mixing the H2 and CO2 into an equilibrium RWGS 

reactor to produce the CO required for the e-fuels synthesis. After removing the water 

produced by condensation, the syngas mixture is sent to the FT reactor. This reactor is 

modeled using a kinetic model based on the growth factor parameter, where paraffins and 

olefins up to C1000 are considered to be formed (Hillestad, 2015). Then, waxes (C22+) are 

separated, mixed with additional H2 and sent to the hydrocracker (HC) reactor, where 

they are broken down into shorter chain hydrocarbons. This reactor is also modeled using 

a kinetic model (Bhutani et al., 2006). The lighter fraction of the FT reactor product 

(C1 - C4) is combusted with electrolytic O2 to produce energy and recycle the CO2 as 

feedstock, while the intermediate fraction C5 - C21 is recovered as the main product (e-

fuel mixture).  

The RB scenario simulation substitutes the RWGS reactor with the RB reactor. Here, CO2 

is mixed with solid carbon and sent to the RB reactor (Dai et al., 2022). Unreacted carbon 

is recycled and the CO-rich stream is mixed with H2 and sent to the FT reactor, while the 

rest of the process remains the same. 

The simulation of the FT process is carried out in Aspen HYSYS v11 coupled with 

MATLAB in order to solve the kinetic models for the reactors. The flowsheet is optimized 

using the Particle Swarm Optimization (PSO) algorithm from MATLAB in order to 

minimize the total cost per GJ of e-fuel produced. The LCA is carried out following 

standard methodologies (ISO 14040/44). We consider a cradle-to-gate assessment using 

a cut-off attributional approach with a functional unit of 1 GJ of e-fuel. We include all 

upstream activities (background system), obtained from Ecoinvent v3.5, while the 

foreground system is modeled from the material and energy balances of the process 

simulation. The life cycle impact assessment (LCIA) was computed following the ReCiPe 

2016 vs1.13 method and using Simapro v9.2.0.2. 

3. Results 

As shown in Figure 1, the RB configuration outperforms the RWGS in terms of both 

economics and carbon footprint. Regarding costs, a 24% reduction (from 82 $/GJ to 

63 $/GJ of combined e-gasoline, e-kerosene and e-diesel) is observed when integrating 

the FT process with the RB reactor. Furthermore, the solid carbon source has barely any 

effect on the cost, as H2 is still the dominant contribution. This drastic decrease is a 
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consequence of reducing CO2 with solid carbon (Eq. (2)) instead of H2 (Eq. (1)). From 

these results, we estimate that the minimum cost of H2 needed for an economically 

competitive e-fuel production (48 $/GJ) is reduced by 33%, from 3 $ in the RWGS to 

2 $/kg of H2 in the RB configuration.  

Regarding the environmental results, a decrease of 341 % (from -6 kg CO2-eq/GJ 

to -27 kg CO2-eq/GJ) in carbon footprint occurs when using biochar as the solid carbon 

source. This behavior is derived from biochar having lower embedded impacts than DAC 

CO2, as it replaces part of the CO2 as the carbon source for the e-fuels (Eq. (2)). However, 

an increase to 17 kg CO2-eq/GJ is observed when using coal, due to the fossil nature of 

the raw material. 

 
Figure 1. Results of FT e-fuels production under the different CO2 reduction scenarios. 

4. Conclusions 

In this work, we studied the RB reaction as an alternative CO2 reduction pathway in the 

synthesis of FT e-fuels. Our results show that this integration outperforms the standard 

RWGS reaction route both economically and environmentally mainly due to a reduction 

in H2 usage in the process. Furthermore, the solid carbon source used in the RB dictates 

the environmental performance of the process but it plays a very minor role concerning 

the costs. These results promote the benefits of integrating the RB reaction, a well-known 

and studied reaction system, into e-fuels production by not only closing the economic gap 

with fossil fuels but also enhancing their already appealing environmental performance 

even more. All in all, this work paves the path to a cost-competitive energy transition 

through a more efficient H2 usage in e-fuels production, with the potential of further 

facilitating a net-zero transport sector. 
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Abstract 
The chemical industry's pursuit of a net-zero future necessitates energy-efficient 
separation technologies, with crystallization emerging as a potential solution due to its 
low energy requirements and ability to achieve high purities. However, the design of 
crystallization processes is hindered by the need for thermodynamic properties, which are 
usually obtained through expensive and time-intensive experiments. This study utilizes 
machine learning, specifically the SMILES to Properties Transformer (SPT) model, 
originally trained for estimating activity coefficients for vapor-liquid equilibria (Winter 
et al. 2023), to predict essential quantities for crystallization process development. 
Focused on the hybrid temperature-antisolvent crystallization of ibuprofen, a 
pharmaceutical-relevant system, this research showcases a novel design framework that 
identifies suitable solvents and operating conditions, supporting the efficient and 
sustainable development of crystallization processes. 

Keywords: machine learning, thermodynamic property prediction, sustainable processes, 
computer-aided process design 
 

1. Introduction 
The global transition toward a net-zero economy necessitates the development of highly 
efficient and sustainable processes. Therein, separating components from complex 
mixtures has a critical and often economically burdensome role, particularly in the 
pharmaceutical and chemical sectors (Alder et al. 2016). To address the challenge of 
developing environmentally and economically favorable separations, computer-aided 
tools for process design are increasingly used. These tools empower the exploration of a 
broad space of process alternatives, facilitating the identification of feasible, 
environmentally friendly, and cost-effective pathways (Papadopoulos et al. 2018). 

As a candidate separation technology, crystallization is particularly promising since it is 
usually operated at or near ambient temperatures while delivering solid products at high 
purity (Myerson 2002). Within the chemical and pharmaceutical industry, crystallization 

176



   

frequently serves as a final purification step, as exemplified by the styrene recycling 
process (Khandelwal 2022). Developing an efficient crystallization process requires a 
comprehensive understanding of the thermophysical properties associated with pure 
components and their interactions within mixtures. In particular, crystallization by an 
anti-solvent relies on accurate activity coefficients as well as enthalpies to achieve 
optimal process performance. If experimental data are unavailable or too expensive to 
attain, relying on predictive methods is the only alternative (Watson et al. 2022, Wang et 
al. 2020). The recent advent of modern machine learning models holds potential to 
overcome the lack of data requirements. However, the applicability of machine learning 
models for crystallization process design is currently unclear, although machine learning 
holds promise in improving design capabilities and promoting the adoption of 
crystallization as an efficient and sustainable process. 

The present study analyzes a hybrid temperature-antisolvent crystallization process, 
where thermophysical properties are predicted by a machine-learning model (SMILES to 
Properties Transformer, SPT) (Winter et al. 2022, Winter et al. 2023). The use of a 
machine-learning algorithm with remarkable performance provides the possibility to 
systematically screen an extensive number of antisolvents and temperature levels. This 
screening approach enables the exploration of many process alternatives, which was 
hardly possible with conventional property prediction methods, and experimentally 
impossible. The final goal of the application of machine learning to property predictions 
is to screen many process alternatives, including the molecular degrees of freedom. Such 
an approach leads us to pinpoint energy-efficient, cost-effective and sustainable solutions, 
thereby facilitating the transition of the chemical and pharmaceutical industry toward a 
net-zero future. 

2. Methods 
Crystallization processes are based on the knowledge of the solid-liquid equilibrium. In 
crystallization, we define the “solute” as the component that we would like to crystallize, 
while “solvent” and “antisolvent” as the components that remain in the liquid phase. The 
expression for solubility can be derived from the chemical potential of the liquid and the 
solid phases and is most commonly employed in its simplified form as (Watson et al. 
2021): 

ln(𝑥𝑥solL 𝛾𝛾solL ) =  
−Δ𝐻𝐻solfus

𝑅𝑅
 �

1
𝑇𝑇
−

1
𝑇𝑇solm

�                         (1) 

where 𝑥𝑥solL  is the liquid-phase molar fraction of the solute, 𝛾𝛾solL  is the liquid-phase activity 
coefficient, 𝑇𝑇 is the process’s operating temperature, 𝑇𝑇solm  is the melting temperature of 
the solute, and 𝛥𝛥𝐻𝐻solfus is the enthalpy of fusion of the solute. It is worth noting that the 
liquid-phase activity coefficient depends on the composition of the liquid phase, thus the 
equilibrium mole fraction 𝑥𝑥solL  is obtained by implicitly solving equation (1). 

The melting temperature and the enthalpy of fusion are pure component properties of the 
solute. Such properties should be known for components that need to be crystallized but 
are not always available in the early stages of development. Thus, we trained SPT to 
predict those properties. About 28’000 datapoints have been used as training data for the 
melting temperature, which were taken from Bradley et al. (2014). For the training on 
enthalpies of fusion, about 8800 datapoints were taken from Acree and Chickos 2016 and 
2017. The activity coefficients are also predicted with SPT, which has been trained on 
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vapor-liquid equilibrium data from the DDB (Dortmund Databank 2022), and from 
Brouwer et al. 2021, for a total of 200 000 datapoints for 800 components (Winter et al. 
2023). 

In the study, we assume a valuable solute dissolved in a solvent: the driving force of the 
process results from the variation of the temperature of the process, and from the addition 
of antisolvent to the system. The temperature at which the crystallizer is operated, the 
molecule used as antisolvent and the quantity of antisolvent used are treated as degree of 
freedom in the design process. The antisolvents are screened subject to the following 
constraints:  

• the antisolvents should be liquid in a defined temperature range, i.e., 𝑇𝑇antisolvboil > 𝑇𝑇max 
and 𝑇𝑇antisolvmelt < 𝑇𝑇min, with 𝑇𝑇min and 𝑇𝑇max the minimum and maximum operating 
temperatures, respectively.  

• the selected antisolvent shall not form any liquid phase split with the solvent 
considered.  

For the estimation of the boiling point and of the liquid-liquid equilibrium, the SPT model 
has been trained to predict Antoine’s parameters (Winter et al, in preparation), and NRTL 
parameters, respectively (Winter et al. 2023). Key parameters to target sustainability are 
the yield of the product, the operation temperature of the reactor, the amount of 
antisolvent used, and the type of solvents used, according to Alder et al. 2016. 

As a case study, we regard ibuprofen as the solute, ethanol as a solvent, and we screen 
different antisolvents to check for favorable crystallization conditions. 

3. Results 
The machine learning model SPT has been trained to predict melting temperatures and 
enthalpies of fusion. The predicted melting temperatures present a mean average error 
(MAE) of 29.3K for a total of 28’000 pure components, while the MAE for predicted 
enthalpies of fusion is 5.6 kJ/mol for a total of 8800 components. Experimental 
measurements should always be used if data are available, but SPT gives the possibility 
to broaden the design space by predicting properties not available from experiments. 
The next step in predicting solid-liquid equilibrium is solving Equation 1 for the mole 
fraction of the components at equilibrium. The activity coefficients used are those 
obtained from training on vapor-liquid equilibrium (Winter et al. 2023). The predictions 
of solid-liquid equilibria for the case study of ibuprofen-ethanol-water are presented in 
Figure 1 for two temperature levels (solid lines). The dashed lines in Figure 1 refer to the 
values reported in Watson et al. 2021, who predicted activity coefficients with SAFT-γ 
Mie. 
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Figure 1. Ternary diagram of ibuprofen-ethanol-water system. The solid lines represent 

the solid-liquid equilibria at two temperature levels predicted with SPT. The dashed 
lines represent the corresponding literature data taken from Watson et al. 2022. 

The solid-liquid equilibrium lines predicted by SPT correctly capture the temperature 
trend and the characteristic shape of the concentration profile. It is worth noting that SPT 
was originally trained on VLE data, so the relatively accurate results of SLE are very 
promising. Further training of the model on SLE data is expected to increase the accuracy 
of the predictions, but experimental data for solute-solvent-antisolvent mixtures at 
different temperatures are rare or not readily accessible. 

4. Conclusions 
Crystallization processes stand as a promising separation technique, offering innovative 
solutions to address the evolving demands of the pharmaceutical and chemical industries 
while striving for sustainability. The successful modeling of a hybrid temperature-
antisolvent crystallization process necessitates a comprehensive characterization of the 
system, particularly the knowledge of the key pure component properties, e.g., melting 
temperatures and enthalpies of fusion, as well as mixture properties, e.g., activity 
coefficients. 

The application of the machine-learning model SPT to crystallization presents a 
significant advancement in this context. SPT can be trained for melting properties, 
specifically melting temperatures and enthalpies of fusion, while also predicting activity 
coefficients, Antoine’s parameters and NRTL parameters. Notably, the solid-liquid 
equilibria predictions derived from SPT consistently align with the temperature and 
concentration trends established in the existing literature. This development provides the 
basis for improved design of crystallization processes. 
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Abstract 
This work explores the application of cooperative game theory to multi-actor heat 
integration, focusing on unconstrained 3-player situations. A stability proof is given, 
paving the way for general stability proofs in N-player settings. The findings reveal that 
stable profit distribution is achievable in collaborative heat integration projects, in the 
case of unconstrainted integration potential. The study highlights the influence of key 
parameters on profit allocation, like the minimum temperature difference (∆Tmin), 
emphasizing the need for optimal alignment of efficiency and equity. This research offers 
crucial insights for process integration decision-makers, promoting sustainable and fair 
multi-actor collaborations. 
 

Keywords: game theory, multi-actor heat integration, stability proof, profit distribution 

1. Introduction 
Process Integration (PI) has long been recognized as a key strategy in enhancing the 
efficiency of resource and equipment usage within the industrial sector. Traditionally 
limited to intra-company operations, PI has primarily focused on optimizing within a 
single company’s boundaries. Current trends like globalization and the push for more 
efficient solutions based on industrial symbiosis have shifted the focus towards a broader 
scope, encompassing resource exchange and equipment sharing across company 
boundaries. This expansion significantly increases the potential for integration but also 
introduces the challenge of collaborative dynamics. Questions arise about the existence 
of stable agreements and the fair distribution of profits among participants.  These 
concepts are essential to ensure the feasibility of sustainable collaborative relationships 
within the process industry. As a result, the Process Systems Engineering (PSE) 
community has started to explore these complexities through the lens of Game Theory. 
 

Notable examples include Hiete et al. (2012) who applied the Shapley Value for profit 
distribution in a 3-company heat exchange network, Cheng et al. (2014) who used a 
sequential approach integrating Nash equilibrium for trade price and network structure 
decisions, and Jin et al. (2018) who incorporated risk factors using a modified Shapley 
Value to account for uncertainties in coalition stability. These studies have successfully 
demonstrated the application of cooperative Game Theory concepts in multi-actor process 
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integration scenarios, providing valuable frameworks for decision-makers to reach 
sustainable agreements.  
However, the stability criterion, which is crucial for rational decision-making, is not 
addressed properly. While a couple of work such as Jin et al. (2018) illustrate the 
existence of stable agreements through the core constraints, the novelty of this work lies 
in the demonstration of a stability proof for a subset of process integration problems. 
Furthermore, within the realm of stable profit allocations, the selection of a concrete 
allocation method is usually not well justified. For instance, the most popular Shapley 
value is often employed, despite its well-known caveat of not guaranteeing stable 
allocations. Thus, this work demonstrates the use of alternative methods, and elucidates 
the impact of process parameters of the PI problem on the outcome. 

2. Problem Statement 
This study focuses on two key aspects of the 3-player heat integration problem in a 
cooperative system: 
 

Stability in the solution of unconstrained 3-player heat integration problems: 
The objective is to prove that a stable profit distribution is always achievable in a 3-player 
heat integration scenario without integration constraints (e.g. limited total heat exchange 
area or piping length). This proof is crucial for the theoretical basis of collaborative PI 
projects, ensuring predictability and stability in profit sharing. 
 

Fairness of the impact of allocation methods and dependence on the design parameters: 
Following the establishment of stability, the study examines how the minimum 
temperature difference (∆Tmin) affects profit distribution in the PI problem. 

3. Stability Proof of 3-Player Unconstrained Heat Integration 
A transferable utility (TU) game is defined by a pair ⟨𝑁𝑁, 𝑣𝑣⟩ where: 

• 𝑁𝑁 = {1,2, … ,𝑛𝑛} is a finite set of players 
• 𝑣𝑣: 2𝑁𝑁 → ℝ is a characteristic function which assigns a real number to each subset 

(coalition) of 𝑁𝑁, representing the total value the coalition can create.  
 

In the context of a 3-player heat integration problem the players can be denoted as   
𝑁𝑁 = {𝐴𝐴,𝐵𝐵,𝐶𝐶}. The characteristic function for the profit allocation case can be written as: 

𝑣𝑣(𝐴𝐴) = 𝑣𝑣(𝐵𝐵) = 𝑣𝑣(𝐶𝐶) = 0 
𝑣𝑣(𝐴𝐴,𝐵𝐵) = 𝑝𝑝𝐴𝐴𝐴𝐴 
𝑣𝑣(𝐴𝐴,𝐶𝐶) = 𝑝𝑝𝐴𝐴𝐴𝐴  
𝑣𝑣(𝐵𝐵,𝐶𝐶) = 𝑝𝑝𝐵𝐵𝐵𝐵  

𝑣𝑣(𝐴𝐴,𝐵𝐵,𝐶𝐶) = 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴  
 
 

Single-player profits are, by definition, zero; 𝑝𝑝𝐴𝐴𝐴𝐴, 𝑝𝑝𝐴𝐴𝐴𝐴 , and 𝑝𝑝𝐵𝐵𝐵𝐵  are the 2-player profits, 
and 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴  is the profit of the 3-player grand coalition. For the sake of brevity, the proof of 
super-additivity is omitted here, but it can be taken for granted that in process integration 
problems the grand coalition has always the best value, since rejecting the collaboration 
and returning to the standalone operation is always an option.  
 

The feasible set of profit allocations that satisfy the core constraints can be interpreted as 
the set of stable allocations where no player has the incentive to deviate from the grand 
coalition to ensure a better outcome. This property is important to ensure that rational 
decision-makers will converge towards an outcome which grants them a level of 
confidence that is required for planning and design decisions. For a  
3-player profit allocation situation the conditions for stability reduce to the following set 
of constraints: 
 
 

𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵 , 𝑥𝑥𝐶𝐶 ≥ 0  (1) 
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𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵 ≥ 𝑝𝑝𝐴𝐴𝐴𝐴  , 𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐶𝐶 ≥ 𝑝𝑝𝐴𝐴𝐴𝐴 , 𝑥𝑥𝐵𝐵 + 𝑥𝑥𝐶𝐶 ≥ 𝑝𝑝𝐵𝐵𝐵𝐵  (2), (3), (4) 
𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵 + 𝑥𝑥𝐶𝐶 = 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴   (5) 

 
Where 𝑥𝑥𝐴𝐴, 𝑥𝑥𝐵𝐵, and 𝑥𝑥𝐶𝐶  are the profits allocated to the players. Equations (1) are the 
individual rationality constraints, ensuring that no player receives a worse payoff 
compared to working alone. In a similar fashion, Equations (2) – (4) are the group 
rationality constraints, ensuring that no subcoalition exists which can distribute the profit 
to ensure a better payoff to a subgroup of players. Finally, Equation (5) is the efficiency 
condition, which ensures that exactly the maximum profit of the grand coalition is 
distributed among the players.  
 

These constraints can be illustrated in a ternary diagram of side length 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 . Each point 
within the diagram is an efficient allocation, and if it lies within the area enclosed by the 
rationality constraints it is a stable allocation. From this diagram, the conditions for the 
non-existence of stable allocations can be derived.  
 

 
Figure 1. Geometric representation of stability in 3-player profit allocation problems. 

Case I: 
In the case that 𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑝𝑝𝐴𝐴𝐴𝐴 < 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 , 𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑝𝑝𝐵𝐵𝐵𝐵 < 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 , and 𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑝𝑝𝐵𝐵𝐵𝐵 < 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴  it is 
evident that the area enclosed by the constraints is a six sided area that contains stable 
allocations.  
 

Case II: 
Assuming that at least for one of the sides (e.g. 𝑝𝑝𝐴𝐴𝐴𝐴  and 𝑝𝑝𝐵𝐵𝐵𝐵) the situation arises that that 
the sum of the 2-player profits exceeds the profit of the grand coalition (e.g. 
𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑝𝑝𝐵𝐵𝐵𝐵 ≥ 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴) the condition on the profit of the remaining coalition (e.g. 𝑝𝑝𝐴𝐴𝐴𝐴) for 
the non-existence of a stable allocation set can be graphically derived. Figure 1 (right) 
illustrates this for the case of one side and can be written as: 
 

      𝑝𝑝𝐴𝐴𝐴𝐴 > 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 − (𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑝𝑝𝐵𝐵𝐵𝐵 − 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴)  ⇔  2 ∙ 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 < 𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑝𝑝𝐵𝐵𝐵𝐵  (6) 
 
For the sake of brevity, this derivation deals with the simplest case of profit determination 
based on utility cost minimization, considering only a single heating and cooling utility, 
available at sufficiently high and low temperatures. Denoting the heat balance as shown 
in Figure 2 the problem can be written for a single company as: 
 

min
𝑄̇𝑄𝑧𝑧𝐻𝐻,𝑄̇𝑄𝑧𝑧𝐶𝐶𝑄̇𝑄𝑧𝑧

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑐𝑐𝐻𝐻𝐻𝐻𝐻𝐻 ⋅ ∑ 𝑄̇𝑄𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻𝑧𝑧 + 𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ⋅ ∑ 𝑄̇𝑄𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑧𝑧    (7) 

0 = ∑ Δ𝐻̇𝐻ℎ,𝑧𝑧
𝐻𝐻𝐻𝐻𝐻𝐻

ℎ + 𝑄̇𝑄𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻 − ∑ Δ𝐻̇𝐻𝑐𝑐,𝑧𝑧
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑐𝑐 − 𝑄̇𝑄𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑄̇𝑄𝑧𝑧−1 − 𝑄̇𝑄𝑧𝑧  ∀𝑧𝑧 (8) 

𝑄̇𝑄0 = 𝑄̇𝑄𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧 = 0   (9) 

𝑄̇𝑄𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻 , 𝑄̇𝑄𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑄̇𝑄𝑧𝑧 ≥ 0  ∀𝑧𝑧 (10) 
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Where ℎ is the set of hot streams and 𝑐𝑐 is the set of cold streams available in the 
company’s process system. The set 𝑧𝑧 discretizes the heating and cooling demands Δ𝐻̇𝐻ℎ,𝑧𝑧

𝐻𝐻  
and Δ𝐻̇𝐻𝑐𝑐,𝑧𝑧

𝐶𝐶  into 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚  temperature intervals. The external heating and cooling utilities 𝑄̇𝑄𝑧𝑧𝐻𝐻 
and 𝑄̇𝑄𝑧𝑧𝐶𝐶 are also discretized into these intervals. In the objective function, these utilities 
are summed up and multiplied with the respective utility cost 𝑐𝑐𝐻𝐻 and 𝑐𝑐𝐶𝐶  to yield the final 
utility cost function. The heat transfer of higher temperature intervals to lower 
temperature intervals is modelled via the variable 𝑄̇𝑄𝑧𝑧 which is set to zero for the highest 
and lowest interval, as there are no available streams to receive from or transfer heat to.  
 

A global optimum of this optimization problem exists and will be denoted as 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗. With 
this, the profit maximization problem of a 2-player coalition can be written as: 
 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑄̇𝑄𝑧𝑧𝐻𝐻,𝑄̇𝑄𝑧𝑧𝐶𝐶𝑄̇𝑄𝑧𝑧

  𝑝𝑝𝐴𝐴𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗(𝐴𝐴) − �𝑐𝑐𝐻𝐻𝐻𝐻𝐻𝐻,𝐴𝐴 ⋅ ∑ 𝑄̇𝑄𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻,𝐴𝐴
𝑧𝑧 + 𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐴𝐴 ⋅ ∑ 𝑄̇𝑄𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐴𝐴

𝑧𝑧 � +
          𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗(𝐵𝐵) − �𝑐𝑐𝐻𝐻𝐻𝐻𝐻𝐻,𝐵𝐵 ⋅ ∑ 𝑄̇𝑄𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻,𝐵𝐵

𝑧𝑧 + 𝑐𝑐𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐵𝐵 ⋅ ∑ 𝑄̇𝑄𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐵𝐵
𝑧𝑧 �

   (11) 

0 = ∑ Δ𝐻̇𝐻ℎ𝐴𝐴,𝑧𝑧
𝐻𝐻𝐻𝐻𝐻𝐻,𝐴𝐴

ℎ𝐴𝐴 + 𝑄̇𝑄𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻,𝐴𝐴 − ∑ Δ𝐻̇𝐻𝑐𝑐𝑐𝑐,𝑧𝑧
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐴𝐴

𝑐𝑐𝑐𝑐 − 𝑄̇𝑄𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐴𝐴 + 𝑄̇𝑄𝑧𝑧−1
(𝐴𝐴) − 𝑄̇𝑄𝑧𝑧

(𝐴𝐴) +
𝑸𝑸𝒛𝒛

(𝑨𝑨,𝑩𝑩) − 𝑸𝑸𝒛𝒛
(𝑩𝑩,𝑨𝑨)  

∀𝑧𝑧 (12) 

0 = ∑ Δ𝐻̇𝐻ℎ𝐵𝐵,𝑧𝑧
𝐻𝐻𝐻𝐻𝐻𝐻,𝐵𝐵

ℎ𝐵𝐵 + 𝑄̇𝑄𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻,𝐵𝐵 − ∑ Δ𝐻̇𝐻𝑐𝑐𝑐𝑐,𝑧𝑧
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐵𝐵

𝑐𝑐𝑐𝑐 − 𝑄̇𝑄𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐵𝐵 + 𝑄̇𝑄𝑧𝑧−1
(𝐵𝐵) − 𝑄̇𝑄𝑧𝑧

(𝐵𝐵) −
𝑸𝑸𝒛𝒛

(𝑨𝑨,𝑩𝑩) + 𝑸𝑸𝒛𝒛
(𝑨𝑨,𝑩𝑩)  

∀𝑧𝑧 (13) 

𝑄̇𝑄0
(𝐴𝐴) = 𝑄̇𝑄0

(𝐵𝐵) = 𝑄̇𝑄𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧
(𝐴𝐴) = 𝑄̇𝑄𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧

(𝐵𝐵) = 0   (14) 

𝑄̇𝑄𝑧𝑧
(1), 𝑄̇𝑄𝑧𝑧

(2), 𝑄̇𝑄𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻,𝐴𝐴, 𝑄̇𝑄𝑧𝑧𝐻𝐻𝐻𝐻𝐻𝐻,𝐵𝐵, 𝑄̇𝑄𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐴𝐴, 𝑄̇𝑄𝑧𝑧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝐵𝐵 ,𝑸𝑸𝒛𝒛
(𝑩𝑩,𝑨𝑨),𝑸𝑸𝒛𝒛

(𝑨𝑨,𝑩𝑩) ≥ 0  ∀𝑧𝑧 (15) 
 

This optimization problem introduces coupling variables 𝑄𝑄𝑧𝑧
(𝐴𝐴,𝐵𝐵) and 𝑄𝑄𝑧𝑧

(𝐵𝐵,𝐴𝐴) which enable 
the heat transfer between companies 𝐴𝐴 and 𝐵𝐵 as indicated in Equation (12). When forced 
to zero, the optimization problem can be decoupled into the two subproblems (see also 
Figure 3). Since these variables are introduced as positive reals, their inclusion may only 
improve the solution. Denoting the 2-player profit solution as 𝑝𝑝𝐴𝐴𝐴𝐴, it can be reasoned that: 
 

𝑝𝑝𝐴𝐴𝐴𝐴 ≥  𝑝𝑝𝐴𝐴 + 𝑝𝑝𝐵𝐵  (16) 
 

For the sake of brevity, here the derivation for the 3-player condition is not formally 
conducted in full length, but the reasoning can be followed. Introducing player 𝐶𝐶,  
counterparts 𝐴𝐴∗, 𝐵𝐵∗, and 𝐶𝐶∗, and the coupling variables   𝑄𝑄𝑧𝑧

(𝐴𝐴∗,𝐵𝐵∗), 𝑄𝑄𝑧𝑧
(𝐵𝐵∗,𝐴𝐴∗), 𝑄𝑄𝑧𝑧

(𝐵𝐵,𝐶𝐶), 𝑄𝑄𝑧𝑧
(𝐶𝐶,𝐵𝐵),  

𝑄𝑄𝑧𝑧
(𝐶𝐶∗,𝐴𝐴), and 𝑄𝑄𝑧𝑧

(𝐴𝐴,𝐶𝐶∗) yields a particular structure. This problem may be expressed as 
summation of the three two player situations (𝐴𝐴,𝐵𝐵), (𝐶𝐶,𝐴𝐴∗), and (𝐵𝐵∗,𝐶𝐶∗). But similar to 
the reasoning of the two player case, the coupling variables connect these problems to 
yield, in this case, twice the problem of (𝐴𝐴,𝐵𝐵,𝐶𝐶). This is supported by the idea that the 
most economical solution to transfer heat from one player to another should be via the 
least amount of heat exchangers possible. For example, 𝐴𝐴 can directly exchange heat with 
𝐵𝐵, so there is no incentive to go the long way to exchange heat with 𝐵𝐵∗, which offers the 
same synergies with 𝐴𝐴 as 𝐵𝐵. From this, it is possible to derive the relationship of the 
corresponding 3-player game: 
 

2 ∙ 𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 ≥ 𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑝𝑝𝐴𝐴𝐴𝐴 + 𝑝𝑝𝐵𝐵𝐵𝐵   (17) 

Equation (17) is in direct contradiction with the necessary condition for instability derived 
in Equation (6), proving the proposition. 

□ 
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Figure 2. Energy balance for each temperature 

interval. 
Figure 3. Division of multi-actor heat 

integration problems into subproblems. 

However, if there are constraints on the process integration potential, e.g. via capacity 
constraints on the equipment that enables the integration, there is no guarantee of stability, 
as shown for instance in the case of constrained boiler capacity in the work of Lechtenberg 
et al. (2023). 

4. Fairness of Allocation Methods and Design Parameters 
With stability as an established baseline, the focus of this section lies on the fairness of 
allocation methods and the impact of design parameters in process integration on the 
outcome of profit allocation. The selection of allocation methods poses a significant 
challenge due to their varying notions of fairness. This is exemplified by the work of Chin 
et al. (2021), who have proposed and applied different methods in water integration 
problems. The difficulty lies in choosing the most suitable method from a set of stable 
allocations, a process akin to multi-criteria decision making (Grierson, 2008). To 
illustrate this, the problem presented by Jin et al. (2018) has been solved using four 
different allocation methods, employing the pyCoopGame python package, similar to the 
approach in Lechtenberg et al. (2023). The results, as shown in Figure 4, reveal significant 
variations in profit distribution based on the selected method, with each plant showing a 
preference for a different allocation method.  

Additionally, the design parameter ∆Tmin plays a critical role in determining the optimum 
balance between utility and investment cost for each company. In the study by Jin et al. 
(2018), which builds upon Yee and Grossmann et al. (1990), the optimum ∆Tmin for each 
company was identified as unusually low (1.5K, 1.2K, and 1.7K). However, when a 
global ∆Tmin of 10K was fixed, it led to two main consequences: a very different profit 
potential, directly resulting from the different compromise, and a biased relative profit 
allocation among the companies. This effect is demonstrated in Figure 4, which shows 
how different ∆Tmin settings impact individual and grand coalition cost: A higher ∆Tmin, 
i.e. further away from the optimal individual ∆Tmin, is associated to a higher collaborative 
cost saving potential (543×103$ for 15K). Specifying ∆Tmin closer to the optimum 
balance, the integration potential of the standalone cases outpaces the collaborative 
integration potential, resulting in less profit to be shared among the participants 
(380×103$ for 1K). From this it can be concluded that the coalition formation may, to 
some extent, make up for inefficient designs derived in the process integration problem. 
However, from a utilitarian perspective, such inefficiencies should be avoided from the 
very beginning. Traditionally, exclusively economics are used for decision-making in 
profit allocation. Future work should investigate how sustainability indicators may be 
utilized in the collaborative decision-making process to agree upon a definite solution. 
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Figure 4. Profit allocation methods applied to the problem of Jin et al. (2018). The 

ternary diagram illustrates the shares of the total profit for the base case. The table shows 
the standalone and grand coalition cost and profit for varying ΔTmin. 

5. Conclusions 
This study provides a proof for stability in a subset of multi-actor process integration 
problems. This result is crucial for filling a gap often overlooked in previous research and 
paves the way for broader future proofs in collaborative profit allocation. Key findings 
highlight the significance of the ∆Tmin parameter in determining both absolute and relative 
profits in process integration. Aligning ∆Tmin with each participant's optimal level is 
essential to avoid inefficiencies and ensure fair allocations. 

The stability proof offered here instills confidence in multi-actor process integration 
projects, assuring a degree of predictability and reliability. While the selection of 
allocation methods requires further research, guiding the choice of integration parameters 
with process engineering insights can lead to equitable and sustainable solutions, which 
is essential for the solutions to be accepted and implemented by all stakeholders. 
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Abstract 

This study explores the enhancement of Total Site Integration (TSI) for non-continuous 

industrial sites. Utilising a combination of machine learning techniques and mathematical 

programming, the research innovatively addresses the challenges of defining zones for 

practical heat recovery. Spatial and temporal clustering methodologies are employed to 

achieve a more nuanced approach to TSI. The results demonstrate the significant shift in 

heat recovery and utility targets, highlighting the importance of zoning and the potential 

of integrating data-driven techniques with engineering principles in TSI practices. 

Depending on the temporal cluster acceptability, TSI zoning changed the utility targets 

by 41 % - 143 %, which underscores the criticality of the zoning approach.  

Keywords: process integration, non-continuous processing, pinch analysis, total site 

integration, machine learning, mathematical programming. 

1. Introduction 

Total site integration (TSI) is a well-known methodology to optimise heat recovery and 

utility systems across large and multi-plant industrial sites (Klemeš et al., 1997). At its 

heart, TSI divides a site into discrete zones. The approach then prioritises process-to-

process heat recovery within each zone before subsequently capitalising on the utility 

system to mediate heat recovery inter-zone. Notably, TSI is not confined to the site 

boundaries (Perry et al., 2008); it can equally extend to potential power, heating, and 

cooling exchange (Lee et al., 2020) with proximate renewable energy generation, 

industries, districts, and other community needs (e.g., water desalination). 

Dividing a site into zones is non-trivial for many non-continuous industries where the 

goal is to produce practical heat integration targets. Non-continuous sites must grapple 

187



   

with their additional intricacies when attempting to apply TSI in practice (Tarighaleslami 

et al., 2017). Variables such as fluctuating stream temperatures and flow rates, flexibility 

versus inflexibility of target temperatures, and reliance on hot water utility add layers of 

complexity. To be viable, TSI strategies for these sites must be conservative to always 

guarantee operational integrity. Zone segmentation is pivotal in TSI but its praxis is rarely 

discussed in detail.  

This study delves into the adaptation of TSI for non-continuous sites, specifically 

analysing an industrial hot water system, aided by machine learning techniques and 

mathematical programming.  

2. The challenge of defining zones for total site analysis 

Defining zones are an essential part of the praxis of TSI. Zones in TSI refer to defined 

groups of process streams that are distinct thermal regions within a site. Each zone is 

characterised by its temperature range and the processes operating within that range. This 

division helps in identifying the energy deficits and surpluses of different areas within the 

site. Most studies choose zones based on the operational plant units, applying the logic 

that intra-plant streams are close together and operationally synchronous. However, in 

practice, this is only sometimes true and does not assure that the resultant targets and 

networks meet TSI goals and operational mandates. 

2.1. Spatial clustering considerations 

Spatial clustering aims to group streams that are located close to each other to avoid the 

complexities and costs associated with excessive and intricate heat exchanger and piping 

networks. Spatial locations are three-dimensional positions within a site. Proximity 

relates to all three coordinates being within a reasonable distance; however, there is no 

one-size-fits-all and heavily depends on the application. The proximity of sources and 

sinks is crucial for a system design that is simple, economical, and controllable. 

It is common for some streams to spatially exist in two or more zones. For example, a 

process flow might originate in one zone and then be transported to another for further 

processing. In such cases, the process flow may require heating or cooling, which could 

happen in either zone. A decision must be made regarding the heat load allocation 

between the two zones, which defines the stream temperature at which it crosses the zonal 

boundary. This temperature can be manipulated to maximise overall heat recovery. 

Appropriate spatial clustering often relies on good process knowledge and engineering 

judgment. A potentially complementary approach is to apply a machine learning 

approach, such as K-means clustering. Such clustering techniques are data-driven and 

require specification of the number of clusters (i.e., zones), which is often determined by 

heuristics, prior contextual information or arbitrary values. As a result, machine learning 

results provide insight but not definitive answers. Good engineering remains essential.   

2.2. Temporal clustering considerations 

Most TSI studies assume that streams within the same processing plant are both spatially 

and temporally aligned. For some industries, this holds; but, not for all. Temporal 

clustering considerations focus on how well zonal source and sink heat loads match over 

time. Again, engineers have a significant sway in the praxis of TSI. Solely relying on 

judgment and experience to decide temporal compatibility, however, can lead to 

continued inaction.  

Machine learning approaches that can support better decision-making are correlation 

matrix and hierarchical clustering (Müllner, 2011). Both procedures rely on determining 

the “distance” between each pair of time-series datasets. Distance is often a measure of 

dissimilarity where a distance of zero means the two series are identical. A challenge with 
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using plant data is that it may involve similar movement patterns with short time-delays 

causing them to be slightly out of phase. As a result, techniques such as dynamic time 

warping (DTW), which is applied in this study, allow for elastic transformations of the 

time dimension, making it suitable for typical plant data. Using the distances from DTW 

analysis, hierarchical clustering provides a vantage point of possible temporal clusters 

depending on an acceptable distance. 

2.3. What, therefore, defines a zone in practice?  

A zone is a group of streams that are spatially and temporally compatible to allow direct 

heat integration and retrofit. In praxis for some applications, this will lead to the creation 

of many additional zones, which will consequentially lower heat integration targets 

towards more achievable and believe levels.  

In defining zones, it is also crucial to distinguish between process streams and utility. 

Heat integration targets are based on process streams only. However, at times, the identity 

of a stream can be unclear, especially process water streams that are integrated like a 

utility. This study makes the distinction between process streams and utility by asking 

whether the stream flowrate may be manipulated as part of the heat integration network. 

If the flowrate is determined by a processing unit, it is considered fixed from the 

perspective of the heat integration network and, therefore, is a process stream.  

 

Figure 1. Conceptual views of a) zones where two streams originate in one zone and end in 

another and b) zoning that meets the requirements of both spatial and temporal compatibility. 

3. Methods 

The overarching method combines elements of an advanced zonal pinch analysis, total 

site, and machine learning. Due to space constraints, the presentation of the method is 

kept to an absolute minimum. 

Step 1 – Machine learning for data-driven zoning: Zoning requires a bi-level clustering 

approach. First, k-means clustering of geolocations provides spatial areas. Second, time-

series historical plant data of temperature and volumetric flow rate provide the basis for 

temporal clustering. However, such measurement data are often incomplete with 

numerous gaps. This study interpolates to fill in the missing data using a standard third 

order spline approach from the Pandas library in Python. Given the completer dataset, the 

required heating duty is calculated, providing the basis for hierarchical clustering using a 

basic DTW algorithm implemented in Python. Finally, the SciPy library in Python 

interprets the DTW correlation matrix to perform the hierarchical clustering and draw the 

dendrogram. By selecting different maximum “distance” (i.e., the measurement of data 

dissimilarity), various temporal zones are defined and located within the already defined 

spatial areas. 

Zone 1 Zone 2

Cross-zone streams
a) Temporal clustering 

within a spatial area
b)

Zone 3

Zone 4
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Step 2 –Zonal and TSI targeting with cross-zone streams: A bi-level optimisation 

approach is applied where (1) zonal targets are resolved using a modified LP temperature-

interval transshipment model (Papoulias and Grossmann, 1983) within (2) a total site 

optimisation level where cross-zone stream temperatures, splits and an intermediate 

recovery loop with its associated temperatures are key variables that influence the 

structure and solution of zonal targets. The transshipment model is implemented in 

Python using the library GEKKO (Beal et al., 2018) while the outer-level optimisation 

uses the SciPy library. The objective is to minimise utility use given the constraint of a 

minimum approach temperature (10°C in this study).  

4. Case study 

The case study is based on a section of a large non-continuous processing site. Due to 

confidentiality, the site is not identified. Historical plant data from three spatial areas and 

their streams form the basis of the case study (Table 1). The median, 90th and 10th 

percentiles of each data are presented to provide a sense of the variability of the site.  

Table 1. Stream data based on 50 days of data at 5-minute intervals. Water grade G3 is the most 

contaminated and G1 indicates the least contaminated.  

Stream 
Spatial 

area 

Water 

grade 
Variable Unit 

Median 

(P50) 
P90 P10 

H1 A2 to A3 G3 Tsupply °C 73.0 74.4 70.9 

   Ttarget °C 12.0 - - 

   mcp kW/°C 511.1 537.6 474.0 

H2 A3 N/A Tsupply °C 116.3 120.0 110.8 

   Ttarget °C 92.0 92.7 91.1 

   mcp kW/°C 333.6 378.8 278.0 

H3 A3 N/A Tsupply °C 81.9 84.9 79.9 

   Ttarget °C 66.5 72.1 63.8 

   mcp kW/°C 353.9 377.5 265.2 

H4 A1 N/A Tcond C 75.7 77.5 73.4 

   Q MW 39.6 41.8 34.8 

C1 A1 G1 Tsupply °C 14.9 16.1 14.3 

   Ttarget °C 150.0 - - 

   mcp kW/°C 243.3 304.9 243.3 

C2 A2 G3 Tsupply °C 12.0 - 12.0 

   Ttarget °C 73.0 74.4 70.9 

   mcp kW/°C 203.5 226.0 166.6 

C3 A1 or A2 G3 Tsupply °C 12.0 - - 

 to A3  Ttarget °C 75.0 - 75.0 

   mcp kW/°C 1041.5 1138.3 846.0 

C4 A3 G2 Tsupply °C 12.0 - - 

   Ttarget °C 62.1 68.9 54.2 

   mcp kW/°C 27.9 28.1 27.7 
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5. Results and discussion 

5.1. Zonal clusters of streams 

Both spatial and temporal compatibility are essential for direct intra-process integration 

to be efficient, economical, and practical. Figure 2 presents the results of a data-driven 

zoning strategy for TSI praxis. 

Figure 2a delineates the temporal dissimilarity (or 'distance') between various streams 

within the site, with the vertical axis quantifying the DTW distance and the horizontal 

axis enumerating the streams (H for hot, C for cold). These streams are clustered such 

that the height at which streams join together in the hierarchical clustering (measured by 

DTW distance) indicates the order of temporal compatibility. Lower connections imply a 

greater temporal similarity. The horizontal dash lines are various acceptable distances that 

will be carried over to determine the zones with both spatial and temporal compatibility, 

providing a critical piece of information to the TSI targeting model. In Figure 2b, the 

clusters are demarcated both spatially and temporally. Each zone is characterised by a 

fusion of temporal clustering with spatial areas. With three spatial areas and two temporal 

clusters (line A), there is a maximum of 6 zones; however, streams are present in only 5 

of the zones.  

 

Figure 2. Zoning approach where a) the hierarchical clusters are based on DTW matrix results, 

showing an example acceptable distance resulting in two temporal zones and b) the spatial areas 

are each divided into two temporal regions (i.e., six zones) with resulting streams. 

The proposed zoning method has been prototyped in Python. It involved 8 streams, 

resulting in the comparison of 28 possible stream pairs for 14400 time-series entries. On 

an M2 Macbook Air (8 GB ram), the clustering analysis took 43.5 minutes. Scaling the 

approach to significantly larger problems will require improved algorithmic and 

computational efficiency gains. One obvious inefficiency is that it currently analyses 

spatially incompatible stream pairs. This could be easily avoided in future 

implementations. Apart from computational efficiency, another challenge is the 

appropriate interpretation of DTW distance in deciding temporal clusters and how it 

relates to heat recovery between two streams. As a result, this study analyses multiple 

possible cluster options. Future work will look to develop a zoning heuristic. 

5.2. Total site integration targets 

Maximising zonal and total site heat recovery is essential to lowering energy use and 

saving energy costs. However, targets need to be realistic and achievable in practice to be 

useful. A key to practical targets is appropriate zoning. Table 2 presents the core results 

from the bi-level optimisation based on different levels of acceptable temporal 

dissimilarity. As a result, cases A, B, and C represent differing levels of temporal and 
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duty alignment. Cases A has 5 zones, B has 6 zones, C has 8 zones. The ‘spatial only’ 

serves as a baseline representing TSI performed by an engineer familiar with the plant 

layout without the explicit optimisation of cross zonal streams and intermediate loops as 

has been done historically. 

Inter-plant heat recovery through the hot water utility system is substantial for this site. 

Tightening the acceptable temporal dissimilarity of stream-pairs leads to dividing the 

problem into more zones. More zones, each with less streams, results in less intra-plant 

heat recovery. However, the reduction in intra-zone heat recovery also gives rise to more 

opportunities to inter-plant heat recovery. Maximising inter-plant heat recovery requires 

optimising the temperatures of the hot water utility systems. As part of the outer 

optimisation layer, an attempt is made to manipulate the upper and lower hot water 

temperatures to minimise the demand for utility.  

Table 2. Total site integration targets based on various temporal “distance” acceptance thresholds. 

Zoning 

basis 

Number of 

zones 

Hot utility 

(MW) 

Cold utility 

(MW) 

Intra-plant heat 

recovery (MW) 

Inter-plant heat 

recovery loop 

(MW) 

Spatial only 3 29.4 1.5 50.8 32.0 

A 5 41.6 13.7 45.1 25.5  

B 6 48.7 20.8 27.6 35.9 

D 9 71.3 43.3 1.4 39.6 

6. Conclusions 

Incorporating both spatial and temporal data facilitates a sophisticated approach to TSI, 

mindful of variations across time and space. This could lead to enhanced praxis and 

uptake of TSI for non-continuous industries. Although targets are gene rally higher as 

the number of zones increase, their practical achievability and, therefore, acceptability 

are improved. Future work will look to scale the approach to larger problems, 

improvement in computational efficiency, and heuristics to better translate the results of 

the clustering to zoning. 
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Abstract 
The aluminium sector relies on natural gas for the conversion of recycled scrap into new 

feedstock, which results in substantial atmospheric emissions. Hydric resources are also 

impacted, as they serve as heat sinks for the waste heat generated during the casting 

process. Other chemical industries are also responsible for a large production of waste 

heat, offgas and environmental emissions, which hinders efforts to decarbonize the sector 

that depend on them. Methanol and transportation fuels production are examples of those 

industries. Accordingly, there is a significant potential to decarbonize these productive 

activities via enhanced waste heat recovery and integration of renewable energy sources. 

The energy integration of aluminium, methanol and fuels production plants within urban 

areas also offers major advantages in terms of efficient energy utilization and reduced 

environmental impact, particularly in situations characterized by uncertain supply chains 

and fluctuating market prices. Biomass gasification offers an alternative carbon source to 

fossil fuels, and together with electrification, it may help to diversify and decentralize the 

energy inputs for industries traditionally dependent on natural gas, establishing resilient 

and sustainable energy pathways. Carbon abatement, power-to-gas and storage systems 

provide further advantages by mitigating the effects of seasonal availability and prices of 

electricity and fuel. Yet, the integration of the various energy technologies and industrial 

facilities calls for a systematic approach to identify optimal options for meeting the energy 

demands without significantly compromising the operational feasibility. Therefore, in 

this work, the most cost-effective technologies with minimum investment that meet the 

energy demands of the aluminium remelting, methanol and fuels production facilities are 

studied, aiming to upgrade the industrial waste heat available at low temperature to supply 

an urban center with variable energy needs. Implementing improved integration strategies 

shows the potential to reduce overall energy consumption, while achieving net-zero CO2 

emissions compared to conventional scenario. 

Keywords: Aluminium, Fischer-Tropsch, Methanol, Waste heat, District heating. 

1. Introduction 
In aluminium, chemicals and fuels production plants, natural gas is typically used either 

as feedstock or as fuel to supply the heating demands at high temperatures. As a result, 

the aluminium sector is responsible for about 2% of the global industrial emissions (IA 
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2021), followed by the methanol production with 1% (Kapoor 2022). Meanwhile, the 

transportation sector, and more specifically, the aviation sector is a significant contributor 

to the global greenhouse gas emissions (30%) (Burli 2023), and its impact is expected to 

heighten in the coming years, considering that global jet fuel consumption is foreseen to 

be threefold higher than in 2019 (ICAO 2022). In this regard, more efforts should be done 

to defossilize these critical industrial sectors on which many others rely, including cargo, 

food packaging, automotive industry, polymers and chemicals synthesis. Methanol is an 

intermediate molecule for various chemicals production, such as olefins, amines, acetic 

acid, dimethyl ether and formaldehyde (Domingos 2022); and it can be also used directly 

or blended with naphtha. Sustainable aviation fuels are drop-in replacements for 

conventional jet fuel that can be produced from renewable resources, such as biomass and 

electricity (ICCT 2022). Although less than 0.1% of the jet fuel consumed by commercial 

airlines is currently composed of sustainable aviation fuels (Adelung 2022), ReFuelEU 

aviation regulation proposal introduced blending mandates of min. 5% at EU airports by 

2030, which is expected to increase by 63% by 2050 (Burli 2023). As for the aluminium, 

it has innumerable applications in automotive and aerospace industry, food canning, 

decoration, among others. However, a largely unexploited byproduct of the secondary 

aluminium production is waste heat, which can be recovered from stack gases generated 

in the remelting furnaces or from hot water produced in the aluminium casting (Kumar 

2022). In fact, since around 90% of the heating requirements of the residential and service 

sectors can theoretically be covered by process waste heat (Persson 2012), the reuse of 

waste heat in industrial plants will play an critical role in the defossilization strategy of 

those sectors (Yu 2018, Clos 2017) and will enable the energy integration with urban 

energy systems (Stijepovic 2011, Bertrand 2019). The integration of biomass gasification 

to industrial plants has the potential to achieve overall negative emissions, if combined 

with electrification and power-to-gas systems, thus adding flexibility to the energy and 

carbon management approach (Florez-Orrego 2023). However, as the number of 

decarbonization options increases, a systemic study is necessary to evaluate the most 

suitable processes and carbon neutral technologies to supply the energy requirements 

without impacting the operational conditions and process reliability, even under scenarios 

of seasonal variations of energy inputs prices and demands. A mixed integer linear 

problem is addressed using OSMOSE platform to maximize waste heat recovery and 

define the most economically, thermodynamic and environmentally favorable 

configuration to integrate the aluminium, fuels and chemicals industries to the urban 

systems. 

2. Process description 

2.1. Aluminium plant 

In the remelting plant, scrap and pure aluminium are processes to produce value-added 

aluminium coils and other products. In the cast house, the first step consists of preheating 

pure aluminium sows up to 250°C to dry moisture out before it enters the melting furnace. 

Therein, scrap aluminium is mixed and the metal is heated up to ~700°C. The molten 

aluminium is transferred to a holder furnace, which acts as a buffer for the downstream 

direct chill casting process. In the latter, the aluminium is solidified into ingots by using 

direct cast chilling with cold water, which can achieve temperatures above 50 °C before 

discarded to the environment. In the rolling plant, the aluminium ingots are superficially 

processed in a scalper to remove the outer layer. Next, they go through two parallel pusher 

furnaces, wherein aluminium ingots are thermally treated (annealing) at 550°C during 

several hours, before they go through a hot rolling followed by a cold rolling process. In 

this way, coils with millimeter thickness are mechanically formed consuming a large 

amount of electricity dissipated as heat. Finally, some of the coils are sent to an annealing 

continuous line (ACL), where they are chemically and thermally treated using alternating 

heating and quenching processes. Space heating of the aluminium plant must be also 
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considered, due to seasonal environmental conditions. The main energy resource for the 

aluminium processing is fossil natural gas, while diesel is also consumed in some devices 

and fork lifts. Currently, the casting water containing a large share of the low-grade waste 

heat from the aluminium production is directly discarded to the environment, but it could 

be integrated with an anergy (CO2) district heating network to satisfy the heating needs 

of the services and residential sector. Fig. 1 shows the integrated energy system, including 

the aluminium plant, as well as the chemical and fuels production facilities, and the city. 

2.2. Chemical and fuel production plants 

2.2.1.  Biomass conversion system 

Biomass moisture is reduced to 10% in a rotary dryer using waste heat and dry biomass 

is chipped in a mechanical process that consumes 1-3% of biomass energy (Flórez-Orrego 

2019). In the gasifier (900°C), biomass is converted into a syngas rich in CO, H2, CO2 

and CH4, among other components, using steam as the gasification agent (S/B ratio 0.75). 

The indirect gasifier operating at atmospheric pressure burns a fraction of the pyrolysis 

char with air in a second column to supply the energy demands of the endothermic drying, 

pyrolysis and reduction reactions, thus avoiding the nitrogen dilution of syngas. After the 

gasifier, the syngas is cooled down to 400 °C and scrubbed with water, in order to remove 

the impurities and compressed to 35 bar. A water gas shift reactor increases the hydrogen 

content, at expense of producing more CO2. The syngas can be used as feedstock for the 

methanol and the FT liquids plants, whereas the waste heat could be used for combined 

heat and power production to balance the aluminium and chemical processes demands in 

a more versatile way than biomass combustion alone. 

2.2.2. Methanol plant 

The purified syngas is compressed to 90 bar and is heated up by the reactor effluent in a 

feed-effluent heat-exchanger before it is fed to a methanol synthesis loop. The methanol 

synthesis occurs in an isothermal reactor operating at 90 bar and 210 °C. The reactor 

outlet stream is a gaseous mixture of methanol, water and unconverted reactants. This 

mixture is cooled and flashed twice, first to 30 °C and 45 bar, and then to 3.5 bar, in order 

to separate the condensable products and the non-condensable reactants (Kiss 2016). The 

latter are recycled to achieve higher conversions. The condensed stream continues to a 

distillation column at atmospheric pressure, in which methanol is produced (99% wt.). To 

avoid the built up of inerts, a fraction of the non-condensable stream is purged. 

2.2.3. Fischer-Tropsch liquids plant 

The low temperature Fischer-Tropsch reactor with iron catalyst (200-240°C) ensures high 

selectivity for paraffin and high molecular mass linear waxes. A polymerization reaction 

yields a large variety of products with different carbon chain lengths, including n-olefins, 

n-paraffins, oxygenated products, and branched chain hydrocarbons. The selectivity of 

the products depends on several reaction parameters, e.g. temperature, pressure, catalyst 

and reactor type. The probability of chain growth via addition of a monomer to the 

initiator is defined by a chain growth probability (α) given by an Anderson-Schulz-Flory 

(ASF) distribution. A direct product is diesel-cut, whereas hydrocracking of the waxes 

yields further kerosene- (C9-C16) and diesel-cut (C15-C20) mixtures. The hydrocarbons in 

the naphtha range (C5-C12) are rather straight chain and need further treatment to increase 

their branching and achieve high-octane rating (Florez-Orrego 2023). 

2.2.4. Other energy technologies 

To capitalize on the waste heat available and manage, store and upgrade industrial wastes 

into value-added products, ancillary technologies, such as reversible water gas shift units, 

electrolyzer, methanator, supercritical CO2 cycle, refrigerator, methanol reforming, air 

separation unit and anergy (CO2) district heating network are also integrated. Details on 

the simulation of these energy systems can be found elsewhere (Florez-Orrego 2023).  
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3. Methods 
The process modeling and simulation is performed in Aspen Plus software integrated to 

the OSMOSE platform, which minimizes the energy requirement of the integrated 

industrial plants. In this way, low grade waste heat can be reutilized to supply a district 

heating network or generate power in a supercritical CO2 cycle. In addition, the 

implementation of a seasonal power-to-gas approach, including electrolysis, methanation, 

reverse water gas shift and carbon abatement technologies, allows to manage the time-

varying demands and supply. To this end, a multi-time approach has been used to 

minimize the capital investment of the seasonal energy storage systems (e.g. tanks). The 

binary yw and load factor fw optimization variables in Eqs. 1-4 are used to define the best 

size and arrangement based on assumed prices of material and energy inputs and CO2 tax. 

The best combination of energy technologies has been defined to defossilize industrial 

applications, such as the aluminum remelting, whereas producing value-added fuels. As 

for the city demands, typical central European zone city is considered for the assumption 

of the thermal loads of district heating network, including domestic hot water, space 

heating, air conditioning and refrigeration (Flórez-Orrego 2022). The integration with the 

surrounding population has been achieved implementing a novel CO2 district heating 

network. 

 
Figure 1. Blocks diagram of the aluminium and chemicals production facility, along with the utility systems 

(cogeneration, power-to-gas and storage technologies), and the district heating CO2 network. 
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4. Results and discussion 

In this section, selected results for an annual 250 kt/y aluminium processing plant integrated 

to 4.08 kt/y of diesel, 9.40 kt/y of naphtha, 17.57 kt/y of kerosene (24 MW) and 26.35 kt/y (17 

MW) of methanol production sites are discussed. For these production rates, the total biomass 

energy consumption is 681.77 GWh/y, whereas the total electricity import achieves 1096.52 

GWh/y. The diesel consumption in the aluminium plant is 0.23 kt/y. It is worthy to notice that 

the self-power generation using a sCO2 cycle for waste heat recovery through the aluminium 

remelting and the chemical plants is 167.39 GWh/y, which represents around 15% of the total 

power import. For the sake of comparison, the aluminium plant power consumption is 68.07 

GWh/y. Notably, the power demand of the electrolyzer is dominant (1080.76 GWh/y, max. 

170 MW), which is explained by the intensive production of hydrogen and the CO2 conversion 

to value-added products in a power-to-gas approach. In fact, hydrogen and oxygen production 

in the electrolyzer amount 19.65 kt/y and 157.20 kt/y, respectively. Oxygen production from 

an auxiliary air separation unit (24.22 kt/y) is necessary, especially during the winter months, 

in order to balance the oxygen and hydrogen requirements. In fact, venting of surplus oxygen 

(77.40 kt/y) and nitrogen (99.55 kt/y) are estimated, even with an intensive oxygen utilization 

in the oxycombustion furnaces. The CO2 processed in the reverse water gas shift can be 

estimated as 95.15 kt/y. Meanwhile, the methanator processes 26.53 kt/y of CO2 and 4.82 kt/y 

of hydrogen to yield 134.01 GWh/y of synthetic natural gas, which along with 65.37 GWh/y 

of synthetic natural gas produced by a methanol reforming unit, supplies the fuel consumption 

in the oxycombustion furnaces of the aluminium plant. It is worthy to notice that no CO2 

injection or mineralization is necessary, as all the captured and separated CO2 is processed by 

the system, and stored to produce value-added products only when the cost of electricity is 

more favorable during the summer period. A complementary behaviour is observed by the 

methanol storage tank (see Fig. 2). 

 
Figure 2. Annual evolution of the storage levels of CO2 and methanol tanks. 

 

Interestingly, the syngas production for chemicals and fuels production is evenly divided 

by the reverse water gas shift and the gasification systems, which are respectively 66.40 

kt/y and 64.06 kt/y of syngas production, totalizing 130.46 kt/y of syngas. As for the 

biogenic CO2 emissions at the gasifier stack (75.12 kt/y), they represent the dominant 

source of emissions of the integrated energy systems, followed by the also biogenic CO2 

emissions from the offgas flare of the Fischer-Tropsch unit (13.41 kt/y) and the CO2 
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emissions from the purge gas flare system in the methanol production unit (3.65 kt/y). 

The total environmental emissions based on the direct and indirect CO2 emissions of the 

integrated system amount 177.50 kt/y. The indirect fossil CO2 emissions, which arise 

from the supply chains of the biomass and electricity imports, are estimated as 9.57 and 

68.67 kt/y, respectively. In other words, due to an intensive electrification strategy, and 

considering the emissions intensity of the electricity consumed, a relatively high share of 

fossil emissions (44% of 177.50 kt/y) could be expected. This fact demonstrates the 

interrelation between the industrial activities and the need to orchestrate a coordinated 

decarbonization strategy for all of the energy conversion routes to actually achieve a 

sustainable net zero target. Provided that the energy inputs are derived from renewable 

energy resources, the fossil fuel dependency and emissions could be virtually avoided. 

5. Conclusions 

In this work, via enhanced waste heat valorization and CO2 management has been 

proposed to energetically integrate industrial energy systems typically dependent on non-

renewable energy resources, i.e. aluminium remelting, methanol synthesis and transport 

fuel production. Using renewable energy resources, it has been possible to elucidate 

alternative production routes that enable phasing out fossil fuels utilization, while 

increasing the electrification, in order to achieve net zero emissions. Yet, indirect 

emissions still remain the main challenge. In fact, due to intensive electrification, indirect 

emissions (78 kt/y) related to electricity are expected, but much lower than operating 

standalone chemical plants. 
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Abstract 
The production of Portland cement (clinker) results in an enormous amount of CO2 
emission. Clinker substitution with supplementary cementitious materials (SCMs) is a 
promising technology for reducing the CO2 footprint of concrete industry. Substitution of 
clinker with calcined clays along with limestone results in a ternary blend known as 
limestone calcined clay cement (LC3). This paper reports the use of local Saudi clays to 
prepare LC3 concrete. Different clays were sourced from local quarry sites. The collected 
clay samples were characterized to find their mineralogical composition. Following, clays 
were crushed, sieved, calcined, and used for clinker substitution along with limestone and 
gypsum to prepare LC3 samples. Different clay substitution levels were used to prepare 
a series of LC3 samples. The fresh, mechanical, and durability properties of prepared LC3 
samples were studied. The obtained results revealed the potential of Saudi clays to 
achieve higher clinker replacements (up to 50%).  

Keywords: LC3, Calcined clays, Supplementary cementitious materials (SCMs), Clinker 
substitution, Green cement. 

1. Introduction 
Portland cement is the main binder in concrete, which has a high CO2 footprint (Andrew 
2017). Efforts are being made to reduce cement content in concrete. A promising and 
immediate solution is to use supplementary cementitious materials (SCMs) to partially 
replace cement, as no alternative is currently available to put cement out of the picture 
(Ahmadi and Shekarchi 2010; Juenger et al. 2019). Different SCMs such as coal fly ash, 
blast furnace slag, natural pozzolan, and calcined clays can be used for cement 
replacement up to certain levels. Fly ash is the by-product of coal power generation while 
slag comes from blast furnaces, and both have limited supplies. Natural pozzolan is 
available at specific localities. Therefore, the focus of this study is naturally occurring 
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kaolinite clays which can be calcined at moderate temperature to get good reactivity. 
Calcined clays are substituted along with limestone powder to make a ternary blend, 
referred to as LC3. Calcined clays have shown promising mechanical and durability 
characteristics, desirable for concrete. An increasing number of papers have focused on 
such clays (Scrivener 2015; Vizcaíno Andrés et al. 2015). In this study, Saudi clays were 
studied for clinker replacement at different levels. The mechanical and durability 
properties of concrete made using different clays were studied. 

2. Experimental 
Two Saudi clay samples, white (WC) and yellow (YC) were collected from the Eastern 
province of Saudi Arabia. One Ukrainian clay (UC) was also used for the sake of 
comparison. Collected clay samples were crushed and ground to pass a 150 µm sieve. 
Following, ground clays were calcined at 850 ℃ for 3 h to convert kaolin to metakaolin. 
Type I Portland cement, conforming to ASTM C150, was used.  Limestone powder (LSP) 
was used at a clay-to-LSP ratio of 2:1. A water/binder ratio of 0.4 was used for all the 
samples. Eventually, the paste samples (25 mm cubes) with clinker substitution levels of 
30, 50, and 70 wt.% were made. Samples were cured under water for up to 7, 28, and 90 
days, followed by compression testing (Fig. 1). After 28 days of curing, 3 samples from 
each batch were exposed to a 5% sulfate solution for durability measurements.  
 

 
 

Figure 1. Compression testing of paste samples   

3. Results and discussion 
The compressive strength of all the samples is plotted in Fig. 2. It is evident that the 
control samples showed higher strength compared to the LC3 samples. The strength of 
LC3 samples at 50% replacement was about 56, 42, and 40 MPa for white, yellow, and 
Ukrainian clay, respectively, compared to about 76 MPa for the control sample. Despite 
the reduction in strength, the achieved strength values of LC3 samples can still give 
structural-grade concrete. Moreover, this lower strength of LC3 samples was potentially 
due to the low fineness of clays (particle size < 150 µm) which resulted in lower reactivity. 
In contrast, cement generally has an average particle size of 45 µm.    

The durability of samples against sulfate exposure is shown in Fig. 3. It can be seen that 
almost all the sulfate-exposed samples showed comparable compressive strength to their 
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respective control samples (unexposed). This shows the high sulfate resistance of these 
samples. Hence, clay-substituted binders can be used in sulfate-rich environments. 

 

 
Figure 2. Compression strength of paste samples 

 

 
Figure 3. Compression strength of sulfate-exposed paste samples 

4. Conclusions 
Two Saudi clays were studied in this work to replace clinker partially. Mechanical 
strength and sulfate resistance were studied. The results have shown that the clay samples 
have less strength than control samples, potentially due to their low reactivity because of 
the larger particle size. The reduction in particle size by fine grinding can help in 
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achieving higher strength. Furthermore, all the samples exhibited high resistance to 
sulfate exposure. 
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Abstract 
Current mining industry challenges require extracting all valuable elements and treating 
toxic materials from the ore. One way to achieve these objectives is through flotation 
plants that process polymetallic ores. The plants design of flotation polymetallic ores 
usually consists of a sequence of circuits to separate the valuable elements from the 
gangue without any integration between them beyond the sending of tails or concentrate 
streams from one plant to another. This work analyzes the integration of these circuits. 
First, plant design is carried out using optimization to select the best alternative from a 
set of circuit alternatives. Uniform distribution functions are used to represent recoveries 
with epistemic uncertainty, and the optimization problem is solved many times to identify 
a set of optimal solutions. Once this set of optimal designs has been identified, global 
sensitivity and uncertainty analyses are utilized to identify bottlenecks and improvements. 
The results showed that these integrated plants' design and analysis would introduce 
significant improvements in the operation of flotation plants for polymetallic ores. The 
advantages and challenges of integrated polymetallic ore plants are highlighted. 

Keywords: Polymetallic ores, integrated circuits, global sensitivity analysis, 
improvement 

1. Introduction 
The mining industry presents critical challenges, given the increased demand for metals, 
the decrease in grades, the complexity of mining deposits, and the increase in 
environmental restrictions. This forces to consider extracting all valuable elements and 
treating toxic materials from the ore. One way to achieve these objectives is through 
flotation plants that process polymetallic ores. The design of polymetallic ores flotation 
plants usually consists of a sequence of circuits separating the valuable elements from the 
gangue without any integration between them beyond sending tails or concentrate streams 
from one plant to another. Flotation circuits are complex systems with many flotation 
stages and elements that participate in the system, speaking only of monometallic ore 
circuits. Using a task superstructure with an origin-destination matrix reduces the solution 
to the problem significantly (Cisternas et al., 2014). The flotation stage recoveries of stage 
𝑗𝑗 of specie 𝑖𝑖, 𝑇𝑇𝑖𝑖

𝑗𝑗, which are needed to design these systems, are unknown because they 
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depend on the circuit design. Then, to represent this epistemic uncertainty, a uniform 
distribution function, 𝑇𝑇𝑖𝑖

𝑗𝑗~𝑈𝑈(𝑎𝑎, 𝑏𝑏), can be considered. This range of recovery values is 
sufficient for identifying a set of optimal flotation circuit structures (Cisternas et al., 
2015). For the identification, Monte Carlo optimization is applied solving a mixed-integer 
linear programming (MILP) problem, guaranteeing a global optimum. This way, 
optimization methodologies can be used for circuits with many species and flotation 
stages (Calisaya et al., 2016). This design approach was applied by Botero et al. (2024) 
for the design of polymetallic ore circuits.  

To identify bottlenecks in operation and propose additional improvement to polymetallic 
flotation circuits, global sensitivity analysis (GSA) can be performed, focusing on 
identifying input variables with the most significant effect on flotation circuit 
performance. The use of GSA applied to mineral processing has been studied (Lucay et 
al., 2015; Sepúlveda et al., 2013), and the Sobol-Jansen method has shown the best 
performance among several methods studied (Lucay et al., 2020). However, all these 
studies have only been conducted on monometallic ore circuits. This work analyzes the 
design of integrated flotation circuits for polymetallic ore. The polymetallic ore Kevitsa 
plant for copper (Cu) and nickel (Ni) is utilized as a case study.   

2. Descriptive methodology 
The species participating in the polymetallic circuit are chalcopyrite CuFeS2 (Cp), 
pentlandite Ni9Fe9S8 (Pn), pyrrhotite FeS (Po), and non-sulphur gangue (G). The species 
of interest for the Cu concentrate is Cp, and for the Ni concentrate is Pn. The feed to the 
flotation circuit is 8.07 t/h Cp, 5.44 t/h Pn, 14.73 t/h Po, and 903.84 t/h G, and the recovery 
data are presented in Table 1. 

2.1. Optimal integrated design 

According to the research conducted by Botero et al. (2024) the design strategy of 
monometallic ores can be applied to the design of polymetallic ores since few optimal 
structures were found for the circuits studied, given the uncertainty in the stage recoveries. 
The starting point should be using a superstructure - origin-destination matrix for each 
concentrate and tail stream based on the existing flowsheet. Then, new stream 
connections were included, including circuit integration between the Cu and Ni plants.  
The revenues were used as an objective function, and uniform distribution functions were 
generated based on plant data.  The MILP problem was solved using CPLEX 12.9.0.0 on 
the GAMS platform.  

2.1. Global sensitivity analysis for improvement  

GSA was applied to identify the stage recoveries that have a significant effect on the 
global Cu and Ni circuit recoveries and product grades. The products are the Cu and Ni 
concentrates. The studied mathematical models of the circuit are obtained by a mass 
balance representing the stage recoveries by uniform distributions. For the GSA, the 
Sobol-Jansen method was used, which implements the Monte Carlo estimation of the 
first-order and total Sobol indices simultaneously (Jansen, 1999; Saltelli et al., 2010). The 
sensitivity package under R project software was utilized using a random sample of 
50,000 data points. 
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Table 1. Recovery data from the Kevitsa plant flotation circuit (Botero et al., 2024) 
Circuit Stages Symbol Cp Pn Po G 

Cu 
Rougher R1 0.543 0.112 0.085 0.013 
Cleaner C11-C14 0.790 0.459 0.530 0.362 

Scavenger S1 0.401 0.116 0.086 0.028 

Ni 
Rougher R2 0.253 0.350 0.272 0.044 
Cleaner C21-C25 0.174 0.697 0.552 0.385 

Scavenger S2 0.773 0.844 0.861 0.203 

3. Results 
3.1. Optimal integrated Cu and Ni flotation design 

Figure 1 represents the integral polymetallic flotation circuit obtained to produce Cu and 
Ni concentrates and a tail. The first flotation circuit, for the production of Cu concentrate, 
considers a rougher stage (R1), four cleaner stages (C11, C12, C13, and C14), and a 
scavenger stage (S1). The second flotation circuit, for the production of Ni concentrate, 
considers a rougher stage (R2), four cleaner stages (C22, C23, C24, and C25), a scavenger 
stage (S2), and a cleaner-scavenger stage (C21). Observe that the recirculation of a tail 
stream from the Ni C21 stage to the Cu R1 stage integrates both circuits. This integrated 
circuit increases the revenue from 261.9 MMUS$/year to 314.9 MMUS$/year, which is 
a 20% increase. 

3.2. Global Sensitivity Analysis (GSA) 

The mathematical models utilized for the GSA were the global Cu and Ni recoveries, and 
Cu and Ni grades, in the polymetallic flotation circuit of Figure 1. These global recoveries 
were expressed as a function of the stage recoveries, 𝑇𝑇𝑖𝑖

𝑗𝑗. These stage recoveries were 
given by uniform distribution functions, 𝑇𝑇𝑖𝑖

𝑗𝑗~𝑈𝑈(𝑎𝑎, 𝑏𝑏), where the constant values 𝑎𝑎 and 𝑏𝑏 
were obtained using the data in Table 1 ±0.05. The results are shown in Figures 2 and 3. 
 

 

Figure 1. Integrated design of the Cu and Ni -Kevitsa flotation circuits. Modified from Botero et 
al. (2024). 
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Figure 2. Sobol total index (Si) for global Cu recovery [ a) Cp and c) Po, G stage recoveries], and 
global Ni recovery [ (b) Pn and d) Po, G stage recoveries].  

 
Figure 3. Sobol total index (Si) for the main stage recoveries that influence a) copper grade in the 
Cu concentrate, and b) nickel grade in the Ni concentrate. 
 
Figure 2a shows the total Sobol index of the 𝑇𝑇𝐶𝐶𝐶𝐶

𝑗𝑗  variables that have the most significant 
effect on the global recovery of Cp are R1, S2, and C11 stages. This is an exciting result 
because stage S2 of the Ni circuit has an essential effect on the Cu recovery. Figure 2c 
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indicates that stage R1 is the most relevant in the global recovery of Po and G species. 
Figure 2b demonstrates that S2 and R2 stages are the ones that have the most significant 
effect on the overall recovery of Pn. Figure 2d shows the most important impact of stage 
S2 on the global recovery of Po and stage R2 for the global recovery of G. 

Figure 3a shows that the Po and G recoveries in stage R1 have the most significant effect 
on the Cu grade. Figure 3b shows that the variables with the most significant effect on 
the Ni concentrate grade are the G recoveries in stages R2 and S2 and Po recovery in 
stage S2. 

3.3. Improvement of the polymetallic flotation integrated circuit. 

According to the GSA of the integral Cu and Ni flotation circuit, better control can be 
performed in the different flotation stages to increase the recovery of Cp and Pn in stage 
S2 and decrease the recoveries of Po and G in stages R1 and R2, to guarantee more 
remarkable global recovery and improvement in the grade of copper and nickel 
concentrate. 

Table 2 shows the revenues, recoveries, and grades of the concentrates of the Cu and Ni 
in the polymetallic flotation circuit for the original design, the integral design, and the 
improvement by simulation of this integrated circuit of Cu and Ni, setting values, through 
flotation criteria, in the stages of most significant effects given in the GSA study, Table 
1 (Gray highlighted data changed: 𝑇𝑇𝐶𝐶𝐶𝐶𝑆𝑆2 = 0.85, 𝑇𝑇𝑃𝑃𝑃𝑃𝑆𝑆2 = 0.92, 𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅1 = 0.06,  𝑇𝑇𝐺𝐺𝑅𝑅1 = 0.01), 
𝑇𝑇𝑃𝑃𝑃𝑃𝑅𝑅2 = 0.2, 𝑇𝑇𝐺𝐺𝑅𝑅2 = 0.02). 

 
Table 2. Summary of the performance of the original design, integrated design, and 
improvement after GSA. 

Circuit 
Revenues Global recoveries Concentrate grade 

MM$US/year Cp Pn Po NSG Cu  Ni Po 
Original design 

Cu  66.06 3.40 4.68 0.20 22.98 0.85 8.53 
Ni  0.13 75.67 54.28 0.64 0.01 7.76 43.90 

Total 261.9  
Optimal integrated design 

Cu  88.18 1.95 5.66 0.05 29.09 0.42 9.79 
Ni  0.03 79.31 54.89 0.61 0.00 8.18 45.05 

Total 314.9  
Improved integrated design using GSA 

Cu  91.97 2.06 0.39 0.04 30.50 0.45 6.90 
Pb  0.03 88.03 54.30 0.50 0.00 9.60 45.47 

Total 354.0               
 

The significant improvements of the integral design concerning the original design shown 
in Table 3 indicate that studies should be carried out to incorporate integration in the 
design of polymetallic ore flotation circuits. The application of GSA allows increased 
revenues by 12% and 35% concerning the integrated design and original design, 
respectively.  
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4. Conclusions 
Integrated designs would considerably improve the design of polymetallic ore circuits. 
Improvements in the optimal integral circuit operation and identifying bottlenecks can be 
made with a GSA. Thus, the focus should be on optimizing the operating conditions in 
those flotation stages that have a more significant effect on improving the recovery and 
grade of the metal concentrates. 

In our case study, an integrated Cu and Ni polymetallic circuit obtained using 
optimization and the subsequent improvement proposal was analyzed, focusing on the 
scavenger stage, S2, that has a more significant effect on the global recovery of 
chalcopyrite and pentlandite, and in decreasing the floatability of pyrrhotite and gangue 
in R1 and R2 stages to increase the Cu and Ni grades, respectively. 
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Abstract 

Economic nonlinear model predictive control (eNMPC) can enable flexible and 

economically optimal process operation. We apply eNMPC within a virtual environment 

to an electrified reaction-separation-recycle process actively participating in real-time 

electricity markets, a subprocess of biodiesel production detailed in our recent work 

(https://arxiv.org/abs/2308.09537). Employing a mechanistic dynamic model that serves 

as both the controller model and plant surrogate, we perform a closed-loop case study 

spanning a 24-hour period with historical electricity prices. The eNMPC strategy results 

in energy cost savings exceeding 28% compared to optimal stationary operation, yielding 

similar results to offline dynamic optimization, all while maintaining real-time feasibility. 

Keywords: Model predictive control, Demand-side management, Optimal control 

1. Introduction 

One effective approach for achieving flexible and economically optimal operation of 

chemical processes is economic nonlinear model predictive control (eNMPC) (Amrit et 

al., 2013). eNMPC involves solving a dynamic optimization (DO) problem with an 

economic objective function directly within the controller while considering process 

models and operational constraints. While researchers have successfully applied eNMPC 

in various applications, its potential for realizing demand-side management in electrified 

chemical processes involving reaction, separation, and recycle (RSR) components 

remains underexplored in the literature. We apply eNMPC in silico to an electrified RSR 

process, specifically focusing on a simplified version of the biodiesel production 

subprocess in El Wajeh et al. (2023). We examine a typical demand-response scenario 

and utilize the same model for both the eNMPC controller and the plant surrogate. For a 

more comprehensive understanding of the process description and modeling, see El 

Wajeh et al. (2023). The RSR process flowsheet is illustrated in Figure 1. 

2. eNMPC Strategy 

We implement the eNMPC strategy by solving online DO problems with a sampling time 

of 15 minutes over one day. We minimize the process operating cost while penalizing the 

210



   

 

control moves and enforcing operational constraints on product purities and level limits. 

To maintain computationally tractable DO, the control and prediction horizons extend to 

10 and 12 hours, respectively. For each optimization iteration, we discretize the controls 

and constraints at 30-minute and 15-minute intervals, respectively. We implement the 

model in Modelica and use DyOS (Caspari et al., 2019) to solve the DO problems. 

3. Results and Discussion 

Figure 2 illustrates the production rates when operating under the eNMPC strategy, as 

well as for optimal steady-state (SS) and offline DO operations. As expected, with the aid 

of the buffer tank, the production rate exhibits an inverse relationship with the electricity 

price profile. Notably, the eNMPC results closely align with the outcomes of the offline 

DO approach, enabling a heightened degree of operational flexibility when contrasted 

with the benchmark SS operation. In terms of energy cost savings, both eNMPC and 

offline DO operations demonstrate substantial benefits, achieving a 28% reduction in 

costs. Furthermore, the CPU times for solving the DO problems within the eNMPC 

framework consistently remain below its sampling time, with an average value of 130 

seconds, underscoring the real-time feasibility of the eNMPC approach. 

4. Conclusion 

We demonstrate that eNMPC improves the flexible operation of an RSR process while 

being real-time tractable. The considered RSR process is a biodiesel production 

subprocess, wherein buffer tanks decouple different process parts, enabling distributed 

optimization. Consequently, distributed eNMPC emerges as a promising approach for the 

optimal flexible operation of the entire biodiesel production process. 
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Figure 1. Simplified RSR biodiesel subprocess 

flowsheet. Controls are indicated by arrows. 

Figure 2. Production rate and electricity 

price profiles. 
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Abstract 
To reduce emissions produced due to process heat supply, fossil fuels need to be replaced 
by renewable fuels in steam boilers. An economical solution may be to utilize renewable 
electricity and biomass simultaneously to leverage the benefits of both types. This study 
investigates the economic viability of a dual-fuel boiler system using an industrial case 
study. Utility system operations were optimized using a Python-based mixed-integer 
linear programming model, where the minimum operating costs (including fuel and 
emission components) for all the data points was determined. Under current energy 
prices, only using coal as the fuel is initially seen as the most cost-effective system. 
However, as carbon costs increased the dual electrode and biomass system becomes 
slightly more cost effective. With high price volatility, a hybrid biomass and electrode 
system would give a 4.9 % cost reduction, as well as a 93.8 % emission reduction. 
 
Keywords: Decarbonization, hybrid utility system, mathematical optimization 

1. Introduction 
In New Zealand, process heating is largely supplied through non-renewable sources with 
around 75% supplied by coal and natural gas (Energy Efficiency and Conservation 
Authority, 2023). Methods of process heat delivery are moving away from fossil fuels, in 
part due to rising carbon emission costs as well as climate action policy. The New Zealand 
government is phasing out coal boilers by 2037, prohibiting their usage. Much of the 
energy used for process heat is used in steam boilers and there are two main renewable 
alternatives - biomass and electrode boilers using renewable/low carbon electricity. 
Electrode boilers have high operational costs due to electricity prices and volatility of 
electrical pricing, whereas biomass boilers have high capital costs (if not retrofitting coal 
boilers) and potential issues with supply security. 
A barrier to decarbonization is uncertainty and risk associated with costs and timeframes 
resulting in companies deferring investment decisions. Implementing both electrode and 
biomass boilers together as a hybrid system can reduce the economic barrier (Walmsley 
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et al., 2023). For hybrid boiler systems, an electrode boiler could operate simultaneously 
and in a flexible manner with a biomass boiler. In this configuration the biomass boiler 
would provide baseload steam and the electrode boiler acting as a peaking boiler with 
rapid response times. In state-of-the-art utility systems, dual-boiler setups tend to have 
simple operating rules, such as triggers to switch the primary boiler.  
The aim of this work is to quantify the economic viability of a price-responsive dual-
boiler setup compared to individual boiler types for the same amount of load. To achieve 
this aim, the study focuses on minimizing the operating cost of different single and dual 
industrial boiler setups by manipulating which fuel is used, and how much of it is 
consumed over time. The scope of this study is limited to operating cost optimization, 
specifically the firing rates of the different boilers in the hybrid system. Future work will 
look at expanding the scope and move towards a real-time optimization approach.  

2. Mathematical Optimization Model 
2.1. Model Parameters 
 
The main structure of the optimization model is an equation-based time-slice model 
where a year’s worth of data is split into multiple small slices, and these slices are then 
solved individually for the minimum cost. The main parameters into the model are the 
thermal demand, fuel costs, and emission trading scheme costs, with the output of the 
model being the annual operating cost and annual CO2 emissions. 
2.1.1. Thermal Model 
For this work, an industrial case study is used as the basis for the modelling. This is a 
New Zealand processing plant that currently uses coal boilers as the medium for process 
heat delivery, but due to confidentiality reasons commercially sensitive details are 
omitted. One of the major objectives of this work is to understand how the varying 
electricity spot price can affect the operating cost, which required the thermal demand of 
the plant to be the same time-step as the spot-price. The thermal model was generated 
using a previous mass and energy balance, where the heat demand was determined by the 
change in enthalpy between the water and the steam for each boiler, using on-site sensors.  
This was then validated against recorded coal usage from the plant. The thermal is shown 
in Figure 1 as an ordered plot to show the distribution of values. Using this thermal model 
alongside knowledge of decision-making factors different models and scenarios could be 
made. Having a specific case study is also important as it establishes a fixed geography 
of the plant, which can affect many contributing factors, such as fuel price, fuel supply, 
and electricity prices. 

 
Figure 1: Plant site thermal demand. 
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2.1.2. Fuel Costs 
The main parameters for the optimization are the different fuel costs, which are composed 
of supply costs and emission trading scheme costs. For the electricity pricing (excluding 
transmission and distribution costs), this is the trading period (half-hourly) price and 
applying a general pricing increase factor of 2 %. This increase represents the change in 
price over time for the average price, based on the location of the plant and plant 
experience. For the biomass and coal pricings, these were given as starting prices of $16 
NZD/GJ and $5 NZD/GJ and increasing at 2 % per annum, with the numbers based on 
the experience of the plant.  
2.1.3. Emission Costs 
To calculate the emission-based costs both the emission factor and emission unit cost are 
required. The emission factor represents the relative mass of CO2 emitted for every unit 
of fuel consumed. For this work, the emission factors used were 0.083 tCO2-e/GJ for coal, 
0.00278 tCO2-e/GJ for biomass, and 0.0167 tCO2-e/GJ for electricity (Ministry for the 
Environment, 2023a). The electricity emissions factor is an estimate of the average factor 
over the next 15 years. A price pathway for emissions starting at $70 NZD/tCO2-e in 2023 
rising to $144 NZD/tCO2-e in 2030, and then $260 NZD/tCO2-e CO2 in 2050 was used 
(Ministry for the Environment, 2023b). A piece-wise linearization was applied to the 
price pathway. For the optimization of the plant in this study, the final time is set at 2037 
(the 2050 pricing helps create the linearization). 
2.1.4. Boiler Limits 
The boilers in the model have established upper (QUL) and lower limits (QLL) that 
constrain the firing rate, represented by Equation 1. For electrode boilers in the model, 
the lower limit is set at zero duty (the same as no lower limit) as it has a consistently high 
efficiency at all partial firing rates.  

QLL ≤ Q ≤ QUL (1) 

Solid fuel boilers however have a diminishing efficiency at lower firing rates, so while 
the partial efficiency model was not used, this was represented by setting the lower 
operating limit to be half of the upper operating limit. The limits for the boilers are defined 
based on the current specifications of the boilers in the plant (for the solid fuel boilers) 
and potential plans (for the electrode boiler). The upper limits are 30 MW for solid fuel 
boilers, and 12 MW for electrode boilers. 
2.2. Optimization Formulation 
The optimization is performed using the equation based GEKKO Python package (Beal 
et al., 2018). For the optimization of a year of data the parameters are defined before 
solving, with the main parameters being the total fuel cost (CF) and the limits of the boiler 
firing rate (Q). For all fuel types, the total cost is made of the supply cost (CS) and the 
emission cost (CE) (based on the emission factor (EF)), shown in Equation 2: 

CF = CS + EF ⋅  CE   (2) 

The firing rate of the boiler is a variable within the model and is the primary aspect that 
is changed within a timestep. The optimizer will change the duty for each timestep to 
minimize the operating cost (CT) while simultaneously meeting the overall demand (QT). 
For an example optimization of a hybrid biomass (denoted by subscript B) and electrode 
(denoted by subscript E) system, the objective function and demand definition are shown 
in Equation 3 and Equation 4: 

214



   

min (CT), where CT = QB ⋅  CF,B ⋅  zB + QE ⋅  CF,E ⋅  zE (3) 

QT ≤ QB ⋅  zB + QE ⋅  zE (4) 

Where z is the binary switch for each boiler that represents the operating state (0 for off, 
1 for on). This is used for boilers with a lower limit above 0 MW. The optimization is 
solved using the GEKKO APOPT solver. 

3. Results and Discussion 
Five different scenarios are used in this study: coal, biomass, and electrode only, and two 
hybrid scenarios of biomass/electrode and coal/electrode. Individual boilers give a 
reference point, whereas the two hybrid scenarios represent potential transition pathways. 
The main aspect that changes over time is the emission trading scheme pricing, and as the 
price increases over time, the expectation is that electricity would be the primary fuel in 
the coal and electrode hybrid and the biomass would be primary fuel in the biomass and 
electrode hybrid. Figure 2 shows the annual energy costs of the different scenarios at five-
yearly intervals. These intervals are capped in 2037, as this is when coal boilers will be 
phased out in New Zealand, and unable to be used. Comparing coal and biomass as the 
base fuel, coal-based systems are cheaper to operate due to the low emissions trading 
scheme pricing. However, if capital costs are not included, then operating an electrode 
boiler as well as the coal boiler makes the system cheaper than running just the electrode 
boiler. 2037 is the year where the biomass hybrid system becomes cheaper than the coal 
hybrid systems, due to the trading scheme making coal supply more expensive than 
biomass. 
 

 
Figure 2: Annual energy costs for the five main scenarios over 15 years. 

These results assume that the volatility of the electricity price stays consistent throughout 
the years. The magnitude is increased by the same 2 % increase factor, but the price 
volatility stays the same. Volatility (or variance) in this study is the measure of how much 
the electricity fluctuates away from a recent historical moving average (previous day). To 
be more realistic, the variance in price is likely to increase because of the addition of more 
renewable electricity supply into the grid (Electricity Authority, 2022). To investigate 
this, the model was re-run with new electricity prices, where the variance was increased 
as a factor of time. The variance was calculated by scaling the difference between actual 
price (PA) and the moving average price of the previous day (PM). The variance increase 
factor (F) was initially high (20 %) due to the increase not compounding. The main 
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equation is shown in Equation 5, with PF representing the new price after scaling. This 
equation is applied to each price point, repeated for every year since the base year (2022). 

PF = PM + (PA – PM) * F (5) 

The coal hybrid operating cost is recalculated using the new prices, with the results shown 
in Table 1. With a larger variance on electricity price, the total energy cost decreases 
because of more periods with a lower electricity price. The constant-variance scenario 
has a cost reduction of 1.0 %, whereas the increasing variance scenario has a cost 
reduction of 4.9 %. This means that electrode boiler can be better utilised and meeting 
the capacity more often. For the scenario without variance, this results in an emissions 
reduction of 93.8 %, and a reduction of 93.6 % for the high variance scenario. 
 Table 1: Cost breakdown for different 2037 utility system scenarios. 

2037 Scenario 

Annual Operating Cost (Million $ NZD) Annual 
Emissions  
(kt CO2-e) 

Coal/ 
Biomass Electricity 

Emission 
Trading 
Scheme 

Total 
Energy 

Cost 
Coal Only 5.81 0.00 13.28 19.09 53.95 

Coal Hybrid 
(No Variance) 4.43 2.85 11.23 18.51 42.78 

Coal Hybrid 
(With 

Variance) 
4.11 3.23 10.86 18.20 40.34 

Biomass Only 18.59 0.00 0.44 19.03 1.80 
Biomass 

Hybrid (No 
Variance) 

13.45 3.73 1.71 18.89 3.36 

Biomass 
Hybrid (With 

Variance) 
13.15 3.23 1.78 18.16 3.44 

 
Figure 3: Net present value over time for an implemented 12 MW electrode boiler. 

Knowing that variance reduces the operating cost can help with cost justification, as it 
means the payback period will be shorter. For both the variant and non-variant pricing, 
the net-present value has been calculated, assuming that an electrode boiler was built in 
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the starting year (2022). Only the electrode boiler costing was included, as this is closer 
aligned with the direction of the case study plans. Figure 3 shows this value over time, 
showing that a variance increase factor of 1.2 (20 % increase) per year is required to make 
the electrode boiler pay back (assuming the specific parameters of this case study) by 
2037. The initial capital cost of the boiler was set at 7 million NZD as an average for the 
boiler and required infrastructure costing. By not including the variance, the electrode 
boiler does not pay back before the 2037 mark which can make it harder to justify the 
decision from an industrial perspective. 
3.1. Future Work 
 
The optimization of this study has focused on the time-of-use minimization. However, 
only the specific firing rate of the boilers has been included in the optimization loop. A 
future iteration of the optimization should include the boiler capacity as an outer layer. 
However, this is not a simple process, as the sizing of the boilers has implications on the 
capital costing, which does not often have linear scaling. Other aspects to investigate 
would be the costing of individual aspects (like the emission trading scheme, fuel, and 
electricity costs). These have been assumed as fixed values or linear progressions, but in 
practice this does not happen. An example is the evolving biomass market within New 
Zealand, which could cause the fuel cost to increase non-linearly. Finally, better defined 
installation timelines should be calculated, considering the existing lifespan of coal 
boilers on-site. The hypothesis would be that if a coal boiler were to reach end-of-life, it 
should be replaced by a biomass boiler, but there could be value in having the biomass 
boiler fire coal at a lower efficiency and retrofitting it to biomass after a few years. 

4. Conclusion 
The optimisation suggests a two-step utility system transition plant (for cost 
minimisation). Considering higher electricity volatility prices in the future, the 
recommendation is that first, as soon as practicable, an electrode boiler (12 MW capacity) 
should be installed next to the coal boiler, reducing annual energy costs by up to 4.9 % 
and emissions by 25.2 %. Second, the coal boiler would be replaced by a biomass boiler 
towards 2037, for a total emissions reduction of 93.6 %.  
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Abstract 

This study proposes reinforcement learning (RL) combined with a digital twin model to 

implement an environment for RL training and the stability of process control. The 

simulated process is established based on a sequence-to-sequence rolling model and an 

optimization algorithm to build a Model Predictive Control (MPC). The control stability 

of RL is analyzed using Selective Hydrogenation Unit (SHU) for the separation of C4 

and C5 components in the column. Monte-Carlo deep deterministic policy gradient (MC-

DDPG) is proposed as RL model and five types of reward functions are designed to 

reduce the energy consumption of process control. The value of integral absolute error 

(IAE) for C5 components are reduced by 100% using RL compared to MPC. For C4 

components the IAE value using RL decreased by 67% and 80%, respectively indicating 

that the control effect of RL is better than that of MPC.  

 

Keywords: Reinforcement learning; Digital twin model; StS Rolling prediction; Energy 

control 

1. Introduction 

Reinforcement learning (RL) is a subclass of machine learning which an agent learns by 

interacting with an unknown environment. The agent obtains feedback in terms of a 

reward from the environment, and it applies this feedback to train itself and collect 

experience and knowledge about the environment (Naeem, Rizvi et al. 2020, Panzer and 

Bender 2022). RL needs to interact with the real process for training, but due to the 

process safety it is not allowed to directly apply the actual process for interactive training. 

Kang et al. (Kang, Mirzaei et al. 2022) proposed a DDPG model with two-stage training 

to control the performance of boiler level control. The result showed that compared with 

DDPG model that directly contracts with online training, the two-stage training DDPG 

can effectively reduce the number of training. They also proved that control ability of 

three stages DDPG is better than that of 3E control.  

Reinforcement learning can handle continuous or discrete control of single-input single-

output systems and multiple-input multiple-output systems, and can perform well in the 

case of noise in the process control. However, there is not open literature to show that the 

218



   

 

simulation results are applied to the actual process for the reinforcement learning process 

control. Therefore, this study proposes RL combined with a digital twin model to 

implement an environment for RL training and the stability of process control. This study 

refers to Yoo et al. (Yoo, Kim et al. 2021) using the Monte-Carlo algorithm to replace the 

TD-error used in DDPG to update the model, this model is called MC-DDPG. Monte-

Carlo deep deterministic policy gradient (MC-DDPG) is introduced as RL model and five 

types of reward functions are designed to reduce the energy consumption of process 

control. 

2. Methodology 

In this study, the real and virtual processes are implemented using Aspen Dynamics 

simulation and digital twin model, respectively. First, a virtual process is built by digital 

twin model. Then, the reinforcement learning is combined with virtual process for 

interactive training. The model is validated using virtual process and then the actual 

process can be controlled. This process is divided into training and testing parts. A 

sequence-to-sequence rolling model is used to establish a virtual process. The historical 

data is input to the encoder. Decoder is comprised the current and future operating and 

disturbance values. When the reinforcement learning training is completed, the virtual 

process is tested, analyzed the control results, and then the model is applied to the real 

process for control. 

The architecture and training process of MC-DDPG are shown in Figure 1. The Monte 

Carlo algorithm is a periodic update, not a single-step update, and the actual reward can 

be used directly for model training without additional bootstrapping to obtain the real 

reward. Hence, MC-DDPG needs a set of Actor-Critic network, and Actor and Critic are 

each an independent ANN network.  

 

 

Figure 1. MC-DDPG model used in this study 

As shown in Figure 2, the historical data and the operation given by the optimization tool 

are fed into StS rolling model to predict the result. The model performs online error 

correction by calculating the error between the actual process data and the predicted 

model. Hence, the control system has the capability of self-adaptation. 
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Figure 2. MPC used in this study 

Reward functions and integral absolute error (IAE) are used as the basis to evaluate the 

model control. 5 types of reward functions (Eq. 3-7) are applied to calculate the energy 

consumption of the process.  

Based on Eq. 2, C5loss and C5loss, sp indicate the upper product concentration and 

concentration limitation of output product in column, respectively. C4loss and C4loss, sp 

represent concentration of bottom product and the concentration limitation, respectively. 

In addition, this study tested each model for 10 rounds, each round simulated 300 time 

steps, and each time step was simulated for 10 minutes, so each round simulated a total 

of 3000 minutes. 

 

𝑅 = 𝑅𝑐𝑜𝑛𝑐. + 𝑅𝐸                                                                                                                  (1) 

𝑅𝑐𝑜𝑛𝑐. = {
10, 𝑖𝑓 𝐶5𝑡,𝑙𝑜𝑠𝑠 < 𝐶5𝑙𝑜𝑠𝑠,𝑠𝑝  𝑎𝑛𝑑 𝐶4𝑡,𝑙𝑜𝑠𝑠 < 𝐶4𝑙𝑜𝑠𝑠,𝑠𝑝 

0
                                        (2) 

𝑅𝐸 = {
2, 𝑖𝑓 𝐸𝑡−1 > 𝐸𝑡  

1, 𝑒𝑙𝑖𝑓𝐸𝑡−1 >  𝐸𝑡

0

                                                                                               (3) 

𝑅𝐸 = {
10, 𝑖𝑓 𝐸𝑡−1 > 𝐸𝑡  
5, 𝑒𝑙𝑖𝑓𝐸𝑡−1 >  𝐸𝑡

0

                                                                                               (4) 

𝑅𝐸 =
1

𝐸𝑡
× 4                                                                                                                  (5) 

𝑅𝐸 =
1

𝑊𝐶5×𝐶5𝑡+𝑊𝐶4×𝐶4𝑡+𝐸𝑡
                                                                                             (6) 

𝑅𝐸 = {
5, 𝑖𝑓 𝐸𝑡 > 𝐸𝑡,𝑟𝑒𝑔. − 0.005 

0
                                                                                  (7) 

3. Case study 

3.1 Process description 

The industrial Selective Hydrogenation Unit (SHU) as a simulated plant was simulated 

using Aspen Dynamics® to illustrate the effectiveness of the proposed model. The 

flowsheet is shown in Figure 3. In this study, the quality control of main products 

including C5 and C4 at the top and bottom of column are investigated. As shown in figure, 

quality variables of C5 and C4 products are defined as qv1 and qv2, respectively.  
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Figure 3. Schematic illustration of SHU process. 

4. Result and discussion 

4.1 comparison of MPC and RL 

Figure 4 indicates control performance of model predictive control and reinforcement 

learning models in the real process. The result compares the IAE analysis based on C5 

and C4 products. The value of IAE for C5 product reduces by 100% using reinforcement 

learning compared to MPC. The IAE value for C4 product using RL decreases by 67% 

and 80% respectively, indicating that the control effect of reinforcement learning is better 

than that of MPC. 

 

  
 

Figure 4. IAE comparison for RL and MPC models 

 

Figure 5 demonstrates IAE value of real case for C5 and C4 products using MPC and 5 

types of reward functions considered in this study. It is found that the IAE value for C5 

and C4 products using type 3 of reward function is higher than that of MPC models. 

Therefore, the energy consumption is not considered for type 3. 
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Figure 5. IAE comparison using MPC and different reward functions 

 

Table 1 shows energy consumption reduced using MPC and RL for 4 types of reward 

functions.  It is obvious that type 5 of reward function has the best performance.  

 
Table1. Energy consumption reduced by RL compared to MPC 

 Type-1(%) Type-2(%) Type-4(%) Type-5(%) 

QV 0.2641 1.0734 0.2058 -0.3945 

QV&SV 0.4422 0.4577 -0.5109 -0.4426 

 

4.2 Effect of noise on RL 

Figure 6 indicates performance of RL using 3% noise for actual process. IAE value for 

C5 and C4 products using ±3% noise is slightly higher than that of without noise.  These 

results prove that reinforcement learning can stably control the process when ±3% noise 

is added to the process. However, the control ability of the model decreases because the 

information input to the model increases. 

  

Figure 6. Effect of noise on stability of RL 

5. Conclusions 

RL needs to interact with the real process for training, but due to the process safety it is 

not allowed to directly apply the actual process for interactive training. Therefore, this 

study proposes Monte-Carlo deep deterministic policy gradient (MC-DDPG) as RL 

model which is combined with a digital twin model to implement an environment for RL 

training and the stability of process control. Model Predictive Control (MPC) as virtual 
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process is established based on a sequence-to-sequence rolling model and an optimization 

algorithm to train the reinforcement learning. StS rolling model is used due to the 

capability of long-term predictions. MC-DDPG model could perform better than MPC 

and type 5 of RL was the most stable to reduce the amount of energy consumption. 

Furthermore, 3% noise could not disturb the RL model stability. 
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Abstract 

Traditional model predictive control (MPC) often relies on linear models, leading to 

potential inaccuracies when implemented in real-world scenarios with marked 

nonlinearity, such as grade transitions in chemical processes. In this research, we utilize 

a physics-informed neural network (PINN) for the dynamic modeling within MPC. By 

integrating constraints from physical laws during deep neural network training, this 

method reduces the dependency on vast datasets. Simultaneously, it ensures that the 

resulting dynamic model possesses a clear physical interpretation and a correct sign of 

process gain which is essential for the stability of the control system. In the case study, 

we examine a blending process of two polymer materials. Our proposed method 

efficiently creates a dynamic and nonlinear process model, even when faced with limited 

density data for model training. We use this model to virtually regulate density during 

grade transitions using an MPC strategy, illustrating the its feasibility.  

Keywords: model predictive control, physics-informed neural network, deep learning. 

1. Introduction 

Model predictive control (MPC) is a sophisticated method for process control, designed 

to manage systems within specific constraints. It has been widely used in chemical 

industry. However, traditional MPC, based on linear models, often falls short in accuracy, 

particularly when dealing with nonlinearities common in processes such as grade 

transitions in chemical plants. To overcome this, integrating neural networks into MPC 

has been proposed for enhanced nonlinear modelling (Draeger et al., 1995). But the 

conventional neural networks, while powerful, require extensive training and result in 

models that lack clear physical interpretation, limiting their practical industrial 

application.  

Our research tackles this challenge by employing physics-informed neural networks 

(PINN) (Raissi et al., 2019) to build a dynamic model within MPC, using actual factory 

data. Given the limited availability of data, mostly from steady-state processes, PINN is 

particularly advantageous. It reduces the amount of data required for training and 
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improves the model’s extrapolation capabilities by incorporating physical laws, making 

it a more practical solution for real-world industrial applications. 

In our case study, we investigate a blending process involving two polymer materials. 

Here, the key focus is on controlling the post-mixing density, which is regulated by 

adjusting the ratio of two feed flow rates. This task presents a significant challenge in 

typical factory settings, where continuous and real-time measurement of product density 

is difficult. Consequently, during transitions between various product grades, adjustments 

in the feed flow rate ratio are often based on empirical methods. We established a PINN 

model, used in conjunction with an MPC strategy, to forecast and virtually regulate 

density during grade transitions. The results illustrate the feasibility of the proposed 

method, showcasing its potential to be implemented in real industrial processes. 

2. Introduction of the blending process 

In this study, our objective was to predict the blending density in a thermoplastic 

elastomer (TPE) manufacturing process and to establish an PINN-based MPC system. A 

key goal was to demonstrate the real-world viability of this approach in actual process 

environments.  

The study examines a blending process where two polymer fluids, Component A and 

Component B, are combined in a mixing tank (as shown in Figure 1). The mixture then 

passes through a series of reactors before the final density is measured. Due to the lack of 

real-time density monitoring and adjustment capabilities, operators traditionally rely on 

their experience to regulate the feed rates of Components A and B during transitions 

between different product grades.  

Table 1 outlines the parameters of the blending process. These include 𝑋𝑖𝑛_𝐴 as a process 

variable, representing the feed flow rate of Component A (high density), which is 

determined by the operator, and 𝑋𝑖𝑛_𝐵 as a manipulated variable, denoting the feed flow 

rate of Component B (low density). 𝑋𝑜𝑢𝑡 represents the output flow rate from the mixer. 

The output density, ρ, is the controlled variable. PR indicates the production quantity, 

while L refers to the level in the mixer. 𝑌1 denotes mass, calculated from L. 𝑌2 represents 

the ratio of Component A in the mixer, which can be converted into density using 

empirical formulas. 

 
Figure 1. Diagram of blending process in the TPE plant 

Table 1. Parameters of the blending process 

Parameters Units Descriptions 

𝑋𝑖𝑛_𝐴 Kg/hr Process variable 

𝑋𝑖𝑛_𝐵 Kg/hr Manipulated variable 

𝑋𝑜𝑢𝑡 Kg/hr Process variable 
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ρ Kg/𝑚3 Controlled variable 

PR Kg/hr Process variable 

L % Process variable 

𝑌1 Kg Process variable 

𝑌2 no unit Process variable 

3. Dynamic process model base on PINN 

During process modelling, we faced a challenge: the density of the mixture, a crucial 

product quality variable in the TPE manufacturing process, cannot be measured 

continuously, resulting in limited label data. Traditional machine learning methods, 

including most deep neural networks, struggle under such data constraints, often leading 

to unreliable performance. To overcome this, we chose to employ an PINN, which is 

designed for supervised learning while adhering to physical laws expressed through 

differential equations. This approach is particularly suited to addressing data scarcity 

issues and ensuring physical interpretation of the obtained model.  

Figure 2 illustrates the structure of the PINN model. The inputs to this model are 

{𝑋𝑖𝑛𝐴
, 𝑋𝑖𝑛B

, 𝑃𝑅, 𝑡, 𝜌0}, where 𝑡 is the time index and 𝜌0 is the initial density at time 𝑡 = 0. 

The corresponding outputs are {𝑌1, 𝜌}. The PINN model is designed to involve four 

hidden layers, each containing 60 neurons. The model was trained using a dataset 

comprising a small number of on-site data points and 25,000 collocation points, the latter 

of which were chosen using Latin hypercube sampling (Stein, 1987). The design space 

was determined by the historical maximum and minimum values of the five input 

variables. Specifically, the parameter 𝜌0 is set to lie within the range of the historical 

minimum and maximum values of ρ. The utilization of collocation points is particularly 

effective in reducing the number of required training data points. For the model’s 

architecture, the hyperbolic tangent (tanh) function was selected as the activation 

function, while the Adam algorithm was used for optimization. 

 

Figure 2. Framework of the proposed PINN model 

To define the physical constraints in our PINN model, we formulated a series of ordinary 

differential equations (ODEs) grounded in the law of mass conservation. (1) represents 

the overall mass balance, while (2) specifically addresses the mass balance of Component 

A.  (3) is then derived by substituting (1) into (2). We employ equations (1) and (3) to 
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calculate the ODE losses for the PINN, ensuring that our model adheres to fundamental 

physical principles. These equations are structured as follows:  

𝑑𝑌1

𝑑𝑡
= 𝑋𝑖𝑛𝐴 + 𝑋𝑖𝑛𝐵 − 𝑋𝑜𝑢𝑡      (1) 

𝑑𝑌1𝑌2

𝑑𝑡
= 𝑌1

𝑑𝑌2

𝑑𝑡
+ 𝑌2

𝑑𝑌1

𝑑𝑡
= 𝑋𝑖𝑛𝐴 − 𝑌2𝑋𝑜𝑢𝑡    (2) 

𝑑𝑌2

𝑑𝑡
=

(1−𝑌2)𝑋𝑖𝑛𝐴−𝑌2𝑋𝑖𝑛𝐵

𝑌1
      (3) 

Furthermore, the density (ρ) can be converted to the component ratio (Y2) using an 

empirical formula, where a and b are known constants. 

𝑌2 = 𝑎 + 𝑏 ∗  𝜌  (4) 

The loss function of the PINN is composed of four components: two prediction losses 

and two ODE losses, as depicted in (5) to (11). In these equations, the caret symbol (^) 

denotes predicted values, i signifies the index of individual sample points, NR represents 

the count of on-site data points included in the model training, and NT indicates the total 

size of the training set, encompassing both on-site data points and collocation points. The 

terms 𝑓𝑖 and 𝑔𝑖 are derived from (1) and (3), respectively. It is noted that the output flow 

rate values ( 𝑋𝑜𝑢𝑡
𝑖 ) are only utilized for the calculation of 𝑓𝑖  in (9) and are not 

incorporated into the inputs of the PINN model. To compute the differentials, the 

automatic differentiation techniques can be employed.  

Loss = Prediction loss 1+ Prediction loss2 +λ1*ODE loss1 +λ2*ODE loss2  (5) 

Prediction loss 1 = 
1

𝑁𝑅
∑ ((𝑌̂1

𝑖
− 𝑌1

𝑖)2𝑁𝑅
𝑖=1   (6) 

 

Prediction loss 2 = 
1

𝑁𝑅
∑ ((𝜌̃𝑖 − 𝜌𝑖)2𝑁𝑅

𝑖=1   (7) 

ODE loss 1 = 
1

𝑁𝑇
∑ (𝑓𝑖)2𝑁𝑇

𝑖=1   (8) 

𝑓𝑖 =
𝑑𝑌̂1

𝑖

𝑑𝑡
− 𝑋𝑖𝑛_𝐴

𝑖 − 𝑋𝑖𝑛_B
𝑖 + 𝑋𝑜𝑢𝑡

𝑖 
 (9) 

ODE loss 2 =  
1

𝑁𝑇
∑ (𝑔𝑖)2𝑁𝑇

𝑖=1   (10) 

𝑔𝑖 =
𝑑𝑌̂2

𝑖

𝑑𝑡
−

(1 − 𝑌̂2
𝑖
) 𝑋𝑖𝑛_𝐴

𝑖 − 𝑌̂2
𝑖
𝑋𝑖𝑛_B

𝑖

𝑌̂1
𝑖

 

 (11) 

where the model prediction of 𝜌 is modified from 𝜌̂ to 𝜌̃ as: 

𝜌̃ = 𝜌̂ ∗ (1 − 𝑒−t) + 𝜌0 ∗ 𝑒−t    (12) 

This modification is crucial to ensure that the predicted density is consistent with the 

initial condition at t = 0. λ1 and λ2 serve as weighting factors that balance the different 

types of loss functions. Specifically, we have set λ1 to 0.001 and λ2 to 1, ensuring an 

optimal equilibrium between these loss components. 

4. PINN-based MPC 

Figure 3 presents the layout of the PINN-based MPC. In this setup, the prediction horizon 

(P) of the MPC is fixed at 6, and the control horizon is set at 1, with each control interval 

lasting 0.5 hours. At the onset of each grade transition, operators set the desired 

production quantity and product density targets, denoted as  𝑃𝑅𝑠𝑝 and 𝜌𝑠𝑝 , respectively. 

The value of 𝑋𝑖𝑛_𝐴 is then calculated using an empirical formula and held constant with a 
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zero-order hold. During each control interval k, the predicted product density is 

represented as  𝜌̃(𝑘 + 𝑖) = 𝑃𝐼𝑁𝑁(𝑋𝑖𝑛𝐴
, 𝑋̂𝑖𝑛B

(𝑘 + 𝑖),  𝑃𝑅𝑠𝑝, 𝑡(𝑖), 𝜌̌0(𝑘)), where i ranges 

from 1 to P. Here, 𝜌̌0(𝑘) = 𝑃𝐼𝑁𝑁(𝑋𝑖𝑛𝐴
, 𝑋𝑖𝑛B

(𝑘),  𝑃𝑅𝑠𝑝 , 𝑡(1), 𝜌̌0(𝑘 − 1)) for k ≠ 0, and 

𝜌̌0(𝑘) = 𝜌0 for k = 0, with 𝜌0 being the product density measured before the transition . 

The variable 𝑋̂𝑖𝑛B
 is the manipulated variable determined by the optimization function 

(13). During grade transitions, we aim to minimize the Integrated Squared Error, 

formulated as:  

𝑋𝑖𝑛𝐵
(𝑘 + 𝑖) = 𝑎𝑟𝑔𝑚𝑖𝑛

𝑋̂𝑖𝑛𝐵

∑[𝜌𝑠𝑝 − 𝜌̃(𝑘 + 𝑖)]
2

𝑃

𝑖=1

 

  

(13) 

 
Figure 3. Framework of PINN-based MPC 

5. Results and Discussions 

Figure 4 displays the coefficient of determination (R2) and the root mean squared error 

(RMSE) of each on-site data point utilized in the training, validation, and test phases of 

the PINN model. A total of 150 on-site data points were gathered and distributed across 

these three subsets in a ratio of 7:1:2. 

 
Figure 4. Parity plot between true values and predicted values of product density 

Prior to implementing the MPC, control in the case study was executed through a one-

step adjustment of both 𝑋𝑖𝑛_𝐴  and 𝑋𝑖𝑛_𝐵 . 𝑋𝑖𝑛_𝐴  was determined using the empirical 

formula discussed previously, while 𝑋𝑖𝑛_𝐵 was calculated based on the final steady-state 

mass balance. This approach often led to extended transition times and a considerable 
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production of off-quality products. Figure 5 illustrates how the proposed PINN-based 

MPC strategy significantly improves this process. Initially, there is a substantial increase 

in 𝑋𝑖𝑛_𝐵, followed by gradual fine-tuning to prevent overshooting and stabilize the control 

value at its set point. It is evident from the data that our proposed control algorithm 

notably reduces the transition period and enhances product quality. 

 
Figure 5. Comparison between the on-site control strategy and the PINN-based MPC in 

a grade transition 

6. Conclusions 

In this study, we leveraged a limited dataset of on-site process data to model a blending 

process using a PINN. The primary objective of this model was to predict product density, 

serving as a cornerstone for MPC. By integrating physical laws articulated through ODEs 

and generating collocation points, the PINN model attains commendable predictive 

accuracy. Comparing to using the mechanistic model only, PINN achieves better 

predictions by incorporating process measurements in model training. When applied to 

MPC, this PINN-based control strategy markedly decreases the time needed for grade 

transitions, thereby enhancing both productivity and product quality. 
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Abstract 
Rolling element bearings play a pivotal role in numerous industrial systems. Therefore, 
monitoring their condition is essential for ensuring safety and averting equipment failures. 
In this study, a non-parametric control chart rooted in data depth for the conditional 
monitoring of bearings was proposed, which transforms the multivariate bearing 
information into a univariate index by leveraging data sorting and the central tendency of 
the data cloud. We designate the well-behaved data as located at the centre of this data 
cloud. Subsequently, a statistic referred to as “rank” is computed for the operational data 
of the investigated bearing. Based on this rank calculation, we establish a health indicator 
for the rolling bearings. We have demonstrated the application and feasibility of this 
method through a case study, successfully using the indicators we created to assess the 
current condition of the bearings. 

Keywords: data depth, condition monitoring, rolling element bearing, control chart 

1. Introduction  
Given their critical role in various industrial systems, it is essential to monitor the 
condition of rolling element bearings to ensure safety and prevent equipment 
breakdowns(Lei, Li et al. 2018). The Shock Pulse Method (SPM)(Zhang, Zhao et al. 
2014) serves as a valuable diagnostic tool for rapidly assessing the operational state of 
these bearings. SPM extracts data from high-frequency vibrations to obtain two primary 
vibration features, namely LR (Low-Frequency Resonance) and HR (High-Frequency 
Resonance) which served as the basis for assessing equipment health. However, this 
health assessment lacks quantitative scaling and requires manual definition to confirm the 
current health status. In the analysis of bearings conditional monitoring (CM), various 
vibration characteristics are typically examined. However, it can be challenging to 
observe equipment health status with multiple variable indicators. Therefore, a reasonable 
and an intuitive metric should be provided as an indicator of equipment condition.  
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Principal Component Analysis (PCA) is a widely used tool for multivariate monitoring, 
including the condition monitoring of rolling element bearings (Ahsan, Mashuri et al. 
2018). However, its reliance on the Gaussian distribution assumption often poses a 
significant challenge in practical scenarios, particularly when the data deviates from this 
assumed distribution, which is a common occurrence in the condition monitoring (CM) 
of rolling element bearings. This can lead to misleading results from control charts. To 
address this, we have developed a nonparametric control chart based on data depth, 
specifically Tukey depth, which does not require any assumptions about data 
distributions. This method allows for the creation of a health indicator that accurately 
quantifies the condition of rolling bearings over time. The effectiveness of this approach 
is demonstrated through a case study. 

2. Methodology 
2.1. Data depth 
 
The concept of data depth was first introduced by Tukey et al. (Tukey 1975), highlighting 
its significance in sorting and analyzing multivariate data. Data depth measures the 
centrality of multivariate data points in relation to the overall multivariate sample. It 
adheres to four key properties: 1. affine invariance, 2. maximum value at the center, 3. 
monotonicity around the deepest point, and 4. vanishing at infinity. Generally, data depth 
assumes that the data in statistical control follows a p-dimensional distribution function 
G (referred to as the reference distribution). When G is unknown, an empirical 
distribution is used, based on the reference sample set {𝑥𝑥1, 𝑥𝑥2,…, 𝑥𝑥𝑚𝑚} . The reference 
distribution and sample represent the process in control, i.e. under normal operating 
conditions.  

Various methods exist for calculating data depth, including Mahalanobis depth, 
Simplicial depth, and Tukey depth. Tukey depth, chosen for its higher breakdown point, 
measures data points in relation to the centre of the data distribution and considers the 
distribution across each dimension. The Tukey depth of a data point x under distribution 
F(·) is defined as follows (Yeh and Singh 1997, She, Tang et al. 2021): 

TD(F,x) = inf
𝐻𝐻

{𝐹𝐹(𝐻𝐻): 𝐻𝐻 is a closed halfspace containing 𝑥𝑥} (1) 

which represents the minimum probability mass carried by any closed halfspace 
containing the point. The sample version of TD(F,x) is defined by replacing F with 𝐹𝐹𝑛𝑛, 
the empirical cumulative distribution function. In the univariate case, the formula 
simplifies to TD(F,x) = min{F(x), 1-F(x)}. In this study, the qcr package (Flores, 
Fernández-Casal et al. 2021) is used to calculate the multivariate Tukey depth. A high 
Tukey depth value implies that the data point is closer to the centre of the data cloud. 
Conversely, a lower value indicates that the point is more peripheral or potentially an 
outlier in the dataset. 
2.2. r-chart 
 
A distribution-free control chart, as described by Bae et al. (2016), is used to monitor the 
Tukey depth of each data point. In this study, the r-chart, introduced by Liu in 1995 (Liu 
1995), is adopted, which is defined mathematically as: 

𝑟𝑟𝐺𝐺(𝑥𝑥) = 𝑃𝑃{𝐷𝐷𝐺𝐺(𝑦𝑦) ≤ 𝐷𝐷𝐺𝐺(𝑥𝑥)|𝑦𝑦~𝐺𝐺} (2) 
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In this formula, x denotes operational data, y represents the reference or “golden” data, 
and y∼G indicates that y follows the distribution G. 𝐷𝐷𝐺𝐺  is the data depth, calculated based 
on (1). If G is unknown, the reference sample {𝑦𝑦1,...,𝑦𝑦𝑚𝑚} is used instead. The monitoring 
statistic, or the r value, is then calculated as: 

𝑟𝑟𝐺𝐺𝐺𝐺(𝑥𝑥) =
#�𝑦𝑦𝑗𝑗|𝐷𝐷𝐺𝐺𝐺𝐺(𝑦𝑦𝑗𝑗) ≤ 𝐷𝐷𝐺𝐺𝐺𝐺(𝑥𝑥)�

𝑚𝑚
.    𝑗𝑗 = 1, … ,𝑚𝑚 (3) 

where # represents the count function. The value 𝑟𝑟𝐺𝐺𝐺𝐺(𝑥𝑥) assesses how closely vector x 
aligns with the centre of the data cloud formed by the reference sample, by comparing the 
depth values of x and each point in y. A high probability of x having a greater depth value 
than those in y suggests that x is likely near the data cloud’s centre, resulting in a higher 
r value and indicating a normal operation. Conversely, a lower probability implies x is 
likely on the data cloud’s edge, leading to a smaller r value and signifying out-of-control 
data.  In the control chart, key thresholds include a centre line of 0.5 and a lower control 
limit set at α. A statistic below alpha signals an out-of-control process. 

3. Case study  
This study utilized real-world data from a rolling bearing mounted on an industrial 
machine. The data was gathered after applying the SPM technique, resulting in multiple 
variables relevant for the subsequent CM phase. In consultation with equipment experts, 
a period of “golden data”, representing normal operating conditions, was selected to 
construct control charts. Data collected after this period served as the test set.  

Prior to implementing the data depth-based control chart, PCA was used for an initial 
comparison. The outcomes are illustrated in Fig. 1: Fig. 1(a) displays the Hotelling’s T2 
control chart, and Fig. 1(b) shows the SPE chart. In these charts, the "golden data" is 
represented in pink, while other data points are in blue. Notably, a significant number of 
false alarms are observable during the “golden data” period, attributed to the non-
Gaussian nature of the data distribution. Furthermore, a consistent pattern of alarms 
shortly after the golden data period is seen, contradicting the actual operating conditions 
of the rolling bearing. Neither the T2 chart nor the SPE chart effectively captures a 
progressive deterioration trend in the bearing’s data. 

   
 

(a)                                                                            (b) 
Figure 1. PCA monitoring results 

Subsequently, the proposed method was implemented in the following manner.  
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1. Reference Sample Selection: The data collected when the bearings are functioning 
normally and have not experienced failure is identified as “golden data”, serving as the 
reference sample. 
2. Tukey Depth Calculation: The Tukey depth for each data point in the dataset was then 
calculated. 
3. r-chart Construction for Condition Monitoring: An r-chart was subsequently 
constructed for CM. A process is deemed out of control if the r value falls below the 
threshold of α = 0.05. 
4. Minimizing False Alarms with a Moving Window: To further reduce the incidence of 
false alarms, a moving window approach was adopted. This window consists of n 
consecutive data points. Based on this window, a health indicator (HI) was formulated 
using a binomial distribution as shown in equation (4): 

𝑃𝑃(𝑘𝑘) = 𝐶𝐶(𝑛𝑛, 𝑘𝑘) × 𝑝𝑝𝑘𝑘 × (1 − 𝑝𝑝)𝑛𝑛−𝑘𝑘 (4) 

Here, k is the count of data points within the window indicating normal operation, and p 
(set at 1 - α = 0.95) is the probability of successful operation. P(k) is utilized as the HI, 
which is interpreted as follows. 
• Green Light (Normal Operation): A P(k) value greater than 0.1 suggests normal 

operating conditions. 
• Yellow Light (Caution): A P(k) value between 0.05 and 0.1 acts as a cautionary 

signal. 
• Red Light (Alarm): A P(k) value below 0.05 indicates an alarm, signaling potential 

issues in the operation. 

The r-chart and HI are displayed in Fig. 2(a) and Fig. 2(b), respectively. It is noticeable 
that the r values of the golden data predominantly converge around an average of 0.5. As 
time advances and the bearings experience gradual wear, these r values correspondingly 
decline. This contrasts with the PCA results, where data anomalies appear immediately 
after the golden data phase. The non-parametric approach, grounded in data depth, 
facilitates earlier detection of bearing health degradation while effectively minimizing 
false alarms. Employing this method to develop a health indicator empowers proactive 
measures against imminent bearing faults. 

  
(a)                                                                            (b) 

Figure 2. Data depth-based CM charts 
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4. Conclusions  
In this study, we presented a methodology based on data depth analysis to develop a 
health indicator for rolling bearings. This method proves particularly effective when 
dealing with data that does not follow a normal distribution, where traditional PCA for 
CM may result in inaccuracies. By employing data depth calculation in control charts 
through a non-parametric approach, this method is not limited by the data’s distribution, 
effectively avoiding the inaccuracies inherent in PCA. The non-parametrically derived 
health indicator enables earlier detection of bearing health deterioration and significantly 
reduces false alarms. This innovative approach offers manufacturing facilities a proactive 
means to foresee and address potential equipment malfunctions.  
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Abstract 
Roll compaction is pivotal in pharmaceutical tablet manufacturing, but finding the best 
settings for the operation of a full-scale roller compactor (RC) involves resource-intensive 
experiments. This is especially challenging during product development, due to limited 
availability of active pharmaceutical ingredients. To address this issue, a small-scale 
compactor simulator (CS) is commonly used to save on materials and time. However, the 
operating conditions that allow one to manufacture a product with assigned specifications 
in a CS are different from those required to manufacture the same product in a full-scale 
RC. This study proposes a transfer learning approach enabling one to derive optimal RC 
settings from experiments carried out on a CS. The proposed methodology effectively 
captures equipment-scale differences and offers a reliable way to predict RC machine 
settings, thus allowing for significant time and resource savings. 
Keywords: roller compaction, dry granulation, compactor simulator, pharmaceutical 
tablets 

1. Materials, Methods, and Results 
Roller compaction is a key unit operation in a dry granulation line, where pharmaceutical 
powder blends are densified producing a ribbon, by means of the pressure exerted by two 
counter rotating rolls. Johanson (1965) developed a powder mechanics model describing 
the compaction process phenomena. The model predicts roll pressure and ribbon solid 
fraction (SF) from powder physical properties, operating conditions, and roller compactor 
(RC) geometry. Calibration of the model requires parameter estimation from 
experimental results. Experimental campaigns on a full-scale RC are lengthy and 
expensive, also because the required materials may include active pharmaceutical 
ingredients (APIs), which may not be available in large amounts during product 
development. To save on time and materials, small-scale compactor simulators (CSs) are 
used that mimic the roll compaction process through uniaxial compaction using two 
counter-moving punches (Zinchuk et al., 2004). However, the Johanson model 
parameters derived from CS experiments are not suitable for modelling an RC, due to 
pressure differences at equivalent SF values (Reynolds et al., 2010). For this reason, a 
mass correction factor 𝑓𝑓0 has been proposed as a correction to the Johanson model to 
account for the differences between the two pieces of equipment (Bi et al., 2014). 
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To understand the differences between the responses of a CS and an RC, and to achieve 
transfer learning between them, we prepared six formulations including both placebos 
and APIs. Experiments carried out on all formulations in both pieces of equipment 
allowed us to estimate the Johanson model parameters for each equipment on each 
formulation, which in turn allowed us to identify the relevant compression profiles. Figure 
1 shows the experimental data obtained for one of the formulations in the CS (triangles) 
and RC (squares), and the relevant compression profiles fitted by means of the Johanson 
model (dashed line and dotted line, respectively). 

 
Figure 1. RC and CS compression profiles for one of the formulations investigated. 

Clearly, the CS compression profile underestimates the pressure required to achieve the 
same SF using an RC. This finding holds true for all the formulations investigated. The 
𝑓𝑓0 parameter represents the link between the compression profiles obtained in different 
pieces of equipment, and can be used to transfer the operation from one equipment to the 
other. Whereas 𝑓𝑓0 is typically assumed constant in the literature, we found that 𝑓𝑓0 can be 
actually expressed as a generalized nonlinear function 𝐹𝐹 of the roller compaction pressure 
𝑃𝑃𝑅𝑅𝑅𝑅 , namely 𝑓𝑓0 = 𝐹𝐹(𝑃𝑃𝑅𝑅𝑅𝑅). Four formulations were used to calibrate the parameters 
involved in 𝐹𝐹, and the remaining two formulations were used as validation datasets. 
Excellent transfer results were obtained in all cases. As an example, Figure 1 shows that 
the “virtual” RC compression profile (solid curve) obtained by transferring the CS 
experimental data (triangles) almost perfectly overlaps the compression profile that would 
be obtained by carrying out the experiments onto the RC directly (dotted line). 

2. Conclusions 
We presented a transfer methodology to relate the experimental results obtained from two 
compaction pieces of equipment at different scales and types. Results on six formulations 
demonstrated the effectiveness of the transfer methodology. The proposed approach 
enabling significant materials and time savings in pharmaceutical product development, 
requiring material in order of grams rather than kilograms for the experimental campaign. 
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Abstract 

In the context of a global imperative for industries to achieve net-zero emissions, this 

work introduces a methodological framework for establishing possible transition 

pathways with interim targets aimed at reducing emissions and minimizing costs. The 

methodology begins by generating different pathways through a multi-period mixed-

integer linear programming formula, which takes into account market evolutions such as 

natural gas prices, renewable energy penetration, and future technology developments. 

Subsequently, a multi-criteria analysis is applied to select the most promising transition 

pathways based on predefined key performance indicators (KPIs) and decision metrics. 

To validate the methodology's effectiveness, a Blueprint oil refinery case study is 

conducted. The results demonstrate that a net emission reduction over the entire lifespan 

can be achieved through the implementation of carbon capture and/or electrification 

technologies at appropriate time steps. The methodology highlights the potential 

investment decision strategies according to the selected KPI, under predefined 

assumptions, offering insights for industry stakeholders and policymakers. 

 

Keywords: Transition Pathway, Investment planning, Technology evolution, Refinery. 

1. Introduction 

The Sixth Assessment report by the Intergovernmental Panel on Climate Change (IPCC) 

emphasizes the formidable task of limiting the global average temperature rise to 1.5-2°C 

since 1850, requiring a substantial reduction in cumulative emissions (Masson 2021). 

While there has been a global effort to achieve net zero, spanning numerous industries 

and sectors, the significance of optimal transition pathways has not received adequate 

attention. Industrial sector, responsible for a quarter of global emissions, must evolve to 

reduce emissions during its lifespan and foster a low-carbon future. 

However, determining an optimization pathway for industrial sector faces the following 

challenges: 
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• Exhaustive decarbonization options: Overlooking certain potential clean 

technologies and methods may lead to local suboptimal solutions. 

• Market Uncertainty: Fluctuations in costs and the demand for critical utilities, 

such as natural gas, significantly impact industrial decision-making. 

• Technology Evolution: As technology continually evolves, so do associated 

costs and carbon footprints. A comprehensive understanding of these trends is 

essential when integrating future technologies. 

Valuable research has been carried out in the field of investment planning, including the 

work of Barkitzi et al. (2012), which emphasizes the advantages of long-term planning 

for flexibility in decision-making, and Butun et al. (2019), who integrated Investment 

Planning models into process integration to estimate investment costs of infrastructure 

demolition at the end-of-life. However, there remains a gap in methodologies tailored to 

transitional pathways that consider uncertainties and changing tax implications related to 

emissions. In this work, we present an approach that leverages stochastic optimization 

addressing uncertainties on markets and future technology costs. This approach facilitates 

the estimation of the most promising transition pathways based on predefined decision 

metrics, filling the gap in existing literature and providing a valuable tool for addressing 

the pressing challenges faced by the industry in the context of climate change mitigation. 

2. Methodology 

As illustrated in Figure 1, the optimization framework comprises two key sections: a 

configuration generation section using multi-period mixed integer linear programing 

(MILP) and a solution ranking section based on selected key performance indicators 

(KPIs) and decision metrics. During the configuration generation stage, a superstructure 

is first established combining the industrial sectors and potential decarbonization options 

with mass and heat integration. This combined superstructure is then solved with a multi-

period MILP formula, leading to an unique configuration featuring a collection of 

decarbonization options that are optimally integrated within the refinery by allowing site-

wide heat flows matching. 

Multiple market conditions, including electricity price and carbon footprint, natural gas 

prices and future technology costs are given as incentives to the MILP formula to 

systematically generate a set of good configurations. In the multi-criterial solution 

ranking stage, key performance indicators for those different configurations are 

calculated considering investment planning constraints, including technology 

construction, resize and decommission. The configurations are then ranked based on the 

pre-defined decision metrics from the most promising to the least preferred under certain 

market conditions. 

 

 
Figure 1. Methodology framework of generating optimal transition pathways. A multi-period 

MILP formula consists of optimization targets (z), continuous variables(x) and binary variables 

(y), as well as inequality and equality constraints (g and h). 
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A systematic method for generating future market scenarios is crucial to produce a diverse 

range of viable configurations. The transition of an industrial sector is propelled by both 

exogenous drivers, such as increasingly stringent environmental regulations, and 

endogenous forces, including decreasing technology and energy costs. In this study, we 

employed a kinetic evolution model to simulate renewable penetration, future energy 

costs and decarbonization targets. This kinetic model, also known as the 'S' curve, has 

been validated by Li et al. (2023) in the field of energy system modeling. As depicted in 

Eq. (1), with the initial and final states predefined, the model is governed by two critical 

parameters: c and k, representing the speed and smoothness of the transition, respectively. 

𝑆[𝑘, 𝑐] =  
1

1+𝑒𝑘(𝑐−𝑡)                                                       (1) 

By adjusting the values of k and c (typically k ranges from 0.1 to 1 and c ranges from 10 

to 30 dependent on the initial and final status), a broad spectrum of market conditions and 

decarbonization targets can be generated. In this stage, the primary focus is not on 

achieving precise market condition predictions. Instead, we make reasonable assumptions 

and apply a wide range of possible market conditions to generate a database consisting of 

a set of viable configurations from which decision-makers can choose. An illustrative 

example of future market conditions is presented in Figure 2. 

 
Figure 2. (a) Electricity cost calculated based on renewable penetration evolution under 

assumptions of final renewable penetration of 90% in 2060 with various k and c values and 

electricity technology costs from IEA; (b) Future costs of AEC, PEM, and SOEC electrolysis 

technologies; (c) Decarbonization targets at different time periods. 

 

An investment planning model was integrated into the multi-period MILP process 

integration formula to generate diverse transition pathways. For a specific configuration 

consisting of a set of units with sizes represented as fu,t at the i-th year, the net present 

values of its investment costs encompass both the cost of acquiring new units (Cinvbuy) 

and the expenses associated with dismantling these units (Cinvrenew) when they reach the 

end of their lifespan for each unit u in U and each time period t in T , where i is the interest 

rate considered for the investment (Eq. (4)). 

𝐶𝑖𝑛𝑣 = ∑ ∑ (𝐶𝑖𝑛𝑣𝑢,𝑡
𝑏𝑢𝑦

+ 𝐶𝑖𝑛𝑣𝑢,𝑡
𝑟𝑒𝑛𝑒𝑤) ∙

1

(1+𝑖)𝑡
𝑈
𝑢=1

𝑇
𝑡=1                              (2) 

Precisely, the investment cost for the initial period is less than 25% of the total investment 

over the entire project's lifespan. 

∑ (𝐶𝑖𝑛𝑣𝑢,1
𝑏𝑢𝑦

+ 𝐶𝑖𝑛𝑣𝑢,1
𝑟𝑒𝑛𝑒𝑤) ∙

1

(1+𝑖)

𝑈
𝑢=1 ≤ 0.25 ∙ 𝐶𝑖𝑛𝑣                             (3) 

Similarly, the net present value of its operating cost (Cop) is calculated in Eq. (4), where 

top is the operating time for each time period t. 

𝐶𝑜𝑝 = ∑ ∑ (𝐶𝑜𝑝𝑢,𝑡 ∙ 𝑡𝑜𝑝 ∙
1

(1+𝑖)𝑡)𝑈
𝑢=1

𝑇
𝑡=1                                       (4) 

The total system emissions (Imp) are quantified by Eq. (5), which calculates the integral 

of emissions over the entire lifespan. 

𝐼𝑚𝑝 = ∑ ∑ (𝐼𝑚𝑝𝑢,𝑡 ∙ 𝑡𝑜𝑝)𝑈
𝑢=1

𝑇
𝑡=1                                           (5) 
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Different solutions are subsequently ranked based on predefined decision metrics, 

assigning distinct weight factors to the KPIs as outlined in Eq. (6). Weight factors are 

defined with realistic requirements. In this work, we assign the values w1 and w2 as 1, and 

designate w3 as the carbon tax factor. This way, different configurations are ranked based 

on their net present value, which accounts for the costs associated with the 

implementation of carbon tax. 

𝑀𝑒𝑡𝑟𝑖𝑐𝑠 = 𝑤1 ∙ 𝐶𝑖𝑛𝑣 + 𝑤2 ∙ 𝐶𝑜𝑝 + 𝑤3 ∙ 𝐼𝑚𝑝                               (6) 

To mitigate the impact of uncertainties, we can take into account a range of potential 

market conditions during the ranking process and select the configuration that exhibits 

the best overall performance across all these conceivable market conditions. 

3. Case study and results 

The methodology was validated with the Blueprint refinery model (Cervo et al. 2020), 

representing the average European refining profile using crude oil as the primary 

feedstock (Figure 3). The use of public resources and databases may limit specificity for 

individual industrial stakeholders. However, the framework is designed to enable 

stakeholders to customize inputs for relevance to their specific requirements. In this 

context, various options were explored for decarbonizing the current refining assets, such 

as energy efficiency approaches, clean hydrogen production, renewable energy feedstock, 

and carbon capture. Each decarbonization option is characterized by its mass balance, 

heat cascade, investment cost, and carbon footprint. Investment cost data is available in 

Li et al. (2023), while carbon footprints are sourced from the Ecoinvent database. Table 

1 provides a summary of the techno-economic assumptions for these decarbonization 

options. 
Table 1. Techno-economic assumptions of the decarbonization technologies considered in the oil 

refinery adapted from Li et al. (2023) 

Decarbonization option Assumptions 

Gas turbine Heat efficiency: 55%; Electrical efficiency: 30%; Investment: 2500 €/kWeq 

Biogas boiler Investment cost: not considered; Biogas price: 5 times of natural gas price 

Hydrogen recycling Investment cost: calculated based on compressor and hydrogen purifiers 

Heat pump Carnot efficiency: 55%; Investment: 500 €/MWeq of heat available. 

Electric heater Investment: 300 €/kWeq 

AEC System efficiency: 60%; Operating at 80 °C; Investment: 1000~500 €/kWeq 
PEM System efficiency: 70%; Operating at 80 °C; Investment: 1500~600 €/kWeq 

SOEC System efficiency: 85%; Operating at 800 °C; Investment: 2000~400 €/kWeq 

Carbon capture (MEA) Capture efficiency: 90%; Heat: 3.8 MJ/ton CO2; Investment: 2 M€/(t/h) CO2 

Carbon capture (Oxy) Capture efficiency: 95%; 226 kWh/ton O2, Investment: 0.6 M€/(t/h) CO2 

CO2 compression Energy demand: 120 kWh/ton CO2; Investment: 3500 €/kWeq 

 
Figure 3. The superstructure of the Blueprint refinery with decarbonization options. 
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Figure 4: Average net present total cost change ratio against average total carbon emissions 

reduction ratio over the lifespan of the refinery, considering a market condition with a final 

renewable penetration of 90%, k = 0.2, and c = 10. Each data point represents a unique 

configuration. Decision metrics is calculated using Eq. (5). 

 

In this study, 200 different energy market conditions (electricity, natural gas prices and 

emission constraints) were applied to generate a diverse range of configurations, resulting 

in a number of unique configurations after sorting and clustering. These unique 

configurations were subsequently ranked based on selected market scenarios and 

predefined decision metrics, which are illustrated in Figure 4. A clear trade-off between 

emission savings and total costs is observed compared to the reference case. The 

assumption of decreasing natural gas and electricity prices results in a significant number 

of configurations exhibiting lower total costs than those observed today. 

The decision metrics identify configuration O as the optimal, with a minimum equivalent 

total cost reduction of 40%. Figure 5(a) provides insights into investment values and their 

distribution among different technologies and periods of configuration O. The optimizer 

prioritizes taking actions in the initial period, activating technologies such as carbon 

capture, hydrogen recycling, and heat pumps. Notably, the heat pump is used to fulfil the 

heat demand for solvent regeneration in the desorption column. These prompt actions 

lead to 50% of emission reductions in refineries. Another substantial investment is 

foreseen around 2050 marked by investments on carbon capture on biogenic emissions to 

meet zero emission target in 2060 as a negative emission solution. This shift is further 

illustrated in Figure 5 (b). In this proposed configuration, preference is given to carbon 

capture technologies. However, it is crucial to acknowledge that carbon capture costs and 

efficiencies can vary significantly based on the emission source in refineries. Neglecting 

considerations in this study for CO2 transportation and storage may result in an 

overestimation of carbon capture potentials. In our analysis, approximately 40% of onsite 

carbon emissions were captured and compressed to 110 bars in 2024. However, the 

downstream treatment could be deemed unrealistic today due to limited infrastructure for 

utilization and storage. This aspect should be approached with further careful 

consideration.  

When considering a faster transition (higher k value) of renewable penetration, 

configuration P emerges as the better option. Instead of relying on carbon capture, 

electrification is predominantly observed through green hydrogen production and electric 

heaters. Solid Oxide Electrolysis Cell (SOEC) outperforms Alkaline Electrolysis Cell 

(AEC) and Proton Exchange Membrane (PEM) due to its high efficiency and capability 

to utilize waste heat in refineries for steam generation. With a further decrease in 

electricity prices and carbon footprints, oxyfuel combustion starts to be applied. However, 

as a negative emission solution, carbon capture on biogenic emissions continues to 

dominate post-2050 to offset onsite emissions, achieving zero emission targets in 2060. 
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Figure 5: Share of (a) investment of different technologies and (b) natural gas, biogas and 

electricity imports at different time periods of configuration O 

 

Figure 6: Share of (a) investment of different technologies and (b) natural gas, biogas and 

electricity imports at different time periods of configuration P 

4. Conclusions 

In this study, we have developed a robust methodology for evaluating investment 

strategies in the industrial sector, specifically focusing on the generation and selection of 

optimal transition pathways. This method has been applied successfully to an oil refinery 

case study, where investment strategies were generated and pathways leading to the 

minimization of predefined decision metrics under the given hypotheses were determined 

and analyzed. In comparison to the base case scenario in 2023, the identified pathways 

prioritized initial investments in carbon capture or electrification technologies according 

to the selected energy markets assumptions and decision metrics, resulting in a net 

emission reduction over the entire lifespan of the refinery. Our future work involves more 

realistic considerations about heat integration constraints than can be encountered in real 

industrial assets along with completing the superstructure for refinery decarbonization. 
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Abstract 

H2 production via steam methane reforming is a mature and cost-effective technology. 

However, carbon capture and storage is required to decrease its CO2 emissions. The 

adoption of molten carbonate fuel cells as means to capture CO2 from flue gases is 

attracting scientific interest thanks to their inherent thermodynamic advantage of 

separating CO2 while producing electricity. This study investigates and benchmarks the 

performance of an H2 production plant equipped with molten carbonate fuel cell for post-

combustion CO2 capture, by proposing a novel configuration where the cell anode is fed 

with the carbon-rich off-gas from the H2 separation unit. It emerges that the process can 

achieve higher capture rates than the reference solvent-based plant: 85-90 % with single 

cell, 95 % with two-stage cell. Moreover, recycling the carbon-rich off gas to the anode 

allows for smaller cell area, and potentially lower H2 production costs compared to the 

benchmark. 

Keywords: Steam methane reformer, Molten carbonate fuel cell, Carbon dioxide capture, 

Process simulation, Techno-economic modelling. 

1. Introduction 

H2 is expected to become a key player in the decarbonisation challenge (van der Spek et 

al., 2022). The production of H2 from fossil fuels with CO2 capture is key to enable large 

scale production and will be complementary to electrolysis till the electric grid is 

decarbonised, provided that CO2 capture is performed according to state-of-the-art and 
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CH4 fugitive losses are minimised (Bauer et al., 2022; Pettersen et al., 2022). This work 

focusses on H2 production from steam methane reforming (SMR) of natural gas (NG), 

which is a mature and cost-effective technology (IEAGHG, 2017), coupled with molten 

carbonate fuel cell (MCFC) for post-combustion CO2 capture.  

In the literature, post-combustion CO2 capture processes based on MCFC for H2 plants 

and other emitters consider NG as fuel for the fuel cell (Consonni et al., 2021). This study 

proposes a novel configuration (d’Amore et al., 2023), which exploits part of the off-gas 

from H2 purification unit as fuel to the MCFC, instead of NG. This configuration keeps a 

carbon-richer fuel on the MCFC anode side and reduces the flow rate of CO2 in the SMR 

to be separated by the MCFC (thus, its area) for a given CO2 capture rate, with significant 

beneficial effects in the overall techno-economic performance. Building upon the 

performance of the novel off-gas feed configuration, it is also assessed how a multi-stage 

cell configuration with inter-cooling would further improve the process (Spinelli et al., 

2014), as it helps decreasing the air dilution at the MCFC cathode inlet and enhances the 

CO2 separation efficiency.  

2. Methodology 

The plants were modelled and simulated in Aspen Plus software by using the Peng-

Robinson equation of state, according to the technical assumptions summarised in 

d’Amore et al. (2023) (Table 1). All chemical reactors were simulated at chemical 

equilibrium, while the MCFC performance is described through a 0-D model of the 

polarisation curve taken from Barckholtz et al. (2022). 

 

The reference standalone SMR without CO2 capture is designed to produce 

100,000 Nm3/h of H2 (299.5 MWLHV), comprising high temperature water-gas shift 

(WGS), pressure swing adsorption (PSA), steam cycle (set at 485 °C at 100 bar), and low 

pressure (LP) steam export (at 6 bar) (Figure 1a). This plant is characterised by an NG-

to-H2 efficiency of 73.5 % and specific CO2 emissions of 9.29 kg of CO2/kg of H2, being 

the net electric and thermal power outputs equal to 10.4 MWel and 23.2 MWth, 

respectively. The SMR with post-combustion CO2 capture with monoethanolamine 

(MEA) is designed for a CO2 capture rate of 90 % and a specific heat demand of 3.57 

MJth/kg of captured CO2 (Figure 1b). This plant is considered as benchmark case for 

performance and costs comparison with MCFC-based CO2 capture. 

 
Table 1. Summary of the main input data. 

Plant Component Parameter Value Unit 

SMR Pre-reformer Steam-to-carbon 3.4 mol/mol 

 Reformer Outlet temperature 890 °C 

 PSA H2 recovery 90 % 

 LP steam Pressure 6 bar 

 HP steam Pressure/temperature 100/485 bar/°C 

MEA CO2 separation Efficiency 90 % 

 CO2 separation Reboiler duty 3.57 GJ/t CO2 

MCFC Cathode Inlet temperature 575 °C 

 Cathode Outlet temperature 645 °C 

 Cathode CO2 outlet concentration 1 %mol 

 Pre-reformer Inlet temperature 600 °C 

 Pre-reformer Steam-to-carbon 2.1 mol/mol 

 Anode Inlet temperature 600 °C 

 Anode Outlet temperature 645 °C 
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In the NG-based MCFC (i.e., NGF plant) the SMR flue gases are sent to the MCFC 

cathode for CO2 separation. A CO2 lean stream is produced at the cathode residue and 

emitted to the atmosphere (Figure 1c). The MCFC anode is fed with pre-reformed NG. 

The anode residue is sent to a WGS converter. The shifted syngas stream is sent to the 

low-temperature phase-change purification unit (CPU) to produce a high-purity CO2 

stream and a flow rate that is recycled to the PSA unit downstream the SMR. Differently, 

in the off-gas-based MCFC (i.e., OGF plant) the MCFC anode is fed with PSA off-gas 

(Figure 1d). This configuration keeps the carbon-rich fuel on the MCFC anode side and 

reduces the flow rate of CO2 in the SMR to be separated by the MCFC (therefore, its area) 

for a given overall CO2 capture rate. An additional case (i.e., OGF-2) involves the 

adoption of two cells in series with inter-cooling to decrease the air dilution at the cathode 

inlet and enhance the CO2 separation efficiency for a given cell potential. 

 

 
Figure 1. Simplified plant schemes: (a) SMR, (b) SMR with MEA, (c) NGF, and (d) OGF. 

3. Results 

Even though MCFC-based plants consume more NG with respect to the standalone SMR 

(between +8 % and +26 %), they also generate a larger low-carbon electricity output 

(Table 2). Plus, MCFC-based OGF and OGF-2 cases show a better performance 

compared to MEA solvent-based capture system in a wide range of NG and electricity 

prices. OGF appears superior to NGF, being the former characterised by higher carbon 

capture rate (90 % against 85 %), higher H2 production efficiency (68 % against 59 %), 

lower specific energy consumption per unit of CO2 avoided (0.5 against 1.1 MJ/kg of 

CO2), and a significantly lower cell area (-43 %). This is due to the higher carbon intensity 

of the off-gas feed to the OGF cell anode, compared to the NG exploited in the NGF case, 

which allows reducing the flow rate of CO2 to be separated by the MCFC for a given CO2 

capture rate. OGF-2 is a particularly competitive configuration, as it can achieve 95 % 

carbon capture rate with a smaller cell area than OGF (-19 %). This is due to the inter-

cooling between cells, which allows reducing the CO2 dilution resulting from the excess 

air to be mixed with the flue gas to control the MCFC temperature. 
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Table 2. Technical performance results. 

 SMR MEA NGF OGF OGF-2 

Cell 1 potential [V] - - 0.70 0.70 0.65 

Cell 2 potential [V] - - - - 0.60 

Util. factor [%] - - 75.0 % 75.0 % 70.0 % 

CO2 util. factor [%] - - 81.7 % 77.5 % 87.1 % 

Total cell area [m2] - - 73123 41615 23605 

NG plant inlet [MWLHV] 407.3 407.3 512.4 442.2 439.4 

PSA off-gas [MWLHV] 97.1 97.1 90.8 95.0 94.6 

Electricity outlet [MWel] 10.4 -12.8 59.1 22.1 19.8 

Steam outlet [MWth] 23.2 0.0 21.5 24.6 26.2 

Spec. emis. [kgCO2/kgH2] 9.29 0.93 1.75 0.98 0.50 

H2 prod. eff. [%] 73.5 % 73.5 % 58.5 % 67.7 % 68.2 % 

Carbon capt. Rate [%] 0.0 % 90.0 % 85.0 % 90.3 % 95.0 % 

The economic analysis is based on the assumptions reported in d’Amore et al. (2023). 

The plants have equivalent operating hours of 8400 h/year, being the electricity and 

natural gas prices equal to 60 €/MWh and 6 €/GJ, respectively. The results show that 

OGF and OGF-2 plants exhibit H2 production costs (1.9-2.2 €/kg of H2) that are lower 

than NGF (2.3-2.6 €/kg of H2) and than SMR with conventional post-combustion CO2 

capture (2.2-2.3 €/kg of H2). The sensitivity analyses on key economic parameters (e.g., 

carbon tax, NG cost, electricity price) did not affect the main outcome, i.e., the good 

economic performance of OGF and OGF-2 (d’Amore et al., 2023). Contrary to the NGF 

case, the OGF one (and especially the 2-stage configuration) emerges as cost competitive 

with conventional solvent-based post-combustion capture in the entire range of values 

explored in the sensitivities. 

4. Conclusions 

This study highlights the potential of molten carbonate fuel cells (MCFCs) as post-

combustion CO2 capture systems in blue H2 plants, if fed with off-gas from H2 

purification unit as fuel. The resulting CO2 capture rate is found equal to 90 % for the 

single cell configuration and equal to 95 % for the multi-stage cell configuration, against 

85 % in the case of natural gas-based anode feed. H2 production costs are in the range of 

1.9-2.2 €/kg of H2, therefore lower than a traditional natural gas anode feed (2.3-2.6 €/kg 

H2), and competitive with solvent-based post-combustion capture (2.2-2.3 €/kg of H2). 
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Abstract 

Climate change mitigation requires a dramatic reduction of greenhouse gas emissions 

across all sectors, including hard-to-abate industries. Hard-to-abate emissions from 

industry can be avoided by CO2 capture, transport, and storage (CCTS), where CO2 is 

transported from capture plants to permanent storage sites. However, no CCTS 

infrastructure is currently deployed in Europe. Therefore, the transition towards a large-

scale CCTS infrastructure needs to be properly planned and implemented. Within this 

context, external factors play a role in the deployment of CCTS supply chains and lead to 

large uncertainty due to little operational experience for such systems. Here, we 

investigate the rollout of a Swiss CCTS infrastructure to achieve a net-zero emissions 

Swiss industry and connect Swiss emitters to a European CCTS infrastructure. We 

address uncertainty and real-world constraints regarding the rollout of CCTS 

infrastructure via scenario analysis. Under most scenarios, Swiss CO2 sequestration 

targets can be reached, although costs may increase by up to 25%. The delay or limitation 

of available storage capacity, however, can undermine the sequestration targets.  

Keywords: Carbon capture and storage, CO2 supply chains, hard-to-abate industries, net-

zero emissions, CO2 infrastructure, decarbonization. 

Introduction 

Strategies to reach national and international climate targets not only demand drastic 

reductions in greenhouse gas emissions (IPCC, 2022) but also increasingly include carbon 

capture and storage, as well as carbon dioxide removal for reaching net-zero emission 

goals (Bundesamt für Energie, 2021). Capturing and storing CO2 is a viable option to 

reduce hard-to-abate emissions in the industrial sector, such as cement or waste 

incineration plants (Paltsev, 2021). However, no infrastructure for CO2 capture, transport, 

and storage (CCTS) currently exists in Europe. The transition towards the scale of CCTS 

required for net-zero emission targets requires fast deployment of large infrastructure 

systems (IRENA, 2021). This study investigates the cost-optimal rollout of a CCTS 

supply chain network for Switzerland connected to European CCTS transport routes. 
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Methods 

A linear programming model determines the time-dependent installation and operation of 

the CCTS infrastructure for Switzerland. More specifically, the optimization model 

returns the type, location, and size of CO2 capture, conditioning, and transport 

technologies, as well as the locations for permanent storage. Furthermore, the input and 

output streams of technologies, including the CO2 flow for the installed transport 

connections are determined. The model minimizes the total annualized costs of the system 

while complying with annual CO2 emissions targets and real-world constraints resulting 

from limitations due to political, societal, or implementation externalities.  

The input data to the optimization problem are: (i) current locations and CO2 emissions 

of Swiss emitters, (ii) location and capacity of CO2 storage sites, (iii) efficiency, CO2 

footprint, and investment and operating costs of capture, storage, and transport 

technologies, (iv) availability of transport technologies between nodes, (v) price and 

region-specific carbon-intensity of electricity, and (vi) emissions reduction targets for 

industrial CO2 emissions. As Switzerland has no large-scale domestic storage and no 

direct access to the sea, it will require exporting CO2 through its neighboring countries. 

In the model, export takes place in Basel where the Swiss infrastructure is assumed to be 

connected to a European transport route going towards the North Sea. The input data used 

in the optimization is based on Becattini et al. (2022) and Gabrielli et al. (2022). The 

constraints of the optimization problem include (i) energy and mass balances, (ii) 

performance behavior and operating limits of the capture, conditioning, and transport 

technologies, and (iii) CO2 emissions limits. 

In addition to techno-economic constraints, we include real-world constraints. Although 

real-world constraints are often neglected, they have a large influence on the deployment 

speed or even lead to the cancellation of projects (Russel and Bleiker, 2015). The real-

world constraints are included as inputs and represent the expectation of how fast a CCTS 

infrastructure within Switzerland and abroad may develop. The limitations are based on 

public statements of stakeholders as well as communication with the industry. As the real-

world constraints are uncertain, a scenario analysis is used to assess their effect on the 

Swiss CCTS infrastructure rollout.  

The optimization is carried out for the time horizon from 2025 to 2050 and uses a yearly 

time resolution. We perform a scenario analysis, to investigate the variability in the speed 

of infrastructure rollout and its effect on the CCTS system. A reference scenario is defined 

which represents the expected future availability of capture, transport, and storage 

technologies and their capacities. The reference scenario is the midpoint in the range 

determined for the real-world constraints. From the reference scenario, additional 

scenarios are derived which differ in the years when CO2 capture units, pipelines, or 

storage sites become available. Furthermore, several unfavorable external conditions are 

analyzed, namely the lack of foreign pipelines for Swiss emitters to connect to, limited 

navigability of the Rhine River, unavailability of domestic storage, and an unforeseen 

shutdown of the closest foreign storage sites.  

The cost-optimal infrastructure designs are compared for all scenarios to identify (i) 

robust design decisions taken across a variety of scenarios and (ii) critical parameters 

jeopardizing the CCTS rollout.   

Results 

We identify feasible CCTS network designs for 10 out of the 11 analyzed scenarios with 

a total cost range of ±25% compared to the reference scenario. The biggest cost reductions 
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result from the earlier availability of storage capacity. Compared to the reference 

scenario, earlier storage availability enables shorter overall transport distances because 

more storage capacity exists close to Switzerland. Additionally, in this scenario, the Swiss 

storage site is assumed to become available earlier than in the reference scenario. 

Significant cost savings are realized when a considerable share of the total CO2 can be 

stored domestically.  

The second largest cost savings are achieved if pipelines can be installed earlier than in 

the reference scenario. Pipelines are the best mode of transport in an environmental and 

economic sense (Becattini et al., 2022; Gabrielli et al., 2022). Installing them early 

reduces the costs and emissions of the CCTS infrastructure, leading to a more efficient 

and smaller CCTS system to achieve the same CO2 sequestration targets. The time when 

pipelines become available is thus a large driver for cost savings. The planning and 

construction of large pipelines are complex and require coordination among different 

stakeholders. The process must be initiated immediately to realize potential cost savings. 

The only case where the optimization does not produce a feasible result is the scenario 

where storage site development is delayed, and the storage capacity is limited to a 

maximum of 5.8 MtCO2/y compared to 14.3 MtCO2/y in the reference scenario. The 

availability of CO2 storage, both in time and capacity, has the largest effect on the results. 

On the one hand, early availability of storage capacity enables cost reductions in the long 

term. On the other hand, failure to secure access to CO2 storage may cause Switzerland 

to overshoot its long-term decarbonization targets. As CO2 storage projects are 

continuously being announced and developed further (Global CCS Institute, 2022), the 

availability of storage capacity may depend more on long-term contracts with storage 

providers and less on the overall availability of injection capacity. 

Out of the analyzed parameters, the availability of storage capacity bears the greatest cost-

saving opportunity but also the greatest risk for jeopardizing a successful CCTS rollout. 

Therefore, a Swiss CCTS system designed to meet federal sequestration targets 

(Bundesamt für Energie BFE, 2021) must ensure the availability of storage capacity. 

Furthermore, coordinated efforts to construct a pipeline infrastructure must be initiated to 

enable timely availability of cost- and emission-optimal CO2 transport. 
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Abstract 

Superstructure optimization is suitable for identifying optimal raw materials and process 

pathways for the production of sustainable aviation fuels (SAFs). Mass and energy 

balances for the individual processes of the superstructure network are often represented 

by linear input-output relationships between the feedstocks and products, neglecting 

nonlinear effects. By embedding surrogates in the form of artificial neural networks 

(ANNs) within our optimization framework, we achieve a more detailed representation 

of individual processes. Combined with an adjusted superstructure optimization 

formulation explicitly including mixtures, we are able to determine not only the optimal 

process routes but also optimal process parameters (e.g., temperature, pressure) as well 

as the optimal aviation fuel composition. 

 

Keywords: Sustainable Aviation Fuel, Superstructure Optimization, Surrogate 

Modeling, Artificial Neural Networks. 

1. Introduction 

In 2019, the aviation sector emitted over 900 million tons of CO2-eq, contributing around 

10-% of transportation-related greenhouse gases (Vardon et al., 2022). Consequently, the 

global goal of achieving net zero emissions by 2050 necessitates the defossilization of air 

transport. Whilst H2-powered and battery-driven aircrafts may present viable options at 

small scale and for niche applications, it is expected that long-chain liquid SAFs are 

crucial at large scale (Freire Ordóñez et al., 2022). Identifying economically viable SAF  

production pathways in which carbon, hydrogen, oxygen, heat, and electricity are sourced 

and managed to meet environmental requirements, presents a challenge to the engineering 

community. Potential system configurations are numerous and difficult to investigate. 

Various alternatives, such as biomass pathways or captured CO2 combined with water 
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electrolysis for syngas production, as well as methanol or Fischer-Tropsch (FT) liquids 

as intermediates, are possible options and need to be compared systematically. 

2. Superstructure optimization approach 

Superstructure optimization is frequently employed to determine optimal designs of 

complex process networks. For this reason, we have set up a SAF production 

superstructure that includes processes such as biomass gasification, direct air capture 

(DAC), various electrolysis technologies, autothermal reforming of methane, a reverse 

water-gas shift process, an acid gas removal plant, CO2 sequestration, a Fischer-Tropsch 

process and processes for the production of long-chain hydrocarbons based on methanol. 

A common problem with conventional superstructure optimization formulations is that 

they typically consider only pure components (Gonzalez-Garay et al., 2022). Since 

aviation fuels are mixtures of hydrocarbons, we have developed an adapted formulation 

that allows mixture compositions to be represented and optimized. 

In order to optimize mixture compositions, we model all processes within the SAF 

superstructure by the general process representation shown in Figure 1. A general process 

𝑗 is modeled as a black box, which can have several inlet ports 𝑖 and several outlet ports 

𝑜, allowing operations such as mixing and separating to be included directly. Through the 

corresponding ports, total mass flows 𝑀̇ can enter or leave the process 𝑗, whereby mass 

conservation is always satisfied. Total mass flows between the outlet and inlet ports of 

the various alternatives within the superstructure are used to interconnect all individual 

processes (e.g., 𝑀̇j1,o1,𝑗,2). In addition, mass flows can enter the process from outside or 

leave the process across the system boundaries, which is modeled accordingly by 𝑀̇src 

and 𝑀̇sink. 𝑄̇ and 𝑊̇ describe heat and work (electricity) flows that either leave or enter 

process 𝑗 depending on their sign. By adding decision variables for mass fractions 𝑤𝛼 for 

all system components 𝛼 in each mass flow, component mixtures can be modeled. Partial 

mass balances of the form 

 

Figure 1: General process representation within superstructure to optimize total mass flows 𝑀̇ as 

well as component mass fractions 𝑤𝛼. 
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𝑤𝛼,(𝑗,𝑖)
in 𝑀̇(𝑗,𝑖)

in = ∑ 𝑤𝛼,(𝑗̃,𝑜,𝑗,𝑖)𝑀̇(𝑗̃,𝑜,𝑗,𝑖) + ∑ 𝑀̇𝛼,(𝑗,𝑖)
src              ∀(𝑗, 𝑖)

𝛼(𝑗̃,𝑜):(𝑗̃,𝑜,𝑗,𝑖)

, 𝛼, (1) 

𝑤𝛼,(𝑗,𝑜)
out 𝑀̇(𝑗,𝑜)

out = ∑ 𝑤𝛼,(𝑗,𝑜,𝑗̃,𝑖)𝑀̇(𝑗,𝑜,𝑗̃,𝑖) + 𝑤𝛼,(𝑗,𝑜)
sink 𝑀̇(𝑗,𝑜)

sink

(𝑗̃,𝑖):(𝑗,𝑜,𝑗̃,𝑖)

        ∀(𝑗, 𝑜), 𝛼, (2) 

are introduced as equality constraints in the optimization problem in order to describe the 

connection between the total mass flows and their composition. This formulation allows 

to consider sustainable aviation fuels composed of hydrocarbons of different chain length 

and structure. It comes at the expense of quadratic terms in the constraints of the 

superstructure optimization problem. Together with binary variables for discrete 

decisions on the installation of processes within the superstructure, the product of mass 

fraction and mass flow leads to a mixed-integer quadratically constrained programming 

(MIQCP) formulation. It can be solved to global optimality using state-of-the-art solvers 

such as Gurobi (Gurobi Optimization, 2023). 

3. Artificial neural networks as process surrogates 

Another simplification often made in superstructure optimization is that chemical 

conversions are modeled by linear relationships between raw materials and products, 

neglecting real non-linear effects. Within such a framework, the operating conditions 

including temperature, pressure, and conversion of the processes encompassed by the 

superstructure are fixed in advance and thus cannot be simultaneously optimized 

(Demirhan et al., 2021; Gonzalez-Garay et al., 2022; Niziolek et al., 2017). 

This work enhances traditional superstructure optimization by embedding surrogate 

models in the form of ANNs into the optimization formulation (Fahmi and Cremaschi, 

2012; Henao and Maravelias, 2011). As shown in Figure 2, these ANNs are trained on 

data generated from Aspen Plus® simulations, correlating component outlet 

concentrations, electricity, and heat requirements with total mass inflow, inlet 

concentrations, and reaction conditions of individual processes (Aspen Technology Inc, 

2023). For the integration of ANNs, we leverage the Python package OMLT, which 

facilitates the embedding of machine learning surrogates into Pyomo-implemented 

optimization problems (Bynum et al., 2021; Ceccon et al., 2022). The main advantage of 

this approach is that the input-output relationships of the ANNs can be represented as 

mixed-integer linear constraints through the use of ReLU activation functions, allowing 

the solution of highly nonlinear mass and energy balances while maintaining an MIQCP 

 

Figure 2: General illustration of the applied methodology, extending superstructure optimization 

by embedded neural networks and mixture modeling. 

254



   

 

formulation (Grimstad and Andersson, 2019). 

For example, we have trained and embedded an ANN that predicts the relationship 

between reaction temperature, pressure, inlet syngas composition and the distribution of 

outlet mass fractions for n-alkanes from the FT process (Hamelinck et al., 2004). The FT-

ANN, which consists of one hidden ReLU layer with 100 neurons in it, enables a very 

accurate representation of the outlet mass fraction distribution, but also of the work and 

heat requirements with an overall 𝑅2 value of 0.99993. Within the superstructure 

optimization problem, the outlet concentrations of hydrocarbons of different chain 

lengths can then be calculated as  

                              𝑤C11H24,FT,1
out = 𝑓FT

ANN(𝑀̇FT,1
in , 𝑇FT, 𝑝FT , 𝑤H2,FT,1

in ), (3) 

where 𝑤c11H24
 exemplifies the mass fraction of n-undecane. Figure 3 illustrates the 

flexibility of our formulation. We can target the desired kerosene-hydrocarbon fraction 

in the FT output by optimizing within the constraints on required physical properties. 

Modeling the hydrocarbons of different chain length and structure as components 𝛼 of 

our superstructure provides more detailed information about the SAF composition 

depending on the selected process route and feedstocks.  

4. Conclusions 

Different feedstocks such as biomass, CO2, air and water can be used to produce SAFs 

via different process routes (e.g., FT pathway, methanol pathway). In order to design 

optimal SAF production systems, we utilize superstructure optimization and overcome 

 

Figure 3: Optimized Anderson-Schulz-Flory (ASF) distribution for C1-C30 n-alkanes calculated via 

ReLU-ANN as output of the FT process depending on reaction temperature, pressure and syngas 

composition within the superstructure optimization for different targeted hydrocarbon fractions. 

 

 

𝑇∗ = 300 °C 
𝑝∗ = 30 bar 
H2: CO∗ = 3.31 

𝑇∗ = 235.7 °C 
𝑝∗ = 37.6 bar 
H2: CO∗ = 1.73 

𝑇∗ = 226.2 °C 
𝑝∗ = 55 bar 
H2: CO∗ = 1.73 
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some of its classical simplifications. By incorporating decision variables for component 

concentrations in all network flows, the resulting process network designs yield mixtures 

of hydrocarbons which meet the stringent physical property requirements for SAFs in 

terms of specific energy, freezing point, viscosity, etc. Important processes are replaced 

by ANNs representing non-linear relationships between process parameters and inlet and 

outlet concentrations. As a result, we obtain Pareto-optimal process configurations that 

enable optimal SAF production with respect to competing objective functions, such as 

CO2 emissions vs. cost. Our preliminary results indicate that the use of biomass-based 

routes provides the best trade-off between specific costs and CO2 emissions. Under 

limited availability of biomass, syngas is additionally produced via electrolysis combined 

with DAC, leading to significantly higher specific aviation fuel costs with a similar CO2 

footprint.  
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Abstract  

The production of aluminium largely depends on the use of fossil fuels, resulting in the 

emission of significant amounts of greenhouse gases. As the aluminium industry is 

working towards decreasing its environmental burdens, the elimination of direct 

emissions from the remelting step becomes increasingly important. This research presents 

opportunities for decarbonizing secondary aluminium remelting and rolling via optimized 

carbon capture and abatement routes. Various carbon capture and management strategies 

for secondary aluminium production sites are developed and evaluated. To this end, 

process integration and optimization techniques following a mixed integer linear 

programming (MILP) approach are applied. A blueprint of an aluminium plant is 

developed, and the integration of several carbon capture and management technologies is 

modelled. The studied capture options include oxy-combustion, amine-based absorption, 

membranes, structured solid sorbents, and cryogenic beds. Once captured, the 

concentrated CO2 gas stream can be pressurized for pipeline transport or injection, 

transformed into synthetic natural gas, mineralized into cement additives, or used to 

produce plastic monomers. A systemic approach was adopted to compare these options 

in terms of multiple performance indicators. It was found that, up to 80% of the emitted 

CO2 can be efficiently captured and utilized. Moreover, additional revenue from 

mineralized CO2, olefins, or synthetic natural gas results in a net negative change in 

operating expenditures of the plant with comparison to continuously emitting the base 

flows of fossil CO2. Methanation provides a potential defossilization route when coupled 

with the use of renewable electricity at the expense of high capital expenditure due to the 

size of the electrolyzer needed. All these capture and utilization systems are almost three 

times cheaper than importing green hydrogen for use in aluminium furnaces, a potential 

solution still under experimental validation in the aluminium sector. 

 

Keywords: Aluminium, Decarbonization, Carbon capture, Cost, Emissions. 
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1. Introduction 

In 2021, the aluminium sector reported a footprint of around 1.17 billion tonnes of CO2 

equivalent, i.e., 2% of global industrial emissions (IAI 2023). Many industries are reliant 

on the use of aluminium, including but not limited to, aerospace, automotive, beverage 

can, construction, and renewable energy systems such as solar panels and wind turbines. 

Secondary aluminium production involves remelting a mixture of scrap and pure 

aluminium and then rolling it into sheets. This process requires furnaces operating at high 

temperatures of over 1000°C, the majority of which use fossil based natural gas. While 

direct electrification could readily provide decarbonization solutions for lower 

temperature systems; the use of combustible fuels for aluminium remelting furnaces 

remains the only technically viable solution at large scales. To this end, burning hydrogen 

fuel is also possible.  However, the effect of higher flame temperatures and increased 

water vapor concentration on product quality are yet to be determined. Hence, a crucial 

consideration in the industry’s current decarbonization plans is the management strategy 

of CO2 emissions from burning fossil or synthetic natural gas (SNG). Among the 

technological solutions for capturing CO2 are oxy-combustion furnaces, conventional 

amine-based absorption systems, novel membrane units, structured solid sorbents such as 

metal organic frameworks (MOFs), and cryogenic routes (Zanco et al. 2021). Captured 

CO2 can then be used to manufacture fuels (SNG) or materials (e.g., plastics), mineralized 

to produce cement additives (such as CaCO3), or stored in geological formations. Figure 

1 presents a graphical illustration of the different alternatives considered in this work. 

These scenarios were defined by combining multiple capture and utilization technologies 

of interest to the aluminium industry, resulting in more than 20 feasible configurations. 

Such analysis calls for a systemic study to evaluate competing technologies based on 

multiple performance indicators. In this study, a CO2 capture and management strategy is 

devised for a secondary aluminium production facility, while capitalizing on potential 

waste heat recovery and system integration opportunities.   

 
Figure 1: Potential CCUS routes for decarbonizing secondary aluminium production. 

2. Methods 

An optimization problem for an operating aluminium facility is developed based on 

minimal incremental costs. Key performance indicators are defined to compare the 

solutions in terms of thermodynamic, economic, and environmental impact aspects.  

2.1. Aluminium process modelling and description of CCUS systems 

Figure 2 illustrates a process flowsheet of the secondary aluminium production facility 

and the CCUS technologies being evaluated. First, pure aluminium is preheated to 250°C. 
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Subsequently, both pure and scrap aluminium are fed into the melting furnace where they 

undergo fusion at 660°C, and are superheated to roughly 750°C. Next, the molten 

aluminium is fed into the direct cast chilling process through the holding furnaces where 

it solidifies into cast ingots using water as the cooling medium. The ingots are then surface 

polished in the scalper, annealed at 550°C in pusher furnaces, and rolled into thin sheets. 

The final treatment step occurs in the annealing continuous line (ACL) where the coils 

are chemically and thermally treated at approximately 550°C. All plant furnaces emit flue 

gases containing CO2, that can be captured and utilized using different technologies. 

Chemical absorption using amine solvents is one option and consumes 3.6 MJsteam/kgCO2 

(Flórez-Orrego et al. 2020). Alternatively, temperature-swing adsorption beds filled with 

metal organic frameworks (MOFs) can reduce steam consumption down to 0.8 

MJsteam/kgCO2 (Lin et al. 2021). Other capture technologies relying on electricity, such as 

cryogenic separation and membranes, consume 1, and 0.4 kWhEE/kg CO2 respectively 

(Song et al. 2019; Janakiram et al. 2021). In case of oxycombustion, 0.3 kWhEE/kgO2 for 

air separation is needed (Nascimento Silva, Flórez-Orrego, and De Oliveira Junior 2019). 

 

Figure 2: Secondary aluminium production facility and CCUS alternatives. 

2.2. Optimization problem definition 

Osmose Lua platform developed in the IPESE group at EPFL (Yoo et al. 2015) is used to 

handle the MILP formulation that minimizes the total cost subject to feasibility 

constraints, shown in equations (1-6). OSMOSE uses solvers supported by ampl® such 

as CPLEX or CBC. In this study, the size of the MILPs varied depending on the system 

configuration from 15 to 35 thousand variables subject to 13 to 34 thousand constraints.  

𝑚𝑖𝑛 𝐶𝑜𝑠𝑡𝑡𝑜𝑡 =  ∑ [∑ (𝐶𝑜𝑝1𝑢 ∙ 𝑌𝑢,𝑡 + 𝐶𝑜𝑝2𝑢 ∙ 𝑀𝑢,𝑡) ∙ ∆𝑡 + 𝐶𝑖𝑛𝑣1𝑢 ∙ 𝑌𝑢 + 𝐶𝑖𝑛𝑣2𝑢 ∙ 𝑀𝑢 𝑡∈𝑇𝑖𝑚𝑒 ]𝑢∈𝑈𝑛𝑖𝑡𝑠            (1) 
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∑ 𝑀𝑤 ∙ 𝑞𝑤,𝑟
𝑁𝑤
𝑤=1 + ∑ 𝑄𝑖,𝑟

𝑁
𝑖=1 + 𝑅𝑟+1 −  𝑅𝑟 = 0      ;  ∀ 𝑟 = 1 … . . 𝑁                                                                 (2) 

∑ 𝑀𝑤 ∙ 𝑊𝑤
𝑁𝑤
𝑤=1 +  ∑ 𝑊𝑛𝑒𝑡𝑢∈𝑈𝑛𝑖𝑡𝑠 + 𝑊𝑖𝑚𝑝 −  𝑊𝑒𝑥𝑝 = 0                                                                                   (3) 

𝑌𝑢,𝑡 ∙ 𝐹𝑚𝑖𝑛𝑢  ≤  𝑀𝑢,𝑡  ≤  𝑌𝑢,𝑡 ∙ 𝐹𝑚𝑎𝑥𝑢         ; ∀𝑢 ∈ 𝑈𝑛𝑖𝑡𝑠,   ∀𝑡 ∈ 𝑇𝑖𝑚𝑒                                                      (4) 

𝑅1 = 0, 𝑅𝑁+1 = 0, 𝑅𝑟 ≥ 0      ;   𝑊𝑖𝑚𝑝  ≥ 0, 𝑊𝑒𝑥𝑝  ≥ 0                                                                                      (5) 

Assumed energy prices are: natural gas: 0.07 €/kWh; H2: 7 €/kg; electricity: 0.15€/kWh 

(Jan/Feb/Nov/Dec), 0.001€/kWh (other months); and CO2 tax:120 €/t. Cop1&2 are the 

fixed and variable operating cost, Cinv1&2 are those of investment cost, qw is the heat 

load of unit w, R is the heat cascaded from interval r+1 to r, and W is the power import 

or export. Binary 𝑌𝑢,𝑡 and load factor 𝑀𝑢 define the existence and size of the utility units. 

3. Results and Discussion 

Figure 3 presents a high-level summary for the CCUS options under evaluation, and a 

reference hydrogen case study for comparison. Results indicate that the injection route 

exhibits the lowest increase in energy load compared to the base case due to the CO2 

compression. This is followed by importing hydrogen from the grid as no capture or 

utilization energy penalty is incurred. Cryogenic and oxyfuel CO2 capture methods for 

injection have a higher energy load than some mineralization pathways due to the larger 

electricity penalty required for both technologies. Injection is followed by mineralization, 

which involves electricity consumption for the pretreatment of the mineral ores. The 

highest energy loads are observed for methanation followed by olefins production 

because of the electricity required for producing green hydrogen via electrolysis. 

 
Figure 3: Key performance indicators of competing CCUS options.  

Renewability percentage directly reflects the defossilization of aluminium production. 

The scenario assuming green hydrogen is available in the grid results in the highest 

renewability of 92 %. This is followed by onsite utilization of captured CO2 for natural 

gas production using a Swiss electricity mix, which is 77 % renewable. Next is olefins 

production at approximately 56 %, where the captured CO2 and hydrogen from 

electrolysis are transformed into olefins with a fuel gas byproduct. Finally, injection and 

mineralization routes still heavily rely on fossil natural gas import resulting in the lowest 

renewability index. Introducing gasification or importing bio-SNG from the grid to these 

latter scenarios would substantially increase their renewability indices and result in 

negative overall CO2 emissions.  
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In terms of capture efficiency, almost all routes achieve an 80% reduction in direct CO2 

emissions of the plant. This is lower than efficiencies typically reported for the evaluated 

capture technologies because of some losses occurring from the plant furnaces during 

aluminium loading. The capture efficiency of the olefins and methane production routes 

is slightly lower due to the need for optimized storage systems to supply the plant fuel 

demands and contain emitted CO2. An important consideration to account for when 

utilizing electricity grids are the indirect emissions resulting from that electricity. For 

some scenarios indirect emissions reach up to 150 kgCO2/tAl, surpassing the emissions 

of the base case and resulting merely in a scope shifting outcome.  
 

Importing green hydrogen at current prices increases operating expenses (OPEX) by up 

to 3 times compared to the base case. All the CCUS options provide economic benefits 

in terms of OPEX compared to the base case. The CO2 injection route reduces OPEX due 

to the avoided CO2 taxes that would be incurred in case emissions continue. The 

mineralization option also provides a small benefit in operational costs resulting from the 

value of marketable cement additives. These economic benefits are almost quadrupled in 

cases of methanation and olefins production due to the higher value of these products 

compared to simply injecting or mineralizing the captured CO2.  
 

 
Figure 4: Capture efficiency (left axis, bar plots) and total costs (right axis, red dots) for the 

CCUS options. Total cost of the base case is indicated with a red dashed line for comparison.  
 

Next, the total annualized costs with relation to capture efficiencies for the evaluated 

scenarios are presented in Figure 4. Oxyfuel and cryogenic separation almost always 

achieve the highest capture efficiency, except in the methanation route where additional 

losses are attributed to storage systems. Mineralization options offer the lowest total cost 

followed by olefins production due to the added value of products. The total costs of 

either mineralization, olefin production or injection remain lower than the base case. 

Methanation is more costly than the base case due to the oversized electrolysis system 

which needs further optimization. Finally, current green hydrogen prices do not allow 

economic competition with capture pathways. In this regard, producing hydrogen via 

electrolysis seems to be more promising. However, technical difficulties summarized in 

hydrogen storage, higher furnace temperatures, and furnace gas composition currently 

impede wide application of hydrogen combustion in the aluminium industry.  
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4. Conclusions 

In conclusion, several CCUS pathways were evaluated for decarbonizing a secondary 

aluminium production facility. Up to 80% capture efficiency is reported for the evaluated 

technologies. It was found that injection and mineralization pathways sustain the lowest 

energy consumption penalty (20% higher than the base case). However, these options 

provide the least operational revenue due to the lower income compared to fuels or 

chemicals produced in the methanation and olefins routes. In addition, monitoring the 

indirect emissions of the utilized electricity is crucial for maximizing decarbonization 

potential and avoiding any scope shifting effects. Complete defossilization is possible if 

such capture pathways are coupled with the use of renewable electricity. Negative CO2 

emissions are also achievable if SNG of biogenic origin is used in the plant, captured, and 

transformed via any of the identified utilization options. Finally, burning green hydrogen 

remains a viable but challenging alternative in both technical and economic aspects 

compared to the presented capture, storage, and utilization options.  
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Abstract 
In this work, a tool to design district heating networks (DHN) is presented and applied to 
the city of Lausanne as a case study. The evaluation of the buildings’ heat/cooling demand 
is performed using a Geographic Information System (GIS) database, built from different 
public databases, national norms, and real consumption measurements. 
In a first approach, the city is decomposed into smaller districts, then heat and cooling 
demands of each district are determined, and the investment and operational costs of the 
DHN calculated using a parameterized empirical formula. The costs of the pipes that 
connect the districts to the heating source are computed by routing the primary network 
using the Minimum Spanning Tree (MST) algorithm. 
This methodology was calibrated for the city of Lausanne, and the influence of the system 
design and supply/return temperature levels on heat and cooling distribution costs was 
studied considering the current buildings connected to the DHN. 
Keywords: District heating/cooling network, Urban Systems, Geographical database, 
Sustainable energy supply. 

1. Introduction 
With approximately 149,000 inhabitants, Lausanne is the 4th largest city in Switzerland 
in terms of population. In 2020, heat consumed during winter was supplied by the district 
heat network (25 %) natural gas network (40 %) and fuel oil (35 %) (SiL, 2020). 
District heating and cooling are considered to have an important contribution in the 
transition from the current energy systems to the future energy solutions. 5th generation 
district heating networks in particular use temperature levels close to ground temperature, 
minimising thermal losses throughout the grid and having the extra advantage that they 
can be used for cooling residential buildings with a different type of fluid. The 
development of DHN into cities has been however hindered by large investment costs. 
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2. Methodology 
2.1. Evaluation of the energy demand of the city of Lausanne 

The energy demand was determined using a GIS database (Girardin, 2012) with the stock 
of buildings in the city of Lausanne. The city is characterized from an energy point of 
view, using two SIA (Société Suisse des ingénieurs et architects) standards, the SIA 2024 
and the SIA 380/1. The first is the standards for Space usage data for energy and building 
facilities, and the second is the standards for Heat requirements for heating. The 
information about the buildings is gathered mainly from three databases: 

• RegBL: a geographic point containing information like the EGID, affectation, 
date of construction, number of floors, etc. 

• SwissTLM3D: 2D polygon representing the footprint of the buildings 

• SwissBuildings3D: 3D modelling of the buildings, giving information on the 
orientation of the roofs and area of the facades 

The heating demand of a building, 𝑄̇𝑄, is the sum of the demand for space heating, 𝑄̇𝑄𝑆𝑆𝑆𝑆, 
and the demand for domestic hot water, 𝑄𝑄𝐻𝐻𝐻𝐻. Space heat demand was estimated through 
a heat balance on the building, as presented in Eq. (1). 𝑄̇𝑄𝑠𝑠, 𝑄𝑄𝑝𝑝, and 𝑄̇𝑄𝑒𝑒 represent the 
internal gains from solar irradiation, people, and appliances, respectively. 𝑄̇𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑄̇𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 
are the heat losses through the walls and the air renewal, respectively. 
𝑄̇𝑄𝑆𝑆𝑆𝑆 = 𝑄̇𝑄𝑒𝑒 + 𝑄̇𝑄𝑝𝑝 − 𝑄̇𝑄𝑠𝑠 − 𝑄̇𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑄̇𝑄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 (1) 

 
Figure 1 – Heat flows within a building. 

2.1.1. Heat consumption validation 
The heat consumption in each building was calculated considering the efficiency of the 
energy system installed, Eq. (2). 
𝑄̇𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑄̇𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆 𝜂𝜂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆𝑆𝑆� + 𝑄̇𝑄𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐻𝐻𝐻𝐻 𝜂𝜂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐻𝐻𝐻𝐻�  (2) 

Table 1 presents the efficiencies considered for each energy system. 
Table 1 – Heating systems efficiency (Genève, 202). 

 Space heating Hot water 
Gas boiler 0.86 0.54 
Fuel oil boiler 0.86 0.54 
DHN 0.95 0.65 

The database results were validated using billing data from 2019 provided by the local 
urban gas and DHN supplier. Since fuel oil is not sold by Lausanne’s heat supplier, their 
value is also an estimation based on the SIA norms. The results of the validation are 
shown in Figure 2. The database estimated consumption values are very close to the 
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supplier, with an average deviation of 21, 17 and 5 % for fuel oil, gas and DHN, 
respectively. 

 
Figure 2 – Estimated total heat consumption compared with the values from the heat supplier. 

2.2. Model of the heating network within a district 

The modelling of the DHN within a district followed the methodology presented by 
Briguet (2022), where the estimation of the pipe’s length within a given district is based 
on the area and the number of buildings, assuming that buildings are equidistantly 
distributed over a given area (Girardin, 2012), Figure 3. Eq. (3) gives the network route 
length, 𝐿𝐿 for a pair of pipes, in function of the area of the district, 𝐴𝐴, the number of 
buildings, 𝑛𝑛𝑏𝑏, and the shape factor, 𝐾𝐾. The latter is a coefficient that accounts for the 
street typology, that had to be calibrated for the city of Lausanne, using the existing DHN. 

𝐿𝐿 = (𝑛𝑛𝑏𝑏 − 1)𝐾𝐾�𝐴𝐴 𝑛𝑛𝑏𝑏⁄  (3) 

 
Figure 3 – Representation of the equidistance assumption (Girardin, 2012). 

The districts were defined using a meshing algorithm applied in the areas with a 
connection to the DHN. First, the buildings connected to Lausanne’s DHN were selected 
(Figure 4 (a)), then a mesh with several sizes was applied and the length of pipe within 
the district was calculated (Figure 4 (b) and (c)). For each mesh size, 𝐾𝐾 was optimized 
using Excel solver to set the difference between the sum of real pipe length within the 
districts, and the sum of the lengths calculated by Eq. (3) equal to zero. 
This procedure was repeated for meshes with sizes (length of the hexagon faces) between 
100 and 300. The results are presented in Table 2. The average relative deviation, 𝜎𝜎�, was 
calculated with Eq. (4). The best results are obtained for a mesh with size 125. 

𝜎𝜎� =
∑ 𝑎𝑎𝑎𝑎𝑎𝑎(𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝐿𝐿) 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⁄𝑁𝑁𝑑𝑑
𝑖𝑖=1

𝑁𝑁𝑑𝑑
 (4) 

The total demand of the network was assumed to be equally distributed among the number 
of buildings in the district and that there is a linear decrease of the mass flow of heating 
fluid as the energy is distributed, and, consequently, a decrease of the diameter of the pipe 
per connection of buildings. Piping costs included a fixed cost that accounts for civil 
engineering works and a variable that depends on the diameter of the pipe. Total cost was 
assumed to follow the same linear regression as for the city of Geneva (Henchoz, 2016). 
𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (5670𝐷𝐷 + 613) × 𝐿𝐿 (5) 
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Figure 4 – District definition using a hexagon-shaped mesh. a) Selection of the buildings connected 
to the DHN. b) Application of a mesh with size 125. c) Application of a mesh with size 200. d) 
Zoom in on mesh 125. The red line represents the real DHN. 

Table 2 – Results per mesh size. 

 Area (ha) 𝑲𝑲 𝜎𝜎� (%) 
mesh_100 2.6 1.00 56 
mesh_125 4.1 0.97 40 
mesh_150 5.8 0.93 45 
mesh_175 8.0 0.85 53 
mesh_200 10 0.80 47 
mesh_225 13 0.78 68 
mesh_250 16 0.75 64 
mesh_275 20 0.75 50 
mesh_300 23 0.73 47 

2.3. Cost of the district connecting pipes 

The routing of the primary network that connects all districts was performed according to 
the methodology described by Briguet (2022). The path is determined using the MST 
algorithm, which together with the Python API of Open Street Map allows us to obtain 
the shortest route to connect two geographic points. Once the route taken by the network 
is calculated, the total cost of the infrastructure, 𝐶𝐶𝑝𝑝, can be estimated by Eq. (6), Where, 
𝑐𝑐𝑝𝑝,𝑖𝑖
𝑑𝑑  and 𝑐𝑐𝑐𝑐 are the cost of piping in each district and the cost of district connection, 

respectively. 

(a) (b) 

(c) (d) 
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𝐶𝐶𝑝𝑝 = � 𝑐𝑐𝑝𝑝,𝑖𝑖
𝑑𝑑

𝑁𝑁𝑑𝑑

𝑖𝑖
+ 𝑐𝑐𝑐𝑐 (6) 

3. Results 
After determining the mesh that best estimates the network length inside the districts, the 
heating and cooling demands and the cost of DHN pipes within the districts were 
calculated for a supply/return temperature (Ts/ Tr) of 175/75 °C, Figure 5. 

  

 

 

 

Figure 5 – (a) District heat demand for the buildings connected to the DHN. (b) District power 
cooling demand. (c) Cost of piping for a temperature level of 175/75 °C. 

The districts were connected using the MST described in Section 2.3. As an 
approximation, it was considered that Pierre de Plan was the only heating source of the 
city of Lausanne. The results are presented in Figure 6. The total length of the DHN is 
218 km, which is very close to the length of the real DHN installed (204 km). 
The same methodology was applied to different supply/return temperature levels of the 
DHN. The results can be seen in Table 3. As expected, the lower the temperature levels, 
the higher the infrastructure costs due to the need for higher pipe diameters. 

Table 3 – DHN infrastructure results for different supply/return temperature levels. 

 Total cost of the DHN (MCHF) 
Ts = 175 °C; Tr = 75 °C 89.4 
Ts = 130 °C; Tr = 70 °C 98.2 
Ts = 95 °C; Tr = 70 °C 119.7 
Ts = 70 °C; Tr = 50 °C 127.2 

(a) (b) 

(c) 
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Figure 6 – Results of the DHN routing from Pierre de Plan. 

4. Conclusions and future work 
In this work, a methodology to assess the investment cost of a DHN has been presented. 
The methodology was calibrated for the city of Lausanne and validated using real 
consumption data and the currently installed DHN. In the future, the operation costs of 
the DHN will be integrated to assess the advantage of decreasing the supply/return 
temperature levels. Additionally, future scenarios where network coverage is expanded 
will be studied and the option of centralised or decentralised auxiliary units to operate the 
network at lower temperature levels, thus with higher exergy and energy efficiency. 
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Abstract 

This work explores different waste-to-energy (WTE) technologies, including pyrolysis, 

gasification, and incineration, to achieve Sustainable development goals. A mixed-integer 

linear programming model is proposed in this study to identify the viable routes for 

sustainable energy production. Moreover, a new measure of sustainability is proposed to 

holistically assess all the technologies multi-dimensionally. The Total Sustainability 

Metric (TSM) encompasses several metrics: energy efficiency, material consumption, 

water usage, waste generation, emissions, etc. Through a case study comparing various 

WTE scenarios, initial outcomes spotlight a promising combination of pyrolysis and 

gasification, delivering sustainable energy with 56% more profitability and over 41% 

higher sustainability than the base case of incineration. In conclusion, the model offers a 

swift, systematic approach to pinpointing optimal WTE technologies and holds the 

promise of resolving plastic waste management and circularity concerns while generating 

profitable energy solutions.  

Keywords: Plastic Waste Management, Sustainability, Chemical recycling 

1. Introduction 

The urgency to achieve the Sustainable Development Goals (SDGs) drives the escalating 

emphasis on energy and environmental sustainability. Solid waste management, 

particularly plastics, is crucial to environmental sustainability due to their 

nonbiodegradability. The growing plastic production resulted in 139 million metric tons 

of plastic waste in 2021 (UNEP, 2023). Addressing these concerns, waste-to-energy 

(WTE) offers a dual benefit by alleviating waste burdens and providing alternative energy 

sources that align with sustainability objectives. WTE technology presents an eco-

friendly avenue to address waste management and energy challenges. The SDGs 

encompass optimizing lifecycle stages for reuse and recycling using Process System 
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Engineering (PSE) principles for enhancing circularity and energy efficiency while 

mitigating costs, emissions, and environmental impact (Avraamidou et al., 2020). 

2. Literature Review  

Energy recovery through incineration is a promising solution for plastic waste, given its 

high calorific value and suitability for end-of-life treatment. However, it raises concerns 

about depleting valuable carbon resources and emitting harmful air pollutants (Nikiema 

& Asiedu, 2022). Mechanical recycling, while eco-friendly, faces challenges like material 

quality degradation and labor-intensive processes, hindering plastic circularity (Schyns 

& Shaver, 2021). Chemical or molecular recycling, including pyrolysis and gasification, 

gains attention for a circular plastics economy due to their high technology readiness 

levels (Uekert et al., 2023). Exploring plastic waste management, especially through 

chemical recycling, supports the transition to a circular economy, reducing costs and 

pollution. Effective screening methods are crucial for waste-to-energy approaches, with 

studies employing techno-economic and life cycle assessments for feasibility evaluations. 

Limited research has delved into optimization models for plastic waste recycling, such as 

the framework proposed by (Somoza-Tornos et al., 2021) and the superstructure 

introduced by (Zhao & You, 2021). (Lim et al., 2022) present an optimal strategy for 

sorting and recycling mixed plastic waste. While previous studies focused on the 

feasibility of converting plastic waste, there is a need for further exploration, particularly 

in optimizing primary products from chemical recycling processes such as pyrolysis oil 

or synthesis gas. Moreover, to measure and design a circular economy, it's essential to 

establish a metric considering recovered materials' environmental, economic, and social 

value. Commonly used indicators include the Linear Flow Index (LFI), Material 

Circularity Indicator (MCI), and Product Circularity Indicator (PCI) based on material 

flow analysis precisely measuring material circulation but lacks consideration of life 

cycle emissions and avoided impacts, limiting its ability to represent product 

sustainability fully.  Additional indicators such as material and energy efficiency, 

feedstock flexibility, and co-product utilization are crucial to individual processes 

(Supply Chain School, 2019). 

This work introduces an innovative screening model that comprehensively evaluates 

various pathways for plastic waste recycling. Specifically, WTE approaches. This 

employed framework facilitates sophisticated decision-making by fostering a well-

balanced assessment of different plastic recycling technologies. Moreover, to 

comprehensively assess the sustainability of all alternatives multi-dimensionally, the 

model introduces a novel metric that integrates various supplementary metrics such as 

material, energy, and water efficient utilization, waste generation, carbon footprint, 

economic viability, recyclability, co-product utilization, product quality, and TRL. 

3. Methodology 

The approach to screening the different plastic waste-to-energy pathways is illustrated in 

Figure 1. 

 
Figure 1. Methodology 
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4. Mathematical model Formulation 

This work focuses on investigating plastic waste in energy technologies. A screening 

model based on mixed-integer linear programming (MILP) was developed to assess all 

the alternatives while considering multiple factors. The model's primary objective is 

maximizing overall profitability and is subjected to various equality and inequality 

constraints, including material and energy balance, capacity limits, economics 

considerations, and circularity constraints. The model proposes a set P of possible 

pathways. The model equations are presented as follows: 

𝑀𝐴𝑋𝐼𝑀𝐼𝑍𝐸  (𝑁𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡) = 𝑓(𝑥)                                           (1) 

Subject to: 

𝑔
𝑖
(𝑥) ≤ 0, 𝑖 = 1, … , 𝑚                                                     (2) 

ℎ𝑗(𝑥) = 0, 𝑗 = 1, … , 𝑛                                                     (3) 

The net profit and income of the technology is determined as follows: 

𝑛𝑒𝑡 𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑖𝑛𝑐𝑜𝑚𝑒 − 𝐶𝑎𝑝𝑒𝑥 − 𝑂𝑝𝑒𝑥                                            (4) 

𝑖𝑛𝑐𝑜𝑚𝑒 = ∑ 𝑀𝐹𝑅𝑜𝑢𝑡,𝑖 ×𝑖 𝑃𝑟𝑖𝑐𝑒𝑖                                             (5) 

The income is calculated using the output mass flowrate (𝑀𝐹𝑅𝑜𝑢𝑡,𝑖) of the specific 

product i and the price (𝑃𝑟𝑖𝑐𝑒𝑖) of the product (electricity in this case in $/kWh). Capex 

is estimated through regression modeling with piecewise linearization to handle nonlinear 

data. Opex depends on each pathway’s requirements including material, energy, utilities, 

etc. The overall sustainability is measured by incorporating supplementary metrics such 

as Material Utilization Indicator (MUI), Energy Utilization Indicator (EUI), Water 

Utilization Indicator (WUI), Solid-Waste Generation Indicator (WGI), Carbon Footprint 

Indicator (CFI), Economic viability Indicator (EVI), Co-product Utilization Indicator 

(CUPI), Recyclability Indicator (RI), Product Quality Indicator (QPI), and Technology 

Readiness Level Indicator (TRLI). All these indicators are given a specific weight factor 

(𝑊𝑓) and collectively form the Total Sustainability Metric (TSM), as shown in Eq. (6) to 

Eq. (15), respectively. Each individual indicator and the final metric are all normalized 

on a scale of 0-1, where zero represents the worst-case scenario, and one represents the 

best-case scenario.  
𝑀𝑈𝐼𝑝 = 𝑃𝑙𝑎𝑠𝑡𝑖𝑐 𝑤𝑎𝑠𝑡𝑒 𝑓𝑒𝑒𝑑 𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒

+ ∑ 𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑜𝑓 𝑐𝑜𝑛𝑠𝑢𝑚𝑎𝑏𝑙𝑒𝑠  

(6) 

𝐸𝑈𝐼𝑝 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 𝑝,

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑤𝑎𝑠𝑡𝑒 𝑓𝑒𝑒𝑑
, ∀𝑝 ∈ 𝑃 

(7) 

𝑊𝑈𝐼𝑝 =
𝑊𝑎𝑡𝑒𝑟 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑦 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 𝑝

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑤𝑎𝑠𝑡𝑒 𝑓𝑒𝑒𝑑
, ∀𝑝 ∈ 𝑃 

(8) 

𝑊𝐺𝐼𝑝 =
𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑜𝑓 𝑤𝑎𝑠𝑡𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 𝑝

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑤𝑎𝑠𝑡𝑒 𝑓𝑒𝑒𝑑
, ∀𝑝 ∈ 𝑃 

(9) 

𝐶𝐹𝐼𝑝 =
𝐶𝑂2,𝑒𝑞𝑢𝑖𝑣𝑒𝑙𝑒𝑛𝑡  𝑒𝑚𝑖𝑠𝑠𝑜𝑛𝑠 𝑏𝑦 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 𝑝

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑤𝑎𝑠𝑡𝑒 𝑓𝑒𝑒𝑑
, ∀𝑝 ∈ 𝑃 

(10) 

𝐸𝑉𝐼𝑝 =
𝑇𝑜𝑡𝑎𝑙 𝑎𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 𝑜𝑓 𝑝𝑎𝑡ℎ𝑤𝑎𝑦 𝑝

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑤𝑎𝑠𝑡𝑒 𝑓𝑒𝑒𝑑
, ∀𝑝 ∈ 𝑃 

(11) 

𝐶𝑃𝑈𝐼𝑝 =
∑ (𝑀𝐹𝑅𝑐𝑜−𝑝𝑟𝑜𝑑𝑢𝑐𝑡,𝑖,𝑝 × 𝑝𝑟𝑖𝑐𝑒𝑐𝑜−𝑝𝑟𝑜𝑑𝑢𝑐𝑡,𝑖𝑖 )

∑ (𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤𝑟𝑎𝑡𝑒𝑚𝑎𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡,𝑗 × 𝑝𝑟𝑖𝑐𝑒𝑚𝑎𝑖𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡,𝑗𝑗 )
, ∀𝑝 ∈ 𝑃 

(12) 
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𝑅𝐼𝑝 = {
1 𝑖𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑟𝑒 𝑟𝑒𝑐𝑦𝑐𝑎𝑏𝑙𝑒

0 𝑖𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑟𝑒𝑐𝑦𝑐𝑎𝑏𝑙𝑒
, ∀𝑝 ∈ 𝑃 

(13) 

𝑃𝑄𝐼𝑝 = {
1 𝑖𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑣𝑖𝑟𝑔𝑖𝑛 𝑞𝑢𝑎𝑙𝑖𝑡𝑦

0 𝑖𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑖𝑠 𝑛𝑜𝑡 
, ∀𝑝 ∈ 𝑃 

(14) 

𝑇𝑆𝑀𝑘 = 𝑊𝑓 × (𝑀𝑈𝐼𝑘 + 𝐸𝑈𝐼𝑘 + 𝑊𝑈𝐼𝑘 + 𝑊𝐺𝐼𝑘 + 𝐶𝐹𝐼𝑘 + 𝐸𝑉𝐼𝑘 + 𝐶𝑃𝑈𝐼𝑘 +

𝑅𝐼𝑘 + 𝑃𝑄𝐼𝑘 + 𝑇𝑅𝐿𝐼𝑘),   𝑘 = 1, … , 𝑝  

(15) 

5. Case Study 

Products of waste-to-energy technologies for circular plastic waste management can vary 

depending on the technologies and processes employed. Generally, waste-to-energy 

solutions aim to produce energy through electricity generation, heat production, synthetic 

fuels, steam production, and combined heat and power. The case study considers the 

production of electricity and fuels through three pathways: pyrolysis, gasification, and 

energy recovery by direct incineration. The model aimed at achieving maximum 

economic profit and contribution to the circular economy through the proposed 

sustainability metric.  

Table 1. Case Study Data in $M/y. 

No. Technology Products Income  Capex Opex 

P1 Incineration - Base case Electricity 15.9 1.36 3.6 

P2 Gasification + Methanol 

Synthesis + MTG 

Gasoline 

Propylene 

49.7 4.97 23.8 

P3 Gasification+ Incineration Electricity 12.8 6.33 18.6 

P4 Pyrolysis Pyrolysis oil 26.4 3.11 5.5 

P5 Pyrolysis + Incineration Electricity 11.1 4.46 9.0 

The case study is scaled based on sources that generate 275 tons per day of mixed plastic 

waste. Detailed technical are provided in Table 1. Further data and constraints may be 

formulated and included with the core model as needed for a specific case study to retain 

the class of the optimization model. The model has been solved with Python 3.10.2 - 

Pyomo 6.4.0, Gurobi solver 10.0.1. Optimal solutions have been consistently obtained 

within a few seconds. 

6. Results and Discussion  

 

Figure 2. Contribution of Individual Indicators in TSM. 
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The waste-to-energy pathways (P1 to P5) are evaluated based on a comprehensive set of 

sustainability metrics, as illustrated by Figure 2, emphasizing that the higher the value is, 

the better. Among these pathways, P4 (Pyrolysis) stands out as the most sustainable WTE 

technology, as reflected by the value of TSM, indicating superior overall sustainability 

and circularity. P2 follows closely, showing strong performance across various indicators. 

P1 and P5 demonstrate moderate sustainability, while P3 means an overall negative 

impact. Regarding MUI, P2 demonstrates superior efficiency, while P1 and P5 show 

higher material usage.  

Figure 3.  Net profit and TSM for Different Pathways. 

Pathway 3 exhibits the most efficient energy utilization (EUI). The most efficient 

pathways in terms of water are P2 and P4. P3 generates the most waste, while P4 and P2 

represent a better performance. CFI is lowest in P3 and P5, indicating the most negligible 

environmental impact, while EVI is highest in P2, reflecting the lowest cost. P2 is the 

only pathway that encompasses a valuable co-product, propylene. And that also reflects 

the better performance in the recyclability metric compared to all alternatives. Lastly, it 

is noticeable that Incineration for energy recovery is the most mature pathway reflected 

by the higher TRL value.  Figure 3 illustrates the net profit compared to the sustainability 

metric for all the pathways before using the optimization model and reflecting the trade-

offs between economic feasibility and sustainability. Particulary, although P2 is the 

highest profitable route, it shows lower performance in terms of sustainability compared 

to P4. Also,  although P5 is more sustainable than P3, neither of them is economically 

feasible.  

Figure 4. Optimization results 

Figure 4 illustrates the optimization results compared to the base case of energy recovery 

by incineration (P1) for maximizing profitability and sustainability. The base case yields 
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an annual profit of $11 million, whereas combining the P2 and P4 outperforms, with a 

total net profit of $M17.2 annually, enhancing the base case's net profit by 57% and 

improving the base case sustainability by more than 41% offering the highest contribution 

to the circular economy.  

7. Conclusion 

The findings of this screening approach suggest that selling pyrolysis fuel oil, represented 

by P4 and gasoline fuel in P2, holds promise for achieving higher sustainability and 

circularity in waste-to-energy technologies. Furthermore, assessing individual indicators 

can provide insights into specific strengths and weaknesses of each pathway. This 

analysis helps identify pathways that excel in certain aspects, aiding in informed decision-

making for sustainable waste-to-energy solutions. This work clarifies the role of 

technology in the circular economy for authorities to foster a cleaner and more sustainable 

global economy or, in other words, a sustainable trash-to-cash economy. 
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Abstract 

The application of vapor recompression and heat pump technologies to recycle waste heat 

to the process is straightforward in close-boiling mixtures. Especially in distillation 

systems with high feed rate and reflux ratio, high energy cost and large compressor cost 

degression potentials enhance the economic attractiveness. In wide-boiling systems, on 

the other hand, a high compression ratio may lead to a low coefficient of performance 

and high cost for electrical energy. In this paper, alternative designs are presented, paving 

the way to the economic application of vapor recompression and heat pump technology 

to wide-boiling systems. The design of smart electrification strategies will be a core 

element on the path to net zero production in the process industries.  

Keywords: vapor recompression, heat pump, heat integration, distillation, electrification. 

1. Introduction 

There are many examples in literature of the successful application of vapor 

recompression (VR) and heat pump (HP) technologies to recycle waste heat in columns 

separating close-boiling mixtures. A good overview is given by Jana (2014). Economic 

designs are possible even in vacuum systems (Rix et al., 2023). To achieve the CO2-

saving goals of the process industries and society as whole, these technologies for 

effective heat recycling need to be extended to wide-boiling systems. Here, however, 

large obstacles need to be overcome. Due to the high temperature difference between top 

and bottom of the column, a high compression ratio, a high compressor duty and a low 

coefficient of performance (COP) result at first glance. Therefore, new, creative solutions 

need to be developed, enabling industry to exploit the full potentials of mechanically 

assisted heat recovery. A simple exchange of existing fossil fueled steam generators by 

electric boilers would neither be cost-effective, nor could the energy grid supply the vast 

amounts of still scarce green electricity. 

Using practical examples, we show how VR and HP technologies can play an important 

role in the smart electrification of the process industries even in challenging wide-boiling 

separations. The guiding principle we follow in this paper is to find creative ways to (at 

least partially) reduce the temperature lift required for heat recirculation. 
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To handle the high compression ratios required in wide-boiling systems, multi-stage 

compressors are employed. A smart utilization of vapors from intermediate compressor 

stages to heat pre-evaporators, side- and bottom reboilers may substantially reduce the 

compressor duty. Thus, VR or HP systems may be employed at substantially lower 

compression ratio and higher COP. However, these interventions are not without 

consequences on the separation task (Soares Pinto et al., 2011). Sensitivity analysis is 

employed to evaluate possible advantages of the use of the additional degrees of freedom 

opened in the design of multi-stage compressors.  

2. Wide-boiling distillation systems 

2.1. Vapor recompression and heat pump systems for large temperature lift 

The compressor duty of any VR or HP system is directly proportional to the temperature 

lift to be overcome. In columns, this is the temperature difference between bottom and 

top of the column plus any driving temperature differences for heat transfer. In wide-

boiling systems, the large temperature difference leads to compression ratios often 

exceeding 3. Therefore, two-stage compressor designs as shown in Figure 1 are required 

to heat the bottom reboiler. Although multi-stage compressor designs require higher 

capital expenditure, they also offer additional degrees of freedom. We will show, how 

these may be exploited to optimize the system design and performance.  

• The high-pressure condensate formed in the bottom reboiler flashes when its pressure 

is reduced. Flashing and recycling it to the pressure level of an intermediate 

compressor stage will lower the flowrate to the first stage and thus the total 

compressor power.  

• Each compressor stage elevates the suction pressure to a certain value, corresponding 

to a defined condensation temperature. If this temperature is sufficiently high, a part 

of this intermediate-pressure vapor may be used to heat a side reboiler at a convenient 

location in the stripping section. A substantial fraction of the total energy demand of 

the column may thus be recycled at significantly lower temperature lift, lower 

compression ratio and higher COP than is required for heating the bottom reboiler.  

• Most hydrocarbons have hanging log(p),h-diagrams and require superheating to 

avoid partial condensation during compression. Individual superheating for each 

stage is recommended.  

• Working fluids like methanol or water have a bell-shaped log(p),h-diagram and 

superheat during compression. To reduce the degree of superheating, high-

temperature condensate can be injected into the feed of the second compression 

stage, reducing its volumetric flowrate, the stage compressor duty, and increasing the 

overall COP. 
 

 
 

Figure 1: Two-stage compressor with intermediate flash recycle and potential de-superheating. 
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2.2. Methanol-water separation 

Shahandeh et al. (2015) describe a column in operation in a world-scale methanol plant 

with a capacity of 1 million t/y. The column has 85 trays, operates at 1.2 bar, and is fed 

with 4,968 kmol/h of a mixture of 69.81 mol-% methanol and 30.19 mol-% water and has 

a reboiler duty of 107.4 MW. The feed has a vapor fraction of 12 %. Fitting an ASPEN 

model using NRTL-RK method to plant data, Shahandeh et al. (2015) estimate a tray 

efficiency of 30 % and use this model for an extended investigation of five different vapor 

recompression and internally heat-integrated column schemes. 

Energy optimization studies should always start with a near-optimum simple column (Rix 

et al., 2019). There is ample industrial evidence, that well-designed modern trays should 

reach efficiencies of 70% and higher in the methanol-water system (Yang et al., 2003). 

Consequently, a sensitivity analysis in ASPEN using 70 % efficiency and 85 trays shows 

an optimum feed location on tray 75, reducing the energy demand by more than 40 % to 

60.3 MW, see Figure 2a). 

A next obvious step to further decrease the energy demand is the design of a double-effect 

heat-integrated column system (Rix et al., 2019). This technology is well established in 

the Lurgi methanol process (Ott et al., 2012). The light-split reverse (LS-R) configuration 

(Figure 2b) is chosen. The first column T-20 operates at 1.2 bar, separates almost 60% of 

the MeOH as overhead product at low reflux ratio and feeds its water-enriched bottom 

product to the high-pressure column T-30. The pressure of T-30 is raised to 2.8 bar, 

shifting its condensation temperature to 9 K above the bottom boiling temperature of T-

20. It has been shown that this configuration allows heat-integration with the lowest 

pressure difference between the two columns, thus achieving good thermodynamic 

efficiency while offering good controllability (Chiang and Luyben, 1988). The energy 

demand is 35.5 MW, more than 40% lower than the optimized simple column.  

Electrification of this separation process is possible using vapor recompression, see 

Figure 2c. The overhead vapor is fed to a two-stage compressor, which increases its 

pressure so far, that its condensation temperature is sufficiently high to heat the reboiler. 

In the base case with a driving temperature difference of 8 K, the COP is 4.6 and the 

compression ratio of each stage is 2.5 resulting in a total compressor duty of 13.1 MW.  

Introduction of the hot condensate flash and de-superheating at the intermediate pressure 

as shown in Figure 1 raises the COP to 5.0 and reduces compressor duty by 1 MW.  

We will use this design as a base case and investigate further optimization options. 
 

 
 

Figure 2: Flow schemes of a) simple column, b) heat-integrated LS-R system and c) vapor 

recompression with optional side reboiler (broken lines). Pressures and temperatures are given in 

boxes, relevant tray numbers in columns and heat duties near reboilers. 

277



   

 
Figure 3: Impact of pressure on performance of VRC. a) Coefficient of performance (COP); 

b) Total compressor duty (both stages). 
 

 
Figure 4: Impact of side reboiler location and duty on performance of VR. a) Coefficient of 

performance (COP); b) Total compressor duty (both stages). 
 

Figure 3 shows results for a pressure variation at different driving temperature differences 

DT for heat transfer. Although the COP rises monotonously with pressure, there is a clear 

minimum of the compressor duty at a column pressure near 1.2 bar. These seemingly 

conflicting trends are due to the fact, that the separation becomes more difficult at higher 

pressures, and the energy demand of the reboiler increases. The required compression 

ratio, on the other hand, decreases, but not fast enough to compensate the first effect. At 

column pressures lower than ~1 bar, the suction side volumetric flowrate increases 

drastically, resulting in higher compressor duty. These results show that it is not sufficient 

to focus on performance indicators alone to judge the merits of design alternatives.  

The benefit of introducing the side reboiler shown in broken lines in Figure 2c at different 

locations is shown in Figure 4. In the columns' stripping section, 5 trays have been added 

to compensate for changing operating lines (Soares Pinto et al., 2011), increasing the 

number of trays to 90. The driving temperature difference has been set to 8 K and all 

calculations have been performed at 1.2 bar.  

The closer the side reboiler is located to the feed stage, the higher is its effectiveness. This 

is due to the distinctive temperature profile below the feed requiring a higher compression 

ratio in the first compressor stage. The total compressor duty decreases as more duty is 

shifted from the bottom to the side reboiler. As more methanol is evaporated in the side 

reboiler, however, the boiling temperature and thus the first stage compression ratio 
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increases. For each side reboiler location, a clear optimum duty can be seen in Figure 4b. 

Locating the reboiler at stage 77, 2 trays below the feed, up to 45 MW (i.e., ~75 % of the 

total energy demand) can be supplied at lower temperature and pressure, thus reducing 

the compressor duty by almost 40 % from 12 to 8.6 MW. In this operating point, the COP 

rises from 5.0 to more than 7.0. 

Using fossil-based emission factors of 0.2 and 0.366 2 t CO2/MWh (BAFA, 2023) for 

steam and electricity, the CO2-emissions of the three variants shown in -Figure 2 

considering 8.600 operating hours/year are a) 103, b) 61 and c) 38 kt/y and are reduced 

to 27 kt/y using a side reboiler. VR enables the application of green electricity, which 

results in CO2-emissions close to zero. A column with vapor recompression designed 

according to the guidelines given above is currently under construction, enabling the first 

CO2-neutral Evonik process. CO2-savings of up to 30 kt/y are anticipated. 

2.3. Debutanizer column 

As a further practical example, the debutanizer presented by Luyben (2013) is simulated 

in ASPEN Plus using the SRK method. The number of stages has been increased from 30 

to 40 trays to reduce the basic energy consumption. Figure 5 shows results of a sensitivity 

analysis varying column pressure from 3 to 9 bar. For VR, there is a clear trend of COP 

decreasing with pressure, while compressor duty increases. At the optimum operating 

pressure of 3 bar, the top temperature is only 26 °C, foreclosing the use of cheap cooling 

media. However, this operating point is made accessible by VR, since the trim 

condensation can be completely shifted to the pressure side (Luyben, 2019). Increasing 

the temperature difference from 4 to 12 K increases the compressor duty by 15 to more 

than 30 %. This large effect clearly shows the strong incentive to employ column internals 

of low pressure drop and highly efficient heat exchangers in VR and HP systems.  

The thick lines in Figure 5 show results for a two-stage HP system with intermediate flash 

using iso-pentane as the working fluid at 8 K driving temperature difference in both heat 

exchangers. For column pressures exceeding 4.5 bar, the COP of HP systems exceeds the 

one of VR systems at the same temperature difference. The strong decline of VR system 

performance with pressure is due to the fact, that the overhead vapor, a mixture of 

butanes, approaches its critical pressure more closely at condensation conditions. 

Consequently, the choice between VR or HP systems depends on the suitability of the 

thermodynamic properties of the overhead vapor as a good HP working fluid. 

 
Figure 5: Performance of VR (thin lines) and HP (thick solid line) in the Debutanizer example. 

a) Coefficient Of Performance (COP), b) compressor duty. Driving temperature difference DT in 

the integrating heat exchangers as parametric variable.  
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3. Conclusions 

VR and HP technologies are core elements on the path to net zero production in the 

process industries, increasing the effectiveness of the use of green electricity substituting 

fossil-based steam. Applying VR and HP to columns separating wide-boiling mixtures 

faces severe obstacles. To overcome these challenges, creative approaches combining 

pre-evaporators, side- and bottom reboilers using compressed vapors from intermediate 

stages of multi-stage compressors may substantially reduce the compressor duty. 

VR and HP technologies have been successfully applied to two industrially relevant 

example columns separating wide-boiling mixtures. Energy optimization studies should 

start from a soundly designed simple column. Next, options to integrate available waste 

heat from the site should be considered. Once these low-cost options are exploited, it is 

time to tackle further optimization using VR and HP systems. To exploit their full 

potential, they should not be merely treated as an end-of-pipe addition to a pre-existing 

design. Instead, it is worthwhile to investigate the wider range of operating pressures now 

attainable. A large effect of driving temperature difference in the integrating reboiler / 

condenser has been observed. This clearly proves the strong incentive to employ column 

internals of low pressure drop and highly efficient heat exchangers. In VR and HP 

systems, internals and equipment design are much more interdependent than in simple 

columns. An inherent disadvantage of HP systems is, that they need to overcome two 

driving temperature differences. They should be considered, whenever the direct 

compression of the overhead vapor has serious drawbacks. These might be close approach 

to critical conditions at condensation, low suction side density (vacuum), corrosiveness 

or thermal instability. While challenging in their nature, wide-boiling systems may be 

successfully tackled using VR and HP systems.  
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Abstract 
In this contribution, we explore how eight different scenarios involving microalgae 
biofuels could contribute to bringing the heavy-duty transport sector within the 
boundaries of sustainable operation. These scenarios comprise a variety of configurations, 
including two different fuel production methods (hydrodeoxygenation and hydrothermal 
liquefaction), two carbon sources (i.e., carbon dioxide captured from natural gas power 
plants or directly from the air) and two electricity mixes (i.e., the current mix and a future 
sustainable mix). The eight scenarios considered are analysed combining Life Cycle 
Assessment principles with an Absolute Environmental Sustainability Assessment 
method based on the Planetary Boundaries, adopting a cradle-to-wheel perspective. The 
selected approach goes beyond greenhouse gas emissions, embracing other impacts on 
key Earth-system processes and covering the carbon footprint, too. Our findings highlight 
that microalgae biofuels have significant potential in mitigating environmental impacts 
compared to the traditional fossil-based heavy-duty transport sector. Notably, pathways 
utilizing hydrodeoxygenation of microalgae oil and direct air capture with carbon storage 
demonstrate the potential to decrease the global climate change impact caused by heavy 
transport by 77%. Additionally, in contrast to standard biofuels, which often require 
extensive land use, microalgae biofuels also substantially reduce their impact on 
biosphere integrity.  

Keywords: Microalgae biofuels, LCA, planetary boundaries, biosphere integrity 

1. Introduction 
Currently, the world production of biofuels is mostly based on agricultural crop biomass, 
causing competition for the available land between fuel and food production (Calvo-
Serrano et al., 2019). 
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This study focuses on the Absolute Environmental Sustainability Assessment (AESA) of 
various biofuel production scenarios from microalgae, and their use in heavy-duty 
transport, adopting a cradle-to-wheel perspective (Cabrera-Jiménez et al., 2023). 
Integrating the principles of Life Cycle Assessment (LCA) and an AESA based on 
Planetary Boundaries (PBs) (Rockström et al., 2009), we can assert whether technological 
options are truly sustainable or not, and analysis out of reach of conventional LCA, which 
can only perform relative assessments. In addition, our analysis extends beyond 
greenhouse gas emissions to encompass broader impacts on key Earth-system processes 
related with the PBs. 

2. Methodology 
The study explores eight transformation scenarios for microalgae-to-biofuels, considering 
two distinct fuel production methods (hydrodeoxygenation (HDO) and hydrothermal 
liquefaction (HTL)) and utilizing two carbon sources (natural gas power plants (BLUE) 
and direct air capture (GREEN)). Additionally, two different electricity mixes are 
considered, the current one (labeled M2020) and a future sustainable mix (M2040). The 
integration of byproducts is included across all scenarios. In addition, we also assess the 
performance of conventional biofuels (i.e., from soybean), and the business-as-usual 
(BAU) scenario, where diesel is used as fuels for the trucks. In order to quantify the 
impacts of all these options on the environment, we will use the following methodology. 
 

2.1. Life Cycle Assessment combined with the Planetary Boundaries framework 
 
LCA quantifies the environmental impacts of products, processes, and services over their 
entire life cycle, covering a wide range of potential damages. This is performed based on 
four steps for identifying environmental hotspots. In the initial phase, the goal and scope 
of the study are defined. In this context, we defined the annual world ton-km (tkm/yr) 
demand for road freight activities as the functional unit to quantify the absolute 
environmental sustainability of various scenarios for microalgae-based biofuel routes. 
 
The second LCA phase focuses on quantifying the main inputs and outputs (e.g., energy, 
raw materials, byproducts, and emissions). We exploited mass and energy balance 
information from prior studies for foreground system activities, such as carbon 
sequestration, microalgae cultivation, drying, byproduct recovery, fuel production, and 
combustion. This data was combined with corresponding background activities data to 
compute life cycle inventories (LCIs) for the modeled scenarios. 
 
Moving to the third phase, the LCA assesses the damage caused by LCIs across various 
environmental categories. In this case, nine control variables related to seven Earth-
system processes were considered as impact categories. Hence, characterization factors 
developed by Ryberg et al. (Ryberg et al., 2018) were employed to express LCIs in terms 
of the control variables of the PBs.  
 
When results are interpreted PBs framework, provides absolute thresholds against which 
to compare environmental impacts. Specifically, limits on control variables are used to 
define a safe operating space (SOS), i.e., an environmental budget for all anthropogenic 
activities.  
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To avoid using downscaling methods for the SOS., we simulate the global anthropogenic 
impact of the whole economy that would result from replacing the BAU heavy-duty 
transport sector by an alternative scenario based on biofuels. 

3. Results and discussion 
The following section summarizes the results obtained for the different scenarios, 
outlining the environmental impacts associated with distinct pathways of microalgae-
based biofuels across different categories. Findings reveal that the current heavy-duty 
transport sector (i.e., BAU) transgresses the SOS for CO2 concentration by a factor of 
1.11. Similarly, conventional soybean-based biofuels exhibit a considerable transgression 
of the same boundary, with a factor of 1.41. This is primarily attributed to the substantial 
climate change impact during soybean oil production. Additionally, soybean farming 
contributes to change in biosphere integrity, reaching 35% of the whole SOS. 
 
HTL scenarios achieve between 1 and 37% lower carbon footprint than HDO scenarios 
when M2020 is considered. This superiority stems from the more efficient use of energy 
and resources in the HTL process, eliminating the need for an oil extraction stage in 
contrast to HDO. The performance of microalgae-based fuels varies across scenarios, 
with the most favourable climate change category observed in HDO-GREEN-M2040. 
This scenario occupies only 25% of the SOS for the climate change PBs (i.e., atmospheric 
CO2 concentration and energy imbalance control variables), marking a 77% reduction 
compared to the BAU scenario. 
 
Notably, biofuels derived from microalgae stand out in terms of high yield per hectare, 
resulting in minimal impact on land-system change and contributing to lower impacts on 
biosphere integrity. For instance, when compared to soybean scenarios, the impact is up 
to 4.1 times lower in the current electricity mix scenario (HDO-GREEN-M2020 vs HDO 
soybean) and 6.5 times lower considering the 2040 sustainable electricity mix scenario. 

4. Conclusions 
This study compared eight biofuel production pathways from microalgae for freight road 
transport, considering various scenarios from a cradle-to-wheel perspective. We assessed 
the impact of these scenarios on seven Earth-system processes through nine control 
variables. Our findings reveal that conventional fossil fuels, such as diesel, used in freight 
road transport are environmentally unsustainable, exceeding the climate change PB by 
11%. The alternative of microalgae-based fuels shows promise in mitigating the adverse 
effects of conventional biofuels, potentially reducing the impact on biosphere integrity by 
up to six times. However, a carbon-intensive electricity mix combined with carbon 
sourced from fossil fuels could undermine the potential benefits of microalgae, making it 
a less favourable option than diesel in terms of climate change (up to two times higher 
impacts). 
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Abstract 

Electrochemical reduction of nitrogen to ammonia is a promising alternative to the 

conventional Haber-Bosch process to decarbonize ammonia production. Although there 

is a lot of work on catalyst development for this novel reaction, there is a lack of concise 

economic evaluations and rational goals for catalyst development.  

Based on an economic evaluation, we estimate production cost based on catalyst 

performance in terms of achievable Faradaic efficiency at a certain production rate. By 

relating to benchmark cost, a function mapping Faradaic efficiencies and production rates 

to reach cost parity is derived, determining the feasible space for catalyst development.  

All catalysts reported to date lie considerably below the cost parity curve. Even though 

recent catalyst developments achieve considerable high Faradaic efficiencies, the 

production rate remains too low, resulting in the investment cost alone being higher than 

the ammonia market price.  

Keywords: Electrochemistry, Economic Evaluation, Ammonia, Catalyst Evaluation. 

1. Introduction 

Novel electrochemical reactions can aid in decarbonizing the chemical industry and 

transition away from using fossil fuels as feedstocks and energy sources (Luh et al., 2018). 

We evaluate the current status and the potential of the electrochemical nitrogen reduction 

reaction (eNRR) to ammonia, a novel reaction pathway to synthesize ammonia directly 

from water and air at near ambient conditions.  

In developing these emerging electrochemical technologies, the focus is on identifying 

and improving suitable catalysts. However, there is a lack of rational goals for catalyst 

performance. Reported goals state the catalyst performance at one operating point 

(Soloveichik, 2016). This approach is insufficient as the required performance depends 

on the operating conditions. 
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We conduct an economic evaluation of the eNRR process to investigate the catalyst's 

influence on the performance of the overall process. We estimate production cost based 

on reaction rate and Faradaic efficiency, quantities reported in catalyst studies, and 

compare the production cost with benchmark prices. Based on this, we derive a curve 

mapping required production rates and Faradaic efficiencies to achieve cost parity with 

the benchmark.  

2. Process model  

In this work, we focus on evaluating the eNRR and thus model only the electrochemical 

reactor in more detail. Investigating the influence of downstream processes like product 

purification is out of the scope of this work. In the electrochemical cell, ammonia is 

formed at the cathode and the by-product oxygen at the anode. The anode reaction is the 

same as in alkaline water electrolysis, a mature technology. Therefore, no significant 

economic impact of an improvement of the anode catalyst is expected, and we focus on 

the cathode catalyst and the novel reaction. The performance of this catalyst determines 

the selectivity and reaction rate of the target product ammonia and the side product 

hydrogen. For a more detailed process description, the reader is referred to a recent 

literature review by Rezaie et al. (2023).  

The levelized cost of ammonia (LCOA) is calculated as the sum of OPEX and annual 

CAPEX divided by the produced amount of ammonia. The CAPEX for the new process 

is estimated by transferring the CAPEX for alkaline water electrolysis to the proposed 

electrochemical reactor as they share the same basic setup. 

OPEX of electrochemical processes is mainly determined by the cost of electricity 

(Hemauer et al., 2023). Additionally, fixed OPEX for operation and maintenance and 

variable OPEX for the educts are considered. 

3. Results and discussion  

We evaluate the catalyst studies reviewed by Rezaie et al. (2023) and calculate the 

respective LCOA at the reported production rate and Faradaic efficiency. 

First, the minimal Faradaic efficiency is calculated by setting the investment cost to zero 

and equalizing the electricity cost with the benchmark price. Following this approach, the 

minimum Faradaic efficiency and thus the energy efficiency is calculated depending on 

the cell potential. Some studies achieve Faradaic efficiency higher than the minimal.  

Second, the minimal reaction rate is calculated similarly by setting the electricity cost to 

zero and equalizing the CAPEX and fixed operation and maintenance cost with the 

benchmark price. All investigated reaction rates lie considerably below the minimal. 

Third, we calculate the LCOA based on the experimental data. All results are well above 

the benchmark price. Even though some studies achieved Faradaic efficiencies higher 

than the minimal, the production rates and current densities are too low, resulting in 

capital cost being higher than the benchmark price. Higher production rates are required 

to reduce production costs considerably and to achieve cost parity.  

The production cost calculation conducted in this work depends on the catalyst 

performance—the achieved Faradaic efficiency at a specific production rate. By 

equalizing this cost function with the benchmark price, a curve mapping required Faradaic 

efficiency to the production rate is derived. This curve can be used to evaluate new 

experimental data and to guide catalyst development towards a competitive process. As 
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benchmarks to compare the LCOA, the ammonia market price as well as production cost 

of green ammonia produced via the Haber-Bosch process coupled with water electrolysis 

are used. Thus, electrochemical ammonia production can be compared to the 

conventional process and further possibilities to defossilize ammonia production.  

4. Conclusion  

In this work, we derived a function mapping operation conditions and Faradaic efficiency 

to achieve cost parity with a benchmark price. Competitive catalysts must reach or 

outperform the limit defined by this curve. Even though recent catalyst studies show 

considerable improvement in Faradaic efficiency, the production rates are still too low, 

resulting in CAPEX being higher than the ammonia market price.  

The low reported production rates can be traced back to the nature of the experimental 

approach focusing on catalyst screening and improving Faradaic efficiencies at low 

potentials, resulting in low reaction rates. To enable a cost-competitive process, high 

Faradaic efficiencies at high production rates are required. Thus, catalyst research must 

transition into aiming for higher production rates. 
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Abstract 

In water electrolysis, the kinetic overpotential of the oxygen evolution reaction leads to 

significant energetic losses. To reduce the kinetic overpotential, new electrode materials 

are frequently investigated. For the characterization of investigated electrodes in terms of 

performance, the different overpotentials in an experimental setup must be accurately 

estimated. Estimates of the overpotentials can be obtained by fitting a model of the setup 

to experimental data. However, the model estimates might have large uncertainty, which 

needs to be quantified. To this end, we perform parameter estimation and identifiability 

analysis based on a set-membership approach to determine confidence intervals for the 

overpotentials. As experimental data, we use chronopotentiometry measurements from a 

beaker cell setup. The results allow to get an impression of the uncertainty not only of the 

model parameters but also of the overpotentials themselves and hence of the relative 

importance of different loss mechanisms.   

 

Keywords: modeling, parameter estimation, uncertainty, electrochemistry, hydrogen 

1. Introduction 

In water electrolysis, the operating voltage at a certain current, i.e., production rate, is a 

key factor influencing the system efficiency. The operating voltage is given by the sum 

of the equilibrium potential and several overpotentials. These represent the voltage losses 

caused by various phenomena. The kinetic overpotential needed to overcome activation 

energies required for the oxygen evolution reaction has a large contribution to the total 

voltage losses (Fabbri et al., 2014). Therefore, new electrode materials are frequently 

investigated (Wang et al., 2020). These materials are often tested in experimental setups 

that differ from industrial cell designs. To help transfer results from the experimental 

setup to industrial cell designs, the different overpotentials must be quantified as 

accurately as possible from the experimental data. To this end, a model of the 

experimental system can be used to get an estimate for each overpotential. To get an 
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impression of how reliable the obtained estimates are, it is desirable to quantify the 

uncertainty in terms of confidence intervals. This allows to analyze if the uncertainty is 

sufficiently small, which is a requirement for reliably transferring the results to a model 

of the industrial cell design. 

In this work, we aim at quantifying the uncertainty in parameters as well as overpotentials 

using methods from the field of identifiability analysis. Identifiability analysis aims at 

assessing whether parameter values can be estimated uniquely for a given model structure 

and data set (Guillaume et al., 2019). We adopt the set-membership method used by Jung 

et al. (2019), which allows to obtain confidence intervals by approximating the feasible 

parameter set and solving a constrained optimization problem. In contrast to local 

methods that compute the confidence intervals based on the Fisher information matrix, 

the method has the advantage that the identifiability analysis is global such that the whole 

parameter space is considered. The approximation of the feasible parameter set allows 

the method to be less computationally expensive than when an exact description of the 

feasible parameter set is used. Using the set-membership method, we derive confidence 

intervals for both parameters and overpotentials based on chronopotentiometry 

measurements from a beaker cell setup. 

2. Methodology 

To obtain confidence intervals for the overpotentials, we investigate an indirect and a 

direct approach. In the former, parameter confidence intervals are obtained using the set-

membership approach described by Jung et al. (2019). The overpotential confidence 

intervals are then calculated by maximizing and minimizing the respective overpotential 

at each current density separately and restricting the parameters to be within the priorly 

obtained parameter confidence intervals. In the case of the direct approach, we directly 

use a set-membership approach to maximize and minimize each overpotential at each 

current density separately, while enforcing respective identifiability constraints. 

We use experimental measurements for the oxygen evolution reaction at the anode side 

of alkaline water electrolysis in a beaker cell setup as described in Thissen et al. (2023). 

In the beaker cell, a reference electrode is used so that the contribution of the anode can 

be observed independently of the cathode. A 1 cm² industry-standard Ni mesh is used as 

both anode and cathode. Chronopotentiometry measurements at several current densities 

were conducted in a 30 wt.% KOH solution at 80°C. 

We assume that a steady state is reached during chronopotentiometry and hence use a 

steady-state model to describe the system. The used model is comparably simple and 

includes a kinetic (ηkin) and ohmic overpotential (ηohm). Mass transfer and gas bubble 

effects are expected to be less pronounced at the present experimental conditions and due 

to continuous stirring, and are hence neglected. We model ηkin using the Tafel equation 

and the ηohm with a constant resistance. The steady-state model therefore includes three 

parameters: the ohmic resistance, the exchange current density, and the Tafel slope.  

3. Results 

The results show that both the indirect and the direct approach can be used to obtain 

overpotential confidence intervals. While the confidence interval for ηohm is the same for 

both approaches, the confidence interval for ηkin differs significantly and is much tighter 

for the direct approach. Assuming an experimental noise of 1 mV, the obtained 

confidence interval for ηkin at 1 A/cm2 is around ±10 mV and ±90 mV for the direct and 

indirect approach, respectively. While both approaches ensure the fulfillment of the 

identifiability constraints, the direct approach gives a tighter and therefore clearer picture 
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of the overpotential confidence interval. The overpotential confidence intervals allow to 

get an impression of the uncertainty in the overpotential contributions and therefore show 

how accurately the contribution of the individual loss mechanisms can be identified. In 

the context of electrode characterization, this allows to analyze how reliable ηkin can be 

estimated. 

4. Conclusions 

In this work, we show how identifiability analysis can be employed to obtain confidence 

intervals for overpotentials and therefore analyze the uncertainty in the estimation of 

overpotentials. A low uncertainty in the estimation of overpotentials is necessary for the 

results to be reliably transferable from an experimental setup to a model of the industrial 

cell design. Certain estimates of the overpotentials further allow to assess the contribution 

of different phenomena (e.g., kinetics and mass transfer) to the overall cell potential and 

therefore identify levers for potential improvement. In case of a high uncertainty in the 

estimation of overpotentials, further measurements might help to achieve lower 

uncertainty. Either way, quantifying the uncertainty is a key first step. Such an approach 

is expected to be even more relevant when more complex models are used to describe the 

system and additional overpotential contributions are considered. Furthermore, these 

methods can be used to estimate overpotential confidence intervals based on different or 

multiple electrochemical measurements in the future.  
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Abstract 
Sector coupling is seen as one of the keys to improve energy efficiency within urban 
centers. In this perspective, residential energy system coupled with industrial waste heat 
recovery via district heating network is a promising solution. However, it also implies the 
coordination between systems design since a decision taken in one subsystem directly 
affects the decision-making of other subsystems. The aim of this paper is to demonstrate 
the sector coupling within an energy community containing an industrial site. The 
problem is formulated as a renewable energy hub with investment and operation 
decisions. Each building is modeled individually and the Dantzig-Wolfe decomposition 
is applied to optimize the district-scale problem. The industrial site is modeled as a heat 
source with fixed capacity and temperature. The marginal cost analysis demonstrates the 
spillover effect of waste heat availability on the profitability of PV panels, therefore 
engendering a self-consumption competition. 
Keywords: Renewable energy hub, district heating network, marginal cost, MILP 

1. Introduction 
The building sector represents 19% of the CO2, eq emissions worldwide and is therefore 
one of the largest contributors to global warming (IRENA 2021). Integrating renewable 
capacities in the built environment becomes a prerequisite to the energy transition. In this 
perspective, the European parliament emphasized in 2018 the role of energy communities 
at promoting a high penetration of renewable energy in urban systems (EU Parliament 
2018). They improve the self-consumption of local resources by coupling distributed 
energy sources and enhance energy efficiency by supplying multiple services to the 
consumers. Energy communities are usually considered at the neighborhood scale with a 
majority of residential buildings, therefore neglecting the synergy potential with the 
industrial sector, responsible for 23% of the CO2, eq emissions worldwide (IRENA 2021). 
It is estimated that industrial waste heat recovery could reduce the energy consumption 
of cities by up to 26% (Raluca-Ancuta Suciu, 2019). Therefore, besides service coupling, 
there is as well a need for sector coupling to maximize energy efficiency. The aim of this 
paper is to analyze energy carriers and sectorial couplings within an energy community 
composed of a residential area and an industry site. A marginal cost analysis is conducted 
to understand the dynamics of the system. 
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2. Methodology 
2.1. Overview of the problem formulation 
 
The open-source decision support tool REHO (Renewable Energy Hub Optimizer) is used 
to model the district energy system (Lepour et al., 2023). The latter is defined as a set of 
buildings connected to the same low-voltage electricity grid and the same district heating 
network (DHN). Demands for services, such as space heating and domestic electricity, 
are evaluated for each building and are supplied by energy conversion units and energy 
carriers purchased from the utility grids (electricity, gas, heat).  The investment into 
energy units and their operation is optimized with a mixed integer linear programming 
formulation. At the building scale, the choice of conversion units includes air-water heat 
pumps, gas boilers, electrical heaters, thermal tanks, lithium-ion batteries and PV panels. 
When a building is connected to the DHN, the model considers the installation cost of 
underground pipes and heat exchangers. At the district scales, the energy units include a 
battery and a centralized heat pump connected to the DHN. 
 
The energy system is constrained by energy and mass balances and heat cascade. 
Equation 1 represents the energy equilibrium between imports and exports at the building 
level 𝐸̇𝐸𝑏𝑏,𝑙𝑙,𝑝𝑝,𝑡𝑡

𝑔𝑔𝑔𝑔  and energy exchanges with the grids 𝐸̇𝐸𝑙𝑙,𝑝𝑝,𝑡𝑡
𝑡𝑡𝑡𝑡 . A positive symbol represents an 

import of energy and a negative one an export. In addition, capacity constraints are 
applied to consider the maximal connection power with the grid (Eq. 2). Within the low-
voltage grid, buildings are allowed to exchange energy carriers to maximize the self-
consumption of renewable energy and respect the capacity constraints. 

�(𝐸̇𝐸𝑏𝑏,𝑙𝑙,𝑝𝑝,𝑡𝑡
𝑔𝑔𝑔𝑔+ − 𝐸̇𝐸𝑏𝑏,𝑙𝑙,𝑝𝑝,𝑡𝑡

𝑔𝑔𝑔𝑔− ) ∙ 𝑑𝑑𝑝𝑝 ∙ 𝑑𝑑𝑡𝑡 = (𝐸𝐸𝑙𝑙,𝑝𝑝,𝑡𝑡
𝑡𝑡𝑡𝑡+ − 𝐸𝐸𝑙𝑙,𝑝𝑝,𝑡𝑡

𝑡𝑡𝑡𝑡−)   ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑡𝑡 ∈ 𝑇𝑇 
𝑏𝑏∈𝐵𝐵

 (1) 

𝐸̇𝐸𝑙𝑙,𝑝𝑝,𝑡𝑡
𝑡𝑡𝑡𝑡± ≤ 𝐸̇𝐸𝑙𝑙,𝑝𝑝,𝑡𝑡

𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚                                                              ∀𝑙𝑙 ∈ 𝐿𝐿,∀𝑝𝑝 ∈ 𝑃𝑃,∀𝑡𝑡 ∈ 𝑇𝑇 (2) 

The objective function is the total costs (TOTEX), being the sum of the operating (OPEX) 
capital costs (CAPEX). The OPEX corresponds to the purchase and sale of energy carriers 
on the energy layers 𝐿𝐿 (Eq. 3). The CAPEX encompasses fixed and variable investment 
cost into energy units (Eq. 4). Replacement costs are considered when a unit has to be 
replaced over the project horizon 𝑛𝑛. The investment is annualized with an interest rate 𝑖𝑖. 
Typical periods (𝑃𝑃) are considered to reduce the problem complexity. More details on the 
problem formulation are given in the following thesis (Middelhauve, Luise, 2022). 

𝐶𝐶𝑜𝑜𝑜𝑜 = � (𝑐𝑐𝑙𝑙,+ ∙ 𝐸̇𝐸𝑙𝑙,𝑝𝑝,𝑡𝑡
𝑡𝑡𝑡𝑡+ − 𝑐𝑐𝑙𝑙,− ∙ 𝐸̇𝐸𝑙𝑙,𝑝𝑝,𝑡𝑡

𝑡𝑡𝑡𝑡−)
𝑙𝑙∈𝐿𝐿,𝑝𝑝∈𝑃𝑃,𝑡𝑡∈𝑇𝑇 

∙ 𝑑𝑑𝑝𝑝 ∙ 𝑑𝑑𝑡𝑡       (3) 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑖𝑖(1 + 𝑖𝑖)

(1 + 𝑖𝑖)𝑛𝑛 − 1
∙ � 𝑏𝑏𝑢𝑢 ∙ (𝑖𝑖𝑐𝑐1,𝑢𝑢 ∙ 𝑦𝑦𝑢𝑢 +
𝑢𝑢∈𝑈𝑈 

𝑖𝑖𝑐𝑐2,𝑢𝑢 ∙ 𝑓𝑓𝑢𝑢) + 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟   (4) 

2.2. Dantzig-Wolfe Decomposition and Linking Constraints 

To reduce solving time, the Dantzig-Wolfe decomposition is applied to the original 
formulation. The latter is split in several small problems fast to solve. Building energy 
systems are modeled in sub-problems (SPs). They provide system configurations to a 
master problem (MP) that ensure an optimal integration of the configurations in the 
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district energy system. The latter considers linking constraints, such as capacity 
constraints (Eq. 2) and energy balances (Eq. 1) with the grids, as well as energy units at 
the district scale. The dual values of the linking constraints are inserted in the OPEX of 
the SPs (Eq. 5) and is similar to a micro-grid tariff of energy. This formulation is a reduced 
cost. The iteration loop terminates once the reduced cost of all SPs becomes positive, 
meaning that no additional configuration can improve the MP objective function.  

𝐶𝐶𝑏𝑏
𝑜𝑜𝑜𝑜,𝑆𝑆𝑆𝑆 = � (𝜋𝜋𝑝𝑝,𝑡𝑡 ∙ 𝐸̇𝐸𝑙𝑙,𝑝𝑝,𝑡𝑡

𝑔𝑔𝑔𝑔+ − 𝜋𝜋𝑝𝑝,𝑡𝑡 ∙ 𝐸̇𝐸𝑙𝑙,𝑝𝑝,𝑡𝑡
𝑔𝑔𝑔𝑔−)

𝑙𝑙∈𝐿𝐿,∈𝑃𝑃,𝑡𝑡∈𝑇𝑇 

∙ 𝑑𝑑𝑝𝑝 ∙ 𝑑𝑑𝑡𝑡                    ∀𝑏𝑏 ∈ 𝐵𝐵   (5) 

2.3. District Heating Network Modeling 

The DHN cost considers two investments: the costs of pipes and the cost of delivering 
heat to the buildings, either with a direct heat exchange or with a heat pump. The latter 
are modeled with fixed and variable costs like the rest of energy units. However, the 
piping cost follows a highly non-linear function (Eq. 6 and 7). The diameter of the pipes 
𝑑𝑑𝑏𝑏𝑑𝑑ℎ𝑛𝑛 is a square root function of the heat delivered and the length 𝐿𝐿 of the DHN is a 
decision variable depending on the number of buildings connected to the network. 
Therefore, to keep the linearity of the model some reformulations are performed by taking 
advantage of the structure of the Dantzig-Wolfe decomposition. First, the problem is 
initialized by enforcing the buildings to supply their heating demand from the DHN. The 
result is an associated piping cost calibrated to the demand of the buildings. These costs 
are then linearized with fixed and variable costs and used in the SPs. In a second step, the 
MP collects the SPs configurations, where the DHN heat load of the buildings becomes 
a parameter. Therefore, it allows the MP to calculate the piping costs based on a linear 
combination of configurations. Finally, the DHN length between building is assumed 
constant and is calculated with Eq. 7, where n is the number of buildings and K a shape 
factor equal to 0.4. More information is available in this thesis (Girardin, 2012). 
 

𝐶𝐶𝑏𝑏
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐿𝐿𝑏𝑏 ∙ (𝑐𝑐1 ∙ 𝑑𝑑𝑏𝑏𝑑𝑑ℎ𝑛𝑛 + 𝑐𝑐2 ∙ 𝑦𝑦𝑏𝑏𝑑𝑑ℎ𝑛𝑛)                                                ∀𝑏𝑏 ∈ 𝐵𝐵   (6) 

𝐿𝐿𝑏𝑏 = �
𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑛𝑛
�
0.5

∙ (𝑛𝑛 − 1) ∙ 𝐾𝐾 /𝑛𝑛                                                   ∀𝑏𝑏 ∈ 𝐵𝐵   (7) 

2.4. Application 

The case study is a neighborhood with a mix of 75 residential buildings, offices and 
industries. Three district heating networks are considered with supply and return 
temperatures of 80/70°C, 45/35°C and 16/14°C. Water is used as an energy carrier. A 
geothermal heat pump at the district scale closes the DHN heat balance with a ground 
source at 8°C. Weather data are clustered in 10 typical days and 2 extreme periods. The 
electricity retail and feed-in tariffs are respectively 0.25/0.1 CHF/kWh and the natural gas 
tariff is 0.14 CHF/kWh. These values are taken from the mean tariffs in Switzerland over 
the last 3 years. Industrial waste heat is modeled by a heat capacity constraint as stated in 
Eq. 2 and is assumed to be free of charge since the piping costs are already considered. 
For low and medium temperature DHN, decentralized heat pumps are necessary to elevate 
the temperature of the heat to the one of the buildings hydraulic systems. The latter is 
65°C for old buildings and 41.5°C for recent ones.  
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3. Results and Discussion 
The following analysis looks at the impact of DHN temperatures and waste heat 
availability on investment and operation design. Figure 1 is showing costs and PV 
integration as a function of the heat available from the industry, expressed by the ratio 
between the waste heat power and the heat demand peak power from the district.  
 
Among the three DHN designs, the CAPEX remains relatively constant. Industrial waste 
heat decreases the capacity of the centralized heat pump, but this investment is relatively 
low compared to the piping investment. In addition, concerning the low and medium 
temperature DHN, the need for distributed heat pumps makes the CAPEX decrease 
negligible (respectively 0.2% and 9.6%). This drop is larger for the high temperature 
DHN (17.6%) due to the low COP of the heat pump requiring a large capacity. 
 
The analysis is highly contrasting regarding the OPEX. Without waste heat recovery, the 
high temperature design is twice more expensive than the low temperature one. This is 
mainly due to the COP of the centralized heat pump, varying by a factor 8. The poor 
performance of the high temperature DHN is partly compensated by a higher investment 
into PV panels to access cheap and renewable electricity (Figure 1b). The OPEX and PV 
penetration are highly sensitive to waste heat availability and the sensitivity increases 
with the temperature of the DHN. It appears that waste heat and renewable electricity 
from PV panels are acting like too competing energy sources. Therefore, the highest the 
exergy content of the waste heat source, the lower the profitability of PV integration. This 
trend is as well visible from the end use of renewable electricity. Electricity exports are 
increasing (+12.3%) together with the share of waste heat available due to the low 
electricity self-consumption within the district. In conclusion, the sector coupling 
between industry and residential energy system generates a loss of profitability for certain 
investments, such as the ones in PV panels. It should be noted that the higher the exergy 
efficiency, the lower are the investment and operation decision change. Therefore, the 
risks for the residential sector are mitigated.  
 

 
Figure 1: Costs and PV integration metrics with respect to waste heat recovery availability. 
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Beside reducing computational time, the decomposition approach provides insightful 
measurements of the system dynamics described previously. The dual values of the 
energy balances (Eq. 1) are the price signals sent by the district energy system to the 
buildings. Figure 2 shows their values, being the marginal cost of heat and electricity. 
Each figure is showing the 10 typical days one after the other. In Figure 2a, no waste heat 
is available. The marginal cost of electricity oscillates between the retail and feed-in tariff, 
depending on whether the district is on net import or export of electricity. The synergies 
between the two energy carriers are clear since the two profiles are highly correlated. The 
marginal cost of heat considers as well the efficiency of the system since its value is 
proportional to the COP of the heat pumps, thus to the temperatures of the DHN.   

 
Figure 2: Dual values of the energy and capacity constraints for a) no waste heat, b) no waste heat 
and electrical capacity of 400 kW, c) 0.5 𝑘𝑘𝑊𝑊𝑝𝑝,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑊𝑊𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
 waste heat and electrical capacity of 400 kW 

The second scenario presented in Figure 2b is similar to the first one, but a capacity 
constraint of 400 kW has been set on the electricity grid. This constraint decreases the 
investment into PV panels, therefore making the system net importer over the first two 
typical days. In addition, the profiles depict positive and negative peaks whenever the  
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system is reaching the maximal capacity of the electrical grid. It is worth mentioning that 
for some time steps the electricity marginal cost is negative. It means that the system is 
decreasing its TOTEX if it consumes more electricity, because it avoids changing 
configuration. 

Finally, a last scenario is built to demonstrate the impact of waste heat recovery (Figure 
2c). It possesses the same electrical capacity and has a heat capacity of 0.5 𝑘𝑘𝑊𝑊𝑝𝑝,𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑘𝑘𝑊𝑊𝑝𝑝,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
. The 

electricity marginal cost has a similar profile than in the second scenario. However, the 
heat profile is uncorrelated to the electricity tariff over the last 4 typical days. This is due 
to the waste heat competing with renewable electricity, therefore screening the influence 
of electricity on the heat marginal cost. The outcome is serious. It means that cross-
sectorial coupling is reducing cross-energy carrier coupling. In other words, if the waste 
heat is due to inefficient processes, not only the industry will sell its inefficiency to the 
residential sector, but it will also reduce the energy efficiency of the residential energy 
system. 

4. Conclusion 
The aim of this paper was to demonstrate the sectorial and energy carriers coupling 
between a residential energy system and an industry delivering waste heat. The energy 
community is modeled as an energy hub being connected to a district heating network 
and to electricity and natural gas grids. The Dantzig-Wolfe decomposition is applied on 
the problem to reduce computational time. This method is based on the use of dual 
variables. Interestingly, the dual values of the energy balances and grid capacity 
constraints provide a physical meaning on the dynamics of the system. They inform on 
the availability of cheap renewable electricity and on the saturation of energy grids. 
Moreover, they demonstrate the synergies occurring between energy carriers based on the 
correlation between energy carriers’ marginal costs. Without waste heat recovery, the 
marginal cost of heat is correlated to the one of electricity. However, with the integration 
of waste heat in the system the correlation between the two drops, especially with waste 
heat at high temperature. It demonstrates the competition between renewable electricity 
from the PV panels and waste heat recovery. Therefore, the paper highlights the 
importance of well-designed sector coupling to prevent a spillover effect of industrial 
inefficiencies on the residential sector. Further work could be accomplished on the 
modeling of the industry site and its integration in a nested decomposition accounting for 
both industrial processes and urban planning in a single optimization. 
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Abstract 

A second-generation post-combustion capture process was modeled in the Institute for 

the Design of Advanced Energy Systems (IDAES) platform to be used for optimization, 

aiming to improve its economics and to aid its commercial deployment. This equation-

oriented model enabled us to find the cost optimal design and operating conditions for 

varying plant capacities and capture rates. While transitioning this nonlinear model into 

the IDAES standard can cause some problems with model initialization and scaling, 

following these modeling principles ultimately led to an interpretable model, with unit 

models that are compatible with other models in the IDAES library.  

Keywords: post-combustion carbon capture, equation-oriented modeling, nonlinear 

programming. 

1. Introduction 

 

Amine scrubbing is a well-established and efficient technology for post-combustion 

capture (PCC) that can be used to reduce the CO2 emissions at point sources in the 

industry. Despite, the research effort aiming to decrease the energy required for capture 

using new amine solvents and process modifications, one prominent example being the 

novel Piperazine/Advanced Flash Stripper (PZ/AFS) process (Rochelle et al., 2019), 

commercial deployment of PCC processes remain limited due to high costs. Therefore, 

these processes can benefit from process optimization to improve their economic 

viability, which requires a mathematical model of the process. The Institute for the Design 

of Advanced Energy Systems (IDAES) platform is a powerful tool to model these kinds 

of novel processes, which combines a model library with a framework that can handle a 

variety of optimization problems, such as but not limited to, large scale steady-state and 

dynamic optimization (Lee et al., 2021). Its core modeling framework leverages Pyomo, 

an open-source, algebraic modeling language, written in Python (Hart et al., 2011).  
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2. Modeling in IDAES 

 

In Akkor et al. (2024), we have presented a validated, rigorous, equation-oriented model 

of the PZ/AFS process that was originally built in Pyomo. In this work, we discuss our 

experience with transitioning it to an IDAES model. The main units in the model are the 

absorber and stripper columns, which were modeled in a rate-based fashion, and then 

discretized using a finite difference method. The non-linear programming (NLP) 

flowsheet model also includes a heat exchanger network in split flow configuration with 

two bypasses and a recycle between the columns, resulting in over 8600 variables and 

constraints, for which we also developed a custom cascade initialization scheme. When 

transitioning the model for the IDAES platform, a custom packed column model was built 

to be used for the absorber and stripper columns. Custom property packages were built 

for the liquid and gas phases containing as components CO2, H2O and PZ, as well as N2 

for the absorber side gas phase. These were contributed to the model library in IDAES. 

 

Even though the modeling framework in IDAES leverages Pyomo’s capabilities, there 

are some important differences. The IDAES platform encourages better modeling 

practices for easier interpretability and reusability of unit models. Furthermore, using this 

platform has the advantage of gaining access to a comprehensive unit library, where each 

unit is implemented in a way that makes it compatible to be connected with other units, 

and to a variety of model diagnostic tools. However, this strict structure can cause 

problems when transitioning a model to this platform. Since a nonlinear model’s 

convergence is strongly dependent on its initialization, slight changes in the cascade 

structure while transitioning the model to the IDAES standard, can lead to different 

results. For instance, in the IDAES platform, the packed column was built as a custom 

unit model class, which should have its own initialization method. The AFS structure uses 

this column class and connects it to a flash tank model. The AFS model is therefore 

initialized on its own first for a chosen set of inlet conditions and only then is connected 

to the absorber. So, in our implementation, we had to ensure that the column initialization 

is robust enough on its own to work with other solvent amounts and concentrations after 

it is initialized. Moreover, in an IDAES model, there should be a complete separation 

between the unit model and the properties. This separation and the proposed unit model 

class structure is important so that the unit models are not system specific, however, it 

does cause some restrictions for the initialization of the model. To avoid introducing 

variables and constraints related to properties that are not needed in a specific step of the 

initialization scheme, we used the built-on-demand feature for the property models and 

disabled/activated the equations referencing said variables within the unit model. A 

second challenge is with the scaling of the model, which is another important factor for 

the convergence of an NLP model. The IDAES standard strongly encourages using a base 

set of units for the properties to ensure unit consistency between models. If the unit 

selected for a property in the original model was not from this set, then any constraint 

referencing this variable will have a different scaling in the new implementation. 

Therefore, manual effort is needed on the user’s end to ensure the scaling is the same. 

 

After its transitioning to the IDAES standard was complete, our model was used for 

optimization to determine the cost optimal design and operating conditions. At the pilot 

scale, compared to the simulation with nominal design and conditions, it was seen that 

about 24% yearly savings can be achieved with process optimization. To test the 

robustness of the model and to investigate commercially-relevant PCC, optimization was 

298



   

performed also for a variety of different plant capacities, capture targets and with two 

different flue gas sources, namely coal-fired and natural gas combined cycle (NGCC) flue 

gases, which have different CO2 concentrations. Furthermore, whenever the column 

dimensions were too large to be constructed, two parallel trains—each processing half 

the flue gas—were evaluated as an alternative. Moreover, with the parallel train 

configuration, we were able to keep the absorber diameter below the practical limit of 20 

meters, with only a slight increase in costs. Finally, it was confirmed that the cost increase 

between 95% and 99% capture targets was much more significant than the increase 

between 90% and 95%, as expected when targeting very high capture processes. 

3. Conclusions 

We built a validated, rate-based, equation-oriented model of a second-generation PCC 

process. This model was implemented following the IDAES standard to be made open-

source, and the custom column model and the property models created were contributed 

to the IDAES unit library. The model’s simulation and optimization capabilities were 

used for finding the cost optimal design and operating conditions for different plant 

capacities and flue gas concentrations as well as to get insights on the process design. 

With the initialization scheme that we developed, we were able to demonstrate the robust 

convergence of our model under a wide range of different conditions, proving that 

rigorous modeling and optimization of PCC processes can indeed improve their 

economics and help their commercialization. This open-source model of the PZ/AFS 

process can now be used for simulation with different equipment dimensions and 

operating conditions, for other types of optimization problems or sensitivity analyses.  
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Abstract 
Solvent selection is an essential step during the design of chemical processes, affecting 
yield, selectivity, environmental impact, and economic feasibility. Here, we present 
PSEvolve, a graph-based genetic algorithm (GA) applicable to a wide range of solvent 
design problems in chemical engineering. By leveraging graph and valence theory, the 
GA PSEvolve acts on the graph of the molecules, thus exclusively generating structurally 
feasible molecules. In this way, the chemical space is efficiently explored. In this study, 
we demonstrate the applicability of PSEvolve for lignocellulose fractionation and lignin 
upgrading. PSEvolve is publicly available for use in other molecular design problems. 

Keywords: Computer-aided molecular design, Solvent design, Lignin, Biorefineries, 

1. Implementation of PSEvolve 

The Python-based solvent design framework PSEvolve employs a GA for the de novo 
design of solvents tailored towards desired properties. For flexible prediction of various 
target properties, PSEvolve can seamlessly include diverse property models, such as 
neural networks, quantitative structure-activity models, quantitative structure-property 
models, or group contribution models. Fig. 1 illustrates the interplay between PSEvolve 
and the property models. Based on the property predictions, PSEvolve iteratively 
optimizes a population of molecules by inducing alterations to the solvent structure, such 
as atom or bond addition, atom or bond deletion, atom or bond substitution, the addition 
of functional groups or relocation of molecular fragments. Before executing these 
structural changes, PSEvolve predetermines all feasible locations within the molecule by 
using graph and valence theory so that the algorithm produces exclusively structurally 
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feasible solvents. Combined with the synthetic accessibility score (Ertl and 
Schuffenhauer 2009), only solvents that are likely commercially available or easily 
synthesizable are generated, leading to efficient exploration of the chemical space. 
 

 
Figure 1: Connection of PSEvolve with property models. PSEvolve iteratively optimizes 

molecular structures based on model predictions of the target property. 

2. Application to lignocellulose biorefineries and lignin upgrading 
Solvent selection for lignocellulose biorefineries and lignin upgrading is a difficult task. 
Commonly, either toxic solvents with high lignin solubilities (e.g. 1,4-dioxane), or more 
benign solvents with considerably lower lignin solubilities (e.g. ethanol) are utilized. 
Therefore, we applied PSEvolve to explore alternative solvents for lignin isolation from 
biomass and lignin upgrading. 
Lignin solubility is a critical property in both solvent design problems. Commonly, 
COSMO-RS is employed for lignin solubility predictions, requiring time-intensive 
quantum chemical (QC) calculations for each newly designed solvent candidate. To 
circumvent the QC calculations, we trained a graph neural network (GNN) on COSMO-
RS-generated lignin solubility data. Thus, the GNN acts as a surrogate model for 
COSMO-RS. GNNs gained remarkable attention in recent years, as they provide fast and 
accurate predictions for various molecular properties, such as activity coefficients 
(Sanchez Medina et al. 2022; Sanchez Medina et al. 2023), and bioconcentration factors 
(Sanchez Medina et al. 2021). In this study, PSEvolve designed several non-intuitive 
solvent candidates for aldehyde-assisted lignocellulose fractionation (Shuai et al. 2016) 
and lignin upgrading based on the GNN-derived lignin solubility predictions.  
Additionally, we calculated attributions on the GNN predictions using the integrated 
gradients method (Sanchez-Lengeling et al. 2020) to elicit structural solvent features that 
are linked to high lignin solubility predictions. Besides solvents that are frequently 
applied for lignin dissolution, such as dimethyl sulfoxide, PSEvolve designed many so-
far unexplored solvents with high potential for application in lignin isolation from 
biomass and lignin upgrading. Finally, experimental results confirmed high solubilities 
for different types of lignin in the designed solvents.  
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3. Conclusions 
PSEvolve is a versatile Python framework for tailored solvent design. The seamless 
integration of various property models expands its applications to a broad range of solvent 
design problems in chemical engineering. By combining PSEvolve with a GNN, we 
successfully generated several solvents specifically designed for lignocellulose 
fractionation and lignin upgrading. Experiments confirmed high solubilities for different 
types of lignin, highlighting the applicability of PSEvolve for complex solvent design 
tasks. 

4. Code availability 
PSEvolve is publicly available under:  

https://git.mpi-magdeburg.mpg.de/pse-group/PSEvolve 
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Abstract 

Biomass is a promising feedstock to source renewable carbon needed to produce biobased 

chemicals and materials. Whilst the focus has mostly been the development of processes 

for drop-in replacements of petrochemicals, there is a shift towards the design of new 

molecules which retain as much biogenic atoms as possible. The Aldehyde-Assisted 

Fractionation (AAF) of biomass yields functionalized xyloses with high biomass 

utilization efficiencies. By changing the functionalization of the aldehyde, the properties 

can be tuned to produce a wide range of products. In this work, we perform an early 

assessment of the environmental impacts of producing a green solvent and two 

bioplastics, starting from pure xylose or agricultural wastes. Process inventories, retrieved 

from Aspen Plus® simulations, are the basis of a cradle-to-grave life cycle analysis, which 

is further complemented by evaluating the transgression levels of Planetary Boundaries. 

Whilst a significant reduction of CO2 footprint compared to petrochemical alternatives 

can be achieved, especially when starting from non-edible biomass, can be achieved, the 

absolute sustainability analysis revealed that we remain far from the ecological budget. 

Our results highlight that a transition to a biobased economy requires changes across the 

whole chemical industry to decarbonise the utility systems and all the reagents. Prolonged 

use-phase and efficient recycling are included in the necessary measures to go hand in 

hand with the development of new molecules designed to improve biomass utilization 

efficiency. 

Keywords: Sustainability, biorefinery, bioplastics, planetary boundaries. 

1. Introduction 

To keep global warming below 2 ºC above pre-industrial levels, greener production 

schemes starting from renewable carbon sources have to be adopted by the chemical 

industry. Lignocellulosic biomass is a promising feedstock to produce biobased fuels, 

chemicals and materials. A major focus so far has been the development of 

technologies towards the fractionation and conversion of cellulose into direct 

petrochemical replacements. However, biomass is a highly oxygenated feedstock 
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which must undergo several processing steps to yield conventional, carbon-rich, 

building blocks. Retrofitting biobased molecules to fossil-based molecules thus 

results in complex processes with low biomass utilisation efficiencies (Manker et al., 

2023a). An alternative biorefining strategy is to design molecules retaining as much 

native-atoms as possible and tune their properties to become functionality substitutes 

of petrochemicals. One such innovative strategy, relying on aldehydes to stabilize 

reactive intermediates during the fractionation of lignocellulosic biomass, has recently 

emerged. In addition to producing a highly digestible cellulose pulp and an uncondensed 

acetal-stabilized lignin which can be efficiently depolymerized, Aldehyde-Assisted 

Fractionation (AAF) yields acetal-stabilized xyloses. By using a carboxylic acid-

functionalized aldehyde, we can also directly produce a bioplastic precursor, 

dimethylglyoxylate xylose (DMGX) (Manker et al., 2022), which could substitute petro-

based monomers in various polymers, such as PA-8,DGX polyamides (Manker et al., 

2023b). Diformylxylose (DFX), a new polar aprotic solvent (Komarova et al., 2021), can 

be produced in a single-step from agricultural wastes.  

To determine the ability of those novel biobased products to be sustainable substitutes to 

existing petrochemical products, we must assess early the environmental impacts of their 

production process. Life cycle analysis (LCA) is a necessary starting point but it does not 

assess the absolute sustainability of a product. The Planetary Boundary (PB) framework 

offers this possibility, by defining global limits which should not be crossed to avoid 

destabilising the Earth system. Guillén-Gosálbez and co-workers developed a 

methodology to link process synthesis with the estimation of the PB transgression levels 

(Vázquez and Guillén-Gosálbez, 2021) using characterisation factors and economic 

downscaling. Recent studies on CO2 utilisation (Ioannou et al., 2023) and the plastic 

industry (Bachmann et al., 2023) provide guidelines towards absolute sustainability but 

did not take into consideration new bio-based molecules. In this work, we build upon a 

comparative LCA of three xylose-derived molecules to assess their transgression levels 

of PBs, depending on whether they are produced from pure xylose sugars or from raw 

corn cobs. 

2. Materials and Methods 

2.1. Process Descriptions 

Two alternative feedstocks can be used to obtain 3 products, for which five different 

processes have been modelled (Figure 1): (1) DMGX from xylose, (2) DMGX from corn 

cobs, (3) PA-8,DGX from DMGX, (4) DFX from xylose and (5) DFX from corn cobs.  

 
Figure 1 | Block flow diagram of the five processes modelled with Aspen Plus®. Dashed lines 

indicate streams only for the processes starting from pure xylose. 
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(1) DMGX from xylose - The production of the bioplastic follows five main steps: the 

protection of xylose with glyoxylic acid; the esterification of the di-acid with methanol to 

produce the easily distillable DMGX platform; the separation of DMGX via distillation 

coupled with solvent recycling and glyoxylic acid recovery by esterification, distillation 

and hydrolysis; the crystallization of DMGX in ethanol; and the polymerization with a 

diamine (Manker et al., 2022 and 2023b). Xylose, 50 wt% aqueous solution of glyoxylic 

acid and sulfuric acid are reacted under reduced pressure to remove the water formed 

during the reaction, which favors the deprotection reaction. Complete esterification with 

methanol is then reached and the excess glyoxylic acid is converted with a selectivity of 

60 % and 40 % respectively to methyl glyoxylate and methyl dimethoxyacetate. 

Following neutralization, the methanol is distilled to be recycled. The methyl glyoxylate, 

methyl dimethoxy acetate, and water are subsequently flashed off using two vacuum flash 

drums in series. To recover the aldehyde, the vaporised glyoxylates are condensed and 

hydrolyzed with sulfuric acid as catalyst. The methanol produced during the reaction is 

stripped to be recycled to the esterification section. The glyoxylic acid and sulfuric acid 

mixture is also recycled to the protection step. The final polishing steps consist in 

removing xylose degradation products under high vacuum, and crystallizing DMGX at -

20 ºC with ethanol fed at 60 ºC.  

(2) DMGX from corn cobs - To produce DMGX from corn cobs, biomass is first 

fractionated at 110 ºC in a mixture with glyoxylic acid and sulfuric acid. Upon filtration, 

the solid fraction (51 wt% cellulose) is filtered out. Further washing and neutralisation 

steps were excluded from this model. Water is added to the filtrate to precipitate the lignin 

which is also recovered through filtration. To drive the protection reaction, water must be 

removed in an evaporator with vapour recompression to reduce the heating duty. Xylose 

protection can then proceed. The evaporated water from the reaction is mixed with the 

vapour of the feed dryer before recompression. The recovered water is cooled down to be 

recycled for lignin precipitation. The product stream of the protection reactor then 

undergoes the same steps as the process developed starting from xylose. Yields up to 83 

% based on initial xylan content have been achieved experimentally by Manker et al. 

from which the loading ratios are retrieved (Manker et al., 2022). 

(3) PA-8,DGX from DMGX - DMGX can then be polymerized with 1,8-diaminooctane in 

two steps, the second under vacuum to fully evaporate the methanol released by the 

condensation reaction. PA-8,DGX, obtained with a yield >98 % from DMGX, is finally 

extruded and pelletized.  

(4) DFX from xylose - DFX is obtained from xylose through acetal protection with 

paraformaldehyde in 2-methyltetrahydrofuran (2-MeTHF) with sulfuric acid as catalyst. 

The reactor outlet is neutralized with sodium hydroxide and salts are filtered out. The 

solvent and produced water are evaporated leading to the crystallization of DFX. Those 

crystals are further washed with ethanol. Ethanol and residual 2-MeTHF are separated in 

three distillation columns prior to recycling. The evaporated protection solvent is led to 

phase separation and then purified in two distillation columns and a flash drum.  

(5) DFX from corn cobs - The production of DFX from raw corn cobs requires a biomass 

pretreatment step where sulfuric acid is substituted by HCl. The solid cellulose is filtered 

out first. No neutralization of the reaction liquor is needed and instead di-n-butyl ether is 

added as an anti-solvent to precipitate functionalized lignin. The remaining HCl is 

evaporated and DFX crystallizes upon removal of the solvent via distillation. Washing 

with ethanol proceeds similarly to the xylose process but only two distillation columns 
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and four flash drums are used for purification of ethanol and 2-MeTHF. Overall, isolated 

DFX yields of 71 mol % and 78 % could be achieved experimentally from pure xylose 

and corn cobs respectively (Komarova et al., 2021).   

2.2. Sustainability Assessment 

2.2.1. Cradle-to-grave Life Cycle Analysis 

The environmental impacts of the AAF biorefineries are evaluated following the ISO 

14040/44 standards. The functional unit is defined as 1 kg of xylose-based product. 

Emissions are assigned by mass allocation across the by-products (lignin and cellulose 

pulp). A cradle-to-grave system boundary is adopted following a cut-off attributional 

approach, where waste treatment is included in the LCA-scope. Data for the background 

system, including all upstream activities, are retrieved from the Ecoinvent v3.9.1 database 

using the Python extension Brightway2. We assumed the use of biobased ethanol and 

methanol. We consider the usage of an electricity mix based on renewable energy sources. 

The foreground system is modelled using the material and energy flows of the processes 

simulated with Aspen Plus®, considering heat integration. Two scenarios are developed: 

a short-term scenario (‘Xylose’) using purified xylose from edible biomass and a mid-

term scenario (‘Corn cob’) where a supply chain for raw corn cobs is established. The 

carbon neutrality principle is applied: no carbon credits are assigned to the carbon 

sequestrated by photosynthesis during the growth of the wood feedstock, but at the 

end-of-life, the emissions from combustion are set to zero. Since corn cobs are a 

waste from maize production, its impact is also set to zero. To fill data gaps in the 

background data, we resort to proxy where available (e.g. xylose is modelled as glucose), 

or we create inventories from Aspen Plus® simulations of upstream activities, such as for 

2-MeTHF manufacturing from sugarcane bagasse (Leal Silva et al., 2018). 

2.2.2. Transgression Levels of Planetary Boundaries (PB) 

Through the EF methodology recommended by the European commission, we quantify 

18 LCA indicators, which were related to the 9 PBs and 5 Sustainable Development Goals 

(SDG) by Sala et al. (2020). The transgression level is calculated as the ratio between the 

estimated impact value and the ecological budget dictated by the PBs. The ecological 

budget allocated to the product – the safe operating space (SOS) - is estimated via 

economic downscaling (Vázquez and Guillén-Gosálbez, 2021): we assume that the 

usefulness of a product is proportional to its market value, therefore to maximize welfare, 

a product with a higher market size is allocated a bigger share of the global ecological 

budget. In practice, the SOS is defined as the ratio of market size divided by the world 

Gross Value Added. In future work, we aim at exploring different downscaling methods, 

in response to the lack of consensus in the scientific literature. Since xylose-based 

chemicals do not have a market yet, we assume complete substitution of petrochemicals 

with similar properties: the polyamide could replace Nylon 6 and DFX is a polar aprotic 

solvent similar to Dimethylformamide (DMF). 

3. Results and Discussions 

Designed to reduce CO2 emissions, the xylose-based products obtained via AAF exhibit 

a significant reduction in global warming potential (GWP) compared to their fossil-based 

equivalents (Fig. 2), on a mass basis. More specifically, DFX and DMGX produced from 

corn cobs could decrease the GHG emissions of their fossil-based counterpart (DMF and 

PTA) by 67 % and 42 %, respectively. Whilst the protection aldehyde of DMGX 

(glyoxylic acid) represents the main environmental burden, formaldehyde is less of a 
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driver in DFX production. Instead, utilities, especially heating, are the main contributor 

to CO2 emissions. Through further heat integration and optimisation of the utility system, 

those energy related emissions are expected to decrease. Using waste lignocellulosic 

biomass instead of xylose crystals obtained from edible sugars equally plays an important 

role in decreasing the CO2 footprint of the process.  

 
Figure 2 | Cradle-to-grave global warming potential for three xylose-based products. 

Despite a significant reduction in the GWP of biobased alternatives, the comparison to 

fossil-based alternatives tells little about the absolute sustainability of new products. In 

the case of DFX from corn cobs, the GHG emissions exceed by 20-fold the safe operating 

space assigned based on the market size of DMF. With biobased chemicals, we also notice 

a higher transgression level for land and water use, and particulate matter formation due 

to farming. The effect is even stronger for the process starting from edible sugars. 

Surprisingly, the route from corn cob leads to the largest transgression, for freshwater 

ecotoxicity because of the use of di-n-butyl ether as solvent. By identifying it as a burden 

of high concern, alternative lignin precipitation solvents should be explored.  

 
Figure 3 | Transgression levels of the Safe Operating Space for DMF and DFX. 
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In addition to decarbonization of the whole chemical industry, starting by the utility 

generation, one of the only technical solutions to stay within the ecological budget is to 

effectively recycle the products to prolong their life-time and reduce demand. 

Internalizing the cost for the environmental damages would improve the accuracy of the 

downscaling method. Introducing mass equivalents for the comparison of different 

molecules with similar properties or basing the analysis on other functional units (e.g. 

solvent intensity) would be an interesting area for further investigation. 

4. Conclusions 

This work aimed at standardizing the sustainability assessment of xylose-based products 

obtained via acetal-protection. Those novel molecules could enable a significant 

reduction of CO2 footprint compared to petrochemical alternatives with similar 

properties, especially when using waste non-edible biomass as feedstock. However, the 

absolute sustainability analysis revealed that we remain far from the Safe Operating 

Space. In addition to decarbonizing both the feedstocks and the utility systems of the 

chemical industry, prolonged use-phase and efficient recycling appear as necessary 

measures to stay within our ecological budget. Despite the longer commercialisation 

times for non-drop-in products due to the inexistence of supply chains, designing new 

molecules with higher biomass utilization efficiency is a promising avenue to target zero 

transgression levels of planetary boundaries. 
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Abstract 
Second-generation bio-refineries rely on the use of waste, non-edible lignocellulosic 
biomass and can be adapted for the production of highly functionalized plastics, such as 
PET, or its biobased alternatives with higher production efficiencies, but lower 
technological readiness levels (TRL). Inherent mass and energy losses are detected at an 
early stage using the Second-law Thermodynamic Analysis and later complemented with 
the results of detailed modeling, techno-economic assessment (TEA) and life-cycle 
analysis (LCA). Trade-offs between currently un-optimized biobased processes and the 
traditional retrofitting pathways are compared on several levels of modeling complexity 
with the final goal of assessing the real operation of a biorefinery. Our results highlight 
the potential in production costs and global warming reduction in the case of new bio-
polymers compatible with the biomass structure. 

Keywords: circular bioplastic industry, lignocellulosic biomass, PET 

1. Introduction 
In the near future, the chemical industry will represent one of the main contributors to 
GHG emissions due to strong reliance on fossil feedstock (Lange et al. 2021). One of the 
most resource-intensive products of the chemical industry is plastics, whose properties 
and low cost are irreplaceable to our society (Gabrielli et al. 2023). The shift towards 
renewable feedstock is required to reduce the fossil fuel depletion, while recycling 
enables value and properties preservation. Overall potential of the sustainable plastic 
sector has been assessed in the previous work by Meys et al. 2021 and Bachmann et al. 
2023, where the use of CO2 and biomass as renewable feedstocks are combined with 
recycling solutions to close the carbon cycle of plastic. However, new technologies with 
low TRL aren’t included in the analysis. 
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Lignocellulosic biomass offers grand potential of naturally available polysaccharides 
with high structural similarity to polymers used in packaging applications. New 
conversion routes that avoid biomass degradation and deoxygenation are expected to 
result in higher production efficiencies. The work by Manker et al. 2022 portrays 
successful selective depolymerization of waste biomass to produce xylose-based 
polyesters (such is PHX (poly(hexylene xylosediglyoxylate)), potential bio-based 
alternative to rigid polyesters. Their monomer (DMGX (dimethylglyoxylate xylose)) is 
conceptually compared to the monomers of other bio-based alternatives with intermediate 
TRL (Manker et al. 2023): PTA (purified terephthalic acid) for bio-PET and FDCA (2,5-
furandicarboxylic acid) for PEF (polyethylene furanoate) production. 

This work aims at providing the first benchmark for the large-scale production 
comparison of drop-in polymers (bio-PET) and new molecules (PEF, PHX) obtained 
from waste lignocellulosic biomass, including traditional biomass treatment by 
gasification. Only chemo-catalytic routes are considered as the most prominent near-term 
industrial solutions. Understanding the trade-offs that new technologies are facing in their 
commercialization and industrial implementation is crucial at the process development 
stage and requires a robust multi-level methodology (thermodynamic, process and system 
analysis). The way in which the results change across modeling levels is discussed and 
justifies the use of computational techniques in order to leverage sustainable processes 
and support decision making.  

2. Methodology 
2.1. Thermodynamic Analysis 
 
Second-Law Thermodynamic Analysis is performed in this work by following the 
changes in chemical exergies across the production routes in focus. Considering chemical 
transformations with 100% stoichiometric efficiency with all the reagents and products 
being at ambient conditions, maximum exergy efficiencies are obtained (Weber et al. 
2022) to which real processes are always inferior (Müller et al. 2020). Even without 
considering physical exergy, such analysis serves as a powerful tool in performing 
comparative studies in cases where processes are of different TRL. 
 
BUE (biomass utilization efficiency) is used as an indicator of atom efficiency for the 
chemical routes as it represents the percentage of the starting feedstock that ends up in 
the product structure (Iffland 2015). Main material losses caused by the sub-optimal 
feedstock valorization are identified. Values obtained from the previous work of Manker 
et al. 2023 are used in the analysis. 
2.2 Process Modelling, Techno-Economic Assessment and Life-Cycle Analysis 

 
Publicly available data from literature and patents (van Putten et al. 2021), (Muñoz De 
Diego et al. 2013), (Hirsch - Weil et al. 2020), (Masuno et al. 2016), (Hannula and 
Kurkela 2013), (Manker et al. 2022) has been used to model the processes in Aspen Plus® 
by extrapolating lab- and pilot-scale conditions to full industrial production. From the 
mass and energy balances, the capital and operating costs were estimated, for both the 
process equipment and the auxiliaries (utility generation and waste treatment). The Global 
Warming Potential (GWP100), expressed in kg CO2eq/kg of polymer, is used as a 
sustainability metric to compare the processes. The background inventory is retrieved 
from Ecoinvent v3.9.1, whilst the foreground data comes from the simulation results. The 
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functional unit is defined as one kg of polymer and the analysis stops at the factory door 
(“cradle-to-gate analysis”), since recycling is not yet considered. For multi-output 
processes, the emissions are allocated, on a mass basis, to other high-value products, such 
as lignin and cellulose pulp. Regarding biogenic carbon accounting, we follow the 
conservative approach of carbon neutrality, meaning that no carbon credits are awarded 
to the biobased products but that upon decomposition, the CO2 released would be counted 
as zero. 

3. Results and Discussion 
3.1.1. Chemical Exergy and BUE Comparison 
Each of the four routes is characterized by the change in chemical exergy across its 
process units (Figure 1). The analysis begins on the level of extracted sugars (glucose in 
all cases except for PHX which is produced from xylose) and ends with the monomer 
formation. 
 

 
Figure 1:Changes of Chemical Exergy and BUE across the investigated chemical routes; adapted 

from (Manker et al. 2023) 

Negative exergy difference between the starting material and the final product indicates 
that part of the chemical energy embedded in the starting molecular structure is lost to the 
environment. This is the case for all synthesis routes except for DMGX, for which 
additional exergy is required to yield the final product. This result is coherent with the 
high biomass utilization efficiency achieved by the acetal-protection process: very few 
biogenic atoms are lost but additional energy must be delivered to the system to drive the 
protection reaction. From a high-level perspective, energy lost to the environment via 
atomic rearrangement is wasted, whereas providing extra heat to a process can be done 
in a controlled manner, thus reducing overall losses. This back-of-the-envelope analysis 
provides the first argument to the potential of designing biobased molecules retaining as 
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PEF production (CMF) PET production (CMF) 

PHX production PET production (methanol) 

many biogenic atoms as possible, in contrast to retrofitting biomass to poorly oxygenated 
petrochemicals. 
3.1.2. Process Modeling Results 
Process yields and feedstock allocation are presented in the form of Sankey diagrams 
(Figure 2). The flows are normalized for each process separately and thus, cannot be 
directly compared across diagrams. Processing steps are represented as dark-gray vertical 
lines whose height is a size indicator. Their number is related to processing complexity 
and, in most cases, to the end product yields. For this analysis, the processes are presented 
as they are reported in literature, thus starting from the waste biomass until the polymer 
product. 
 

 
 
 

 
Figure 2: Sankey Flow Diagram - Mass Balance of the analyzed processes 

All the routes involved have relatively low material efficiencies, which is in the order of 
magnitude of second-generation bio-refineries that process recalcitrant lignocellulose 
structure. The route with the highest product yield and biomass valorization in the form 
of useful products is the one towards PHX. The routes towards PEF and PET are water-
and reagent-intensive and are characterized by an increase in the number of reaction steps. 
PET formation from methanol is the route with the lowest degree of biomass valorization 
which comes visible through large amounts of waste formed and the largest material 
requirements for all the processing steps. 
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Holistic quantitative assessment of processing routes including both their mass and 
energy requirements is achieved by translating them into costs and environmental 
indicators through TEA and LCA. Figure 3 compares the alternatives with respect to the 
production costs per unit mass of the polymer product (A) and the equivalent CO2 
emissions per kg of all the useful products generated (B). Values presented for PEF and 
PHX production are subject to a large uncertainty due to scale-up from laboratory or pilot 
plant results to an industrial scale bio-refinery of 40 ton/h. Another layer of uncertainty 
to the operating costs is caused by the market price fluctuations. 

 
Figure 3: Production costs (A) and Environmental Impact (B) comparison 

The most significant contributor to both costs and emissions is monomer production. 
Material requirements in the form of reagent, feedstock and waste treatment are the most 
significant cost contributors in all processes, whilst capital expenditures remain in the 
range of 10 % of the production costs, as expected. PHX production has a substantially 
different cost distribution compared to conventional gasification route, especially in terms 
of capital investments. By further optimizing material use in large-scale PHX production, 
one can envision further reduction in operating costs, which will increase its commercial 
competitiveness. 
 
The major influence of natural gas in driving the global warming potential across all 
processes is evident, especially in the case of PEF production. The reason for the 
excessive heating requirement of PEF compared to PET production through CMF lies in 
the difference in operating requirements, dilute processing conditions and lower degree 
of heat integration opportunities. High temperatures required for gasification are on the 
other hand responsible for high heating demand in PET production through methanol. 
Key differences in operating conditions between processes arising from the variations in 
molecular structures are considered as intrinsic process characteristics and are not 
expected to be overcome by process optimization. Such is the case of PEF whose 
monomer formation (FDCA) was evaluated potentially more exergy efficient than PTA 
for PET formation, but experiences additional limitations upon modelling the current 
production practice. 
 
Some technologies, even though mature, are less likely to be selected in the context of a 
future bio-refinery due to the high rate of waste formation, energy intensity or even direct 
CO2 emissions in the case of gasification. On the other hand, biobased oriented processing 
is characterized by dilute streams and high material requirements (catalysts etc.) that can 
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be more easily improved. In order to optimize such processes with substantial yields of 
high exergy content products and superior degree of feedstock valorization in the form of 
useful products, process intensification needs to complement the scale-up. 

4. Conclusions  
This work aimed at portraying the role of each step in the comparative evaluation of 
emerging industrial solutions towards more sustainable packaging plastics. Rethinking 
bio-refining in terms of nature-inspired product development instead of retrofitting 
biomass structure to conventional petroleum-derived structures comes as a key aspect 
when considering the use of biomass. Mass and energy performance assessed on three 
different levels (molecule, process and system) in this work justifies such thinking and 
provides solid proof for pursuing chemically and energetically more feasible routes. 
Thermodynamic analysis indicates that preserving the native biomass structure in the end 
product results in the formation of molecules with increased functionalization and 
chemical exergy content. Detailed process modeling is required to assess the actual 
process mass and energy efficiencies and shows the difference in cost and emission 
drivers across processes. It also shows that by continuously optimizing new processes 
that are more compatible with the biomass structure (energetically and materially), one 
might become more competitive, whereas for the mature technologies used for the drop-
in polymers, such as PET, little room for improvement remains available.  
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Abstract 
 

In this work, a comprehensive Dynamic Metabolic Flux Analysis (DMFA) model is 
developed for monoclonal antibody (mAb) production in Chinese Hamster Ovary (CHO) 
cell perfusion culture. The framework integrates a kinetic, stoichiometric, and mass 
balance component to simulate and mechanistically link the temporal evolution of 
intracellular metabolism to the bioreactor conditions. The framework is calibrated to 
time-series metabolite data from scale-down semi-perfusion spin tube cultures grown 
under intensified conditions as a base case training dataset. Subsequent prediction of 
CHO cell performance in a continuous perfusion bioreactor offers agreement to a subset 
of measured extracellular species, demonstrating the model’s robustness arising from its 
mechanistic foundation. Perfusion process development and optimization are target 
model applications. 
 

Keywords: Continuous biomanufacturing, perfusion, dynamic metabolic modeling 
 
1. Introduction 

 

Recombinant mAbs have transformed medicine since the 1980’s providing life-saving 
therapeutics for numerous diseases (Ecker et al., 2015). CHO cells are the preferred 
mammalian cell platform for mAb production given their robust growth in defined 
mediums, efficient transfectability, and innate capacity to induce complex post-
translational modifications such as N-linked glycosylation (Trill et al., 1995; Wurm, 
2004). Fed batch bioreactors have dominated upstream production in bioprocess 
pipelines. However, increasing global product demand, coupled with the emergence of 
an ever-expanding biosimilars market, have prompted the industry to transition towards 
continuous upstream manufacturing achieved through perfusion bioreactors (Walther et 
al., 2015). The resulting expansive design space and increased operational intensity 
relative to fed batch pose substantial challenges in the pursuit of continuous upstream 
bioprocess development and optimization. With respect to mAb production, modeling 
cell metabolism is imperative to assess nutrient utilization and physiologic objectives 
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under varying operating setpoints (Reddy et al., 2023). Here, a DMFA framework is 
established to mechanistically link key parameters of perfusion bioreactors, including 
media composition, perfusion rate, and bleed rate, to CHO cell metabolism and bioreactor 
conditions. 
 
2. Materials and Methods 
2.1 Semi-Perfusion CHO Cell Cultures 

Semi-perfusion cultures of the CHO-K1 VRC01 cell line were seeded at 0.4×106 cells 
mL-1 with a starting volume of 9.4 mL in commercial basal media and supplemental L-
glutamine in 50 mL vented spin tubes. Cultures were grown in a 5% CO2 humidified 
incubator at 37°C, 250 rpm shake speed, 19.05 mm orbital throw, and 90° rocking angle. 
1.1 mL of culture broth was sampled every day from day 0 – 3, reducing the working 
volume to 5 mL by day 3. 0.1 mL of culture was used to quantify cell density, while the 
remaining 1 mL was centrifuged at 180 g for 5 minutes, 0.22 μm sterile-filtered, and 
saved for off-line metabolite analysis. On day 3, semi-perfusion at an effective perfusion 
rate of 1 vvd-1 was initiated by centrifuging cultures at 180 g for 5 minutes, removing the 
supernatant, and resuspending the cell pellet in 5.1 mL of pre-warmed perfusion media 
formulated to an in-house recipe. 1 mL of the supernatant was saved for metabolite 
analysis. 0.1 mL of resuspended culture broth was sampled for cell density quantification.  
2.2  Analytical Methods 

Viable cell density (VCD) was determined via the Trypan Blue exclusion method using 
a DeNovix CellDrop Fluorescence Cell Counter. Residual glucose, lactate, and ammonia 
concentrations were measured with a YSI 2950 BioAnalyzer. Amino acid concentrations 
were analyzed with an OPA/FMOC-derivatization protocol with an Agilent Poroshell 
HPH-C18 column on an Agilent HPLC 1260 Infinity II system. Daily titer was assessed 
via Protein A chromatography with a POROS A 20 μm column (4.6 × 100 mm, 1.7 mL) 
on an Agilent HPLC 1260 Infinity II system.  

 
3. Model Framework Development 
 

The mathematical framework is a structured-unsegregated DMFA model which 
integrates a kinetic, stoichiometric, and macroscopic mass balance component. The 
required inputs are the initial extracellular metabolite concentrations, media composition, 
process conditions, and a robust kinetic parameter set. The model inputs feed to the 
kinetic component to approximate the growth, death, and metabolite exchange rates. The 
exchange rates are subsequently incorporated as constraints to the stoichiometric 
component, functionalized through MFA to assess the intracellular flux distribution. The 
updated exchange fluxes from the resulting MFA solution are incorporated into the 
discretized perfusion bioreactor mass balances to predict the concentration of 
extracellular species at the next timepoint. Iteration over the sequential framework 
enables dynamic simulation of intracellular metabolism and bioreactor conditions. 
3.1 Kinetics 

The kinetic component describes the growth, death, and nutrient consumption and 
metabolite production rates as a function of the time-dependent extracellular 
concentrations in the bioreactor. The rate equations are formulated according to semi-
empirical Monod kinetics, which consider the macroscopic importance of limiting 
substrates, and the biochemical relationships between nutrients, on cell growth and 
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energetic functions to yield simple rate expressions. As an example, the growth rate, Eq. 
(1) and Eq. (2), was derived from the rules of multiple-substrate Monod kinetics and is a 
function of both limiting and inhibitory species. Time-series metabolite data from semi-
perfusion cultures under intensified conditions was assessed to determine the key species, 
and thereby the form of the kinetic terms, to derive the growth rate expression. 

 

𝜇𝜇 = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚(𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜇𝜇𝐿𝐿𝐿𝐿𝐿𝐿) �𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴�(𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜇𝜇𝐺𝐺𝐺𝐺𝐺𝐺)𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴,𝐼𝐼 (1) 

𝜇𝜇𝑖𝑖 =  
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖[𝑖𝑖]

𝐾𝐾𝑖𝑖+[𝑖𝑖]   (2) 
 

The biochemical relationship between nutrients, such as glutamine and glutamic acid, and 
their ability to induce diauxic growth, was also considered in the overall growth rate 
formulation yet omitted here for brevity. In Eq. (1) and (2), 𝜇𝜇 is the overall specific growth 
rate, 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖  is the maximum growth rate on species 𝑖𝑖, 𝐾𝐾𝑖𝑖 is the Monod constant for species 
𝑖𝑖 which physically represents the concentration of species 𝑖𝑖 that will sustain half of the 
maximum growth rate on that substrate. Lastly, [𝑖𝑖] is the extracellular concentration of 
species 𝑖𝑖 in the bioreactor. The death rate is formulated in a similar manner. As an 
additional example, the rates for essential amino acid consumption are assumed to be 
proportional to the growth rate, implying that cells will only consume the minimal amount 
of an essential amino acid necessary to sustain metabolic functions (Chen et al., 2019). 
25 rate expressions were derived to encompass the growth, death, and exchange rates of 
23 metabolites, yielding a set of 66 kinetic parameters. 
3.2 Reduced Metabolic Network 

The stoichiometric component is a network of 70 biochemical reactions and 43 
metabolites representing the key metabolic pathways in CHO cells. The network was 
manually curated for prior fed-batch modeling work and includes the pathways for 
glycolysis, the TCA cycle, essential and nonessential amino acid metabolism, oxidative 
phosphorylation, the urea cycle, and biomass and antibody synthesis. Reactions for total 
carbohydrate metabolism, nucleotide synthesis, and lipid synthesis were lumped into the 
biomass synthesis reaction to reduce the network size. The stoichiometric coefficients for 
the mAb synthesis reaction were calculated from the amino acid sequence for the VRC01 
antibody and include considerations of ATP requirements. The final reduced network has 
a rank of 43 and a condition number of 18.3. The network ensures physiologically 
consistent fluxes for the major pathways given the intracellular stoichiometric constraints 
and provides mechanistic insight towards resource allocation without the need for 
complex enzymatic rate expressions. 
To functionalize the network, the pseudo steady state assumption (Zupke and 
Stephanopoulos, 1995) is applied to all intracellular metabolites yielding an 
overdetermined stoichiometric matrix. MFA is employed to solve for the flux value of 
each reaction and assess the distribution of the metabolic load on the cell at each simulated 
timepoint, taken as every 0.25 days; the duration over which the fluxes are assumed to 
remain constant. MFA quantifies the unknown intracellular fluxes, under the constraint 
of specified exchange fluxes, which can be experimentally determined, and is formulated 
as a quadratic programming problem, Eq. (3). 

 

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ �𝑣𝑣𝑖𝑖
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑣𝑣𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)
𝑣𝑣𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝜃𝜃)

�
2

𝑛𝑛=24
𝑖𝑖=1   

𝑠𝑠. 𝑡𝑡.           𝑺𝑺𝑺𝑺 = 0  
𝒗𝒗𝒍𝒍𝒍𝒍 < 𝒗𝒗𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 < 𝒗𝒗𝒖𝒖𝒖𝒖  

 
 

(3) 
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𝑣𝑣𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the calculated exchange rate of species 𝑖𝑖 scaled to flux units, as determined by 
solution to Eq. (3), 𝑣𝑣𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is the measured exchange rate as determined by experiment, 𝑺𝑺 
is the stoichiometric matrix resulting from steady state mass balances on each metabolite, 
𝒗𝒗 is the vector containing both the intracellular and exchange fluxes, and 𝒗𝒗𝒍𝒍𝒍𝒍 and 𝒗𝒗𝒖𝒖𝒖𝒖 
represent the lower and upper flux bounds on the exchange fluxes respectively. However, 
within the framework of DMFA, the measured exchange fluxes, 𝑣𝑣𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, are predicted 
from the kinetic rate expressions described in the previous section and therefore expressed 
as functions of the kinetic parameters, 𝜽𝜽, thus integrating the kinetic and stoichiometric 
components. 
3.3 Macroscopic Mass Balances 

The macroscopic bioreactor mass balances on each measured species, link the dynamics 
between the intracellular and extracellular environments. Perfusion-specific mass 
balances account for the effect of the perfusion rate, bleed rate, and media composition 
on the bulk mass transport and cell growth dynamics of the bioreactor. These are three 
Critical Process Parameters (CPPs) of continuous upstream mAb production which have 
been explicitly included in the model. To capture all phases of bioreactor operation, the 
derivative term in the general mass balance is maintained, discretized via forward finite 
differences, and re-arranged to solve for the extracellular concentration of each measured 
species at the next time point, Eq. (4). 
 

𝐶𝐶𝑖𝑖+1 = �𝐷𝐷𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑞𝑞𝑖𝑖𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎�(𝑡𝑡𝑖𝑖+1−𝑡𝑡𝑖𝑖)+𝐶𝐶𝑖𝑖
1+𝐷𝐷(𝑡𝑡𝑖𝑖+1−𝑡𝑡𝑖𝑖)

  (4) 

 

𝐶𝐶𝑖𝑖+1 is the concentration of any species at the next time point, 𝐶𝐶𝑖𝑖 is concentration of any 
species at the present timepoint, 𝐶𝐶𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  is the concentration of any species in the media, 𝐷𝐷 
is the perfusion rate, 𝑞𝑞𝑖𝑖 is the consumption or production rate of any species at the present 
timepoint, 𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎 is the average viable cell density between the two timepoints, 𝑡𝑡𝑖𝑖+1 is the 
next time point, and 𝑡𝑡𝑖𝑖 is the present timepoint. The cell bleed, Eq. (5), is simulated as a 
discrete event to align with its intermittent application during experiments, and the 
concentration of each measured species after a cell bleed can be predicted accordingly. 
 

𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑉𝑉 �1 − 𝑋𝑋𝑠𝑠𝑠𝑠
𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�  
 

(5) 

 

𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the required bleed volume, 𝑉𝑉 is the bioreactor working volume, 𝑋𝑋𝑠𝑠𝑠𝑠 is the VCD 
setpoint, and 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the presently measured VCD prior to engaging the bleed.  
 

4. Results and Discussion 
 

In addition to prior fed-batch work, time-series metabolic profiles of 24 species from 
scale-down semi-perfusion CHO cell cultures, as described in Section 2, provided the 
required data for model development and kinetic parameter estimation. Semi-perfusion 
cultures were grown without a cell bleed to approximate intensified process conditions 
characterized by industrially relevant VCDs, corresponding cell-specific perfusion rates 
(CSPRs), and nutrient depletion.  
 
Intensified semi-perfusion induces a range of metabolic states across the culture duration. 
Starting from exponential growth coupled with large nutrient consumption rates, the 
culture approaches fed-batch dynamics ending in reduced net growth with high 
productivity, indicative of the stationary phase. The mechanistic framework of the model, 
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provided by the reduced reaction network and mass balances, captures the range of 
metabolic states with a single set of kinetic parameter values (Figure 1.a). 

 

a) b) 

  

  

  

  
 

Figure 1. Subset of CHO-K1 VRC01 cell metabolic profiles. a) Scale-down semi-perfusion 
experimental data and model fits. b) 1 L continuous perfusion bioreactor experimental profiles 
and model predictions. The solid vertical lines denote perfusion initiation. The dashed vertical 

line in b) indicates cell bleed initiation. 
 

While calibrated to only a single scale-down semi-perfusion dataset, subsequent model 
predictions of 1 L continuous perfusion bioreactor dynamics, under similar experimental 
conditions, followed to assess early performance of model extrapolation. Simulations of 
cell growth and metabolite profiles under mild process conditions, characterized by a low 
VCD and sufficient nutrient availability, agreed with previously collected data for a 
subset of species (Figure 1.b). The agreement between the predicted and experimental 
profiles can be improved, yet the general trends and magnitudes are maintained, 
highlighting the robustness of the DMFA framework to two significant differences 
between the datasets: process dynamics and the ensuing cell metabolic states. The 
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difference between semi-perfusion, in the form of nearly instantaneous media exchanges, 
and continuous perfusion coupled with an intermittent cell bleed to control the cell growth 
rate at steady state, is captured through the mass balance component of the framework. 
The difference in metabolic states between the two processes, including the range of states 
observed in semi-perfusion, are explained by the underlying mechanistic foundation of 
the metabolic network, which provides physiologically meaningful constraints towards 
intracellular resource distribution. 

 

5. Conclusions 
 

The mechanistic basis of the DMFA framework enables quantitative assessment of CHO 
cell metabolism across perfusion bioreactor scales and operational modes with a minimal 
set of required inputs. Future work seeks model application towards process goals of 
industrial interest. Identification of key nutrients to reduce growth and increase 
productivity is of primary importance in perfusion bioreactors. Such information can be 
used to provide insight towards media reformulation and feeding strategies, and 
subsequently predict the corresponding minimum CSPR, translating to a reduction in 
operational costs. Increasing the framework’s complexity by defining a segregated 
structure to evaluate metabolic differences between heterogeneous cell populations in the 
bioreactor over the culture duration is an additional goal of future efforts. 
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Abstract 
The purpose of this work is to present the retrofitting of a sugar mill into a biorefinery to 
diversify the commercialized products, so as to improve the economy and sustainability 
of the industrial plant. The proposed methodology considers the design, simulation and 
techno-economic evaluation of a sugarcane biorefinery to produce mainly lactic acid and 
biofertilizer. From a circular economy perspective, the biorefinery considers the three 
biomasses generated in a sugar mill: sugarcane juice, molasses and bagasse (a 
lignocellulosic waste). The study takes into account the availability of raw materials (from 
the industry in Mexico) to determine the installed capacity of the industrial biorefinery. 

Keywords: process design, process modelling, process simulation, biorefinery. 

1. Introduction 
From a circular economy perspective, the use of both raw materials and waste, as well as 
the production of high value-added products in a biorefinery, improve the economics of 
the production process, minimize waste discharge and energy consumption, and reduce 
dependence on petroleum products. So biorefineries offer new economic opportunities 
for agriculture and the chemical industry (Fitzpatrick et al., 2010). In particular, 
retrofitting sugar mills into sustainable biorefineries (see Figure 1) is a potential 
opportunity, since the Mexican sugar industry has serious operational and profitability 
problems (Anaya-Reza and Lopez-Arenas, 2018). These industrial facilities provide first 
(1G) and second (2G) generation biomasses that can easily be converted into value-added 
products. Among these are sugarcane juice (1G biomass), molasses (byproduct also 
considered as 1G biomass), and bagasse (2G biomass because it is a lignocellulosic 
waste). 
 
Regarding the products of a biorefinery, much attention has been paid to bioproducts, that 
is, those processed through microbial biotechnology. Mainly due to global concerns about 
energy and environment, which are the main reasons to develop new techniques to 
produce almost all products through eco-friendly methods. Such as, biofuels, amino acids, 
organic acids, biopolymers, etc. And of course, with a circular economy approach, 
secondary byproducts could be steam, electricity, biogas, animal feed, biofertilizer, etc.  
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Figure 1. Conceptual design for the retrofitting of a sugar mill into a sustainable biorefinery. 

Among the most important bioproducts is lactic acid, since it has wide applications in the 
pharmaceutical, cosmetic, chemical and food industries; with a world production of 
1.6x106 t/y (Fitzpatrick et al., 2010). In addition, it is a precursor with great potential for 
the production of ecological, biodegradable and biocompatible poly-lactic acid (PLA) 
polymers. Thus, lactic acid was selected in this work to show the conversion methodology 
of a sugar mill. While the secondary product is a fertilizer, which is the result of cell 
culture during the fermentation process of glucose to produce lactic acid. 
So, the objective of this work is the retrofitting of a sugar mill, through the proposal of 
the synthesis, design, simulation and techno-economic evaluation of a sugarcane 
biorefinery to produce mainly lactic acid and a biofertilizer.  

2. Methodology 
2.1. Process synthesis 
The process stages of the biorefinery are briefly described below. 
Raw material conditioning: Each biomass is prepared according to its physical and 
chemical properties. In the case of juice, a dilution is carried out; and in the case of 
molasses, impurities are removed, and then molasses is diluted. While bagasse is ground, 
moistened and diluted. In particular, for bagasse, a steam explosion is carried out as a 
pretreatment for the structural degradation of the lignocellulosic biomass and the release 
of sugar polymers from its matrix. Finally, each conditioned biomass is subsequently 
sterilized for incorporation into the fermenter. 
 
Preparation of culture medium: Tryptone, yeast extract and calcium hydroxide are added 
as nutrients. This mixture is diluted and heat sterilized to ensure that it is in optimal 
condition and that there are no contaminants. 
 
Fermentation: The biomass, the culture medium and the microorganism (L. casei ssp. 
Rhamnosus) are added to the fermentation reactor, under isothermal and anaerobic 
conditions (Anaya-Reza and López-Arenas, 2018). Because microorganism production is 
inhibited by the lactic acid produced, then calcium hydroxide is added to the fermenter to 
neutralize the acid, maintaining the reactive mixture at a pH of 5 and forming calcium 
lactate salts. Upon completion of the fermentation, the output stream is taken to a storage 
tank. 

Byproducts: 
Biofertilizer, steam, 
electricity, biogas, 
animal feed, etc.

Products: Saccharose. 
Standard, raw, refined 
and specialty sugars

juice

molasses

bagasse

subproduct

Bioproducts: Fuels, 
amino acids, organic 
acids, plastics, etc.

Sugarcane

Sugar mill
biorefinery
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Purification of the biofertilizer: First, the microorganism is eliminated using a rotating 
filter. The liquid phase is sent to lactic acid purification. While, the solid phase is sent to 
a rotary dryer to obtain dry biomass, which will be marketed as biofertilizer. 
 
Purification of lactic acid: The liquid phase separated in the previous stage is sent to an 
acidifying tank where sulfuric acid is added, since with this the dissociation of calcium 
lactate is achieved, forming lactic acid and gypsum. The gypsum is removed using a 
rotating filter, and the lactic acid is recovered using an evaporator and spray dryer. A 
product with a purity of 55% lactic acid is achieved, which is within the food grade, 50-
88% (Alexandri et al., 2019). 
2.2. Conceptual Design 
 
The biorefinery conceptual design was implemented in a process simulator (SuperPro 
Designer), selecting a batch operation mode and considering an annual operation time of 
48 weeks. The maximum availability of raw material was determined according to the 
installed capacity in a sugar mill in Mexico (CONADESUCA, 2022): 3,453,700 t/y of 
sugarcane juice, 134,160 t/y of molasses, and 910,780 t/y of bagasse; such that the design 
of the proposed biorefinery is sized. Figure 2 shows the process flow diagrams of the 
conditioning sections of the three biomasses. While Figure 3 shows the sections of 
preparation of the culture medium, fermentation, and purification of the biofertilizer and 
lactic acid. 
 

 
Figure 2. Process flow diagrams of biomass conditioning sections: (a) sugarcane juice, (b) 

molasses, and (c) bagasse 
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Figure 3. Process flow diagram of preparation of the culture medium, fermentation, and 

purification sections. 

2.3. Biorefinery assessment 
 
The comprehensive evaluation of the biorefinery is carried out considering: (a) technical 
aspects, verifying the performance, productivity and installed capacity of the process; (b) 
economic criteria, evaluating the unit production cost, the return on investment and the 
payback period; and (c) environmental issues, determining water consumption, the heat 
transfer requirement and energy consumption.  

3. Simulation results 
Using the modelling and simulation tools of the process simulator, the material and 
energy balances are calculated, the results of which in turn allow the evaluation of the 
profitability and environmental impact of each biomass used for the retrofitting of the 
sugar mill. When carrying out the techno-economic evaluation with the maximum 
quantity available for each biomass, some designs were not profitable. Therefore, the 
designs were improved by performing parametric sensitivity analysis: (a) modifying the 
number of fermentation reactors used in the design (since the reaction stage is a 
bottleneck), so that by increasing the set of reactors reduces downtime and improves 
profitability; and (b) varying the amount of biomass fed, so that a design is found that 
optimizes the efficient use of the equipment and improves the profitability of the process. 
The optimal profitability results are reported in Table 1 for each case study, noting that: 
(i) The technical analysis demonstrates that the production of lactic acid and biofertilizer 
from the three proposed biomasses is feasible, and the quantity required to achieve the 
best profitability in each case is determined. It is important to note that profitability is 
achieved with quantities lower than the limits of each biomass produced in sugar mills. 
(ii) Considering that a good profitability is when a rate of return on investment greater 
than 20% is achieved with a payback period of less than 3 years (Seider et al., 2009), it is 
observed that, as expected, the best values of profitability are achieved by using the juice 
followed by molasses, while with bagasse there is no acceptable profitability according 
the previous profitability definition. However, from a circular economy point of view, 
even the low profitability values for bagasse (which is a waste) are positive and 
satisfactory. 
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Preparation of culture medium

Purification
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(iii) Regarding the environmental issues, it is observed that when sugarcane juice is used, 
a lower amount of process water is required compared to the other cases of molasses and 
bagasse. However, the amount of services (water vapor and cooling water) and electrical 
energy consumption are very similar for all processes. 

Table 1. Comprehensive evaluation for the sugarcane biorefinery proposal. 

 Biomass  
Concept Juice   Molasses bagasse Units  
Technical results 
Raw material consumption 488,070 134,160 298,000 t/y 
Lactic acid production 108,753 129,476 236,000 t/y 
Biofertilizer production 12,057 13,770 39,563 t/y 
Economic results 
Unit production cost 0.73 0.74 1.0125 USD$/kg lactic acid 
Return on investment 45.20 39.76 18.44 % 
Payback period 2.21 2.51 5.42 y 
Environmental results 
Processed water 2.96 9.30 9.15 kg/kg lactic acid 
Water steam 14.97 14.47 12.84 kg/kg lactic acid 
Cooling water 768.25 746.07 762.19 kg/kg lactic acid 
Electric power 0.21 0.20 0.23 kW-h/kg lactic acid 

 

4. Conclusions 
The results of this work demonstrate the technical feasibility for the conversion of a sugar 
mill, being able to expand its marketable products and demonstrating good profitability 
with short periods of investment recovery. The use of each biomass (sugarcane juice, 
molasses, or bagasse) has positive aspects and many others to improve, however, their 
use as tools of change for the conversion of processes focused on linear to circular 
economies, meet the established requirements in the industry. 
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Abstract 

Pseudomonas putida has significant potential as a cell factory, especially for degrading 

aromatic polymers like lignin, due to its remarkably versatile metabolism. In this work, 

we devise rational metabolic engineering strategies for producing muconic acid from 

lignin-based aromatics using the bacterium Pseudomonas putida KT2440, focusing on 

increasing the efficiency and yield of these processes. We develop large-scale kinetic 

models of Pseudomonas Putida KT2440 for biobased cis,cis-Muconic acid (ccMA) 

production through lignin-related aromatic compounds, such as p-coumarate (pCA), 

using the ORACLE (Optimization and Risk Analysis of Complex Living Entities) 

methodology.  

The developed large-scale kinetic models are used to derive engineering strategies 

through Metabolic Control Analysis (MCA) to manipulate the genetic composition of 

Pseudomonas putida KT2440. This study investigates the effects of uncertainty in the 

operating directions of reactions in the metabolic network on devised metabolic 

engineering targets. To this end, we study two cases, differing in the direction the 

phosphoglucose-isomerase (PGI) reaction, an essential step of the glycolysis and 

gluconeogenesis pathways, operates. We identify target enzymes for the two cases and 

propose metabolic engineering strategies for each formulation. The analysis of the two 

cases revealed that our metabolic engineering decisions are strongly affected by the 

assumptions on the directionality of PGI. Therefore, to devise reliable metabolic 

engineering targets, interventions that are consistent in the two cases should be 

considered. This study also allows us to propose future experiments that would reduce 

the uncertainty in the system and, therefore, improve the reliability of the developed 

kinetic models. 
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This research expands our knowledge about the biochemical capabilities of Pseudomonas 

putida through the use of developed large-scale kinetic models of this important industrial 

host.  

Keywords: Pseudomonas putida KT2440, Large-scale kinetic models of metabolism, 

Thermodynamics, Flux Directionality Profile, Metabolic engineering. 

Introduction 

A promising bacterium for the industrial production of biofuels and biochemicals is 

Pseudomonas Putida, due to its strong ability to tolerate toxic compounds, as well as its 

capacity to grow on a wide range of substrates. Pseudomonas putida can depolymerize 

high molecular weight (HMW) oligomers, thus making complex aromatic polymers 

potential substrate candidates. A promising source of renewable carbon for the production 

of high-value chemicals is lignin, a structural component of plant biomass. Despite being 

the primary large-volume renewable aromatic feedstock in nature, the transformation of 

lignin into bioproducts presents a substantial bottleneck due to its intrinsic heterogeneity 

and resistance to depolymerization (Park et al., 2020). Lignin is currently underutilized 

and routinely combusted to generate process heat in the paper and pulp industry (Wu et 

al., 2017).  

 

In the context of lignin valorization, this study focuses on muconic acid, an important 

chemical intermediate that can be produced from lignin-based aromatics. Muconic acid 

is suitable for polymerization into biobased polyesters since it can be converted through 

a single-step hydrogenation process to adipic acid, a common monomer in the production 

of nylon-6,6 (Vardon et al., 2016). Furthermore, transforming cis,cis-muconic acid into 

trans,trans-muconic acid via isomerization, followed by subsequent reactions, offers a 

pathway to generate terephthalic acid, a primary building block for Bio-PET. 

 

Genome-Scale Models (GEMs) of Pseudomonas putida have been constructed in the past 

years, with the most recent one being the iJN1463, consisting of 2153 metabolites, 2927 

reactions, and 1462 genes (Nogales et al., 2019). Those models have been used for 

optimal flux distribution predictions and gene essentiality evaluation. Advancements in 

computational metabolic engineering have allowed large-scale kinetic models to capture 

the dynamic metabolic responses of a cell to parameter perturbations (Tokic et al., 2020). 

However, constructing those models requires experimental datasets to constrain the 

model’s predictions to a physiologically relevant solution space (Miskovic et al., 2015). 

Several metabolic engineering and bioprocess development studies have been done, 

focusing on engineering Pseudomonas putida toward industrially-relevant MA 

production from aromatic compounds (Sonoki et al., 2014; Kohlstedt et al., 2022; 

Almqvist et al., 2021; Kuatsjah et al., 2022; Salvachua et al., 2018).   

 

In this work, we develop a systematic approach to lignin valorization through the strain 

Pseudomonas putida KT2440. We build large-scale kinetic models for two Flux 

Directionality Profiles (FDPs) of the metabolism of Pseudomonas putida and identify 

enzyme targets for muconic acid overproduction for each FDP.   

Methods & Results 

For the purpose of this study, the most recent GEM of Pseudomonas putida iJN1463, was 

reduced using redGEM (Ataman et al., 2017), a systematic model reduction framework 

that produces core networks focused around 8 subsystems of interest: glycolysis, 
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glyconeogenesis, pyruvate metabolism, TCA cycle, pentose phosphate pathway, β-

ketoadipate pathway, the oxidative phosphorylation (ETC) pathway, as well as 

phenylalanine, tyrosine and tryptophan biosynthesis pathway. We then apply lumpGEM, 

an algorithm that forms a lumped reaction to accommodate the production of the 

necessary biomass building blocks (Ataman & Hatzimanikatis, 2017).  

The Optimization and Risk Analysis of Complex Living Entities (ORACLE) 

methodology (Miskovic & Hatzimanikatis, 2010) is used for the analysis of muconic acid 

production by Pseudomonas putida KT2440. Cis,cis-muconic acid  production is based 

on p-coumaric acid uptake of the cell, while cell growth is supported by glucose uptake. 

For this purpose, two gene knockouts and two reaction additions were performed. The 

reduced model was further constrained with experimental data of uptake, secretion and 

growth rates and metabolomics data of media metabolites (Kuatsjah et al., 2022). 

Thermodynamics-based Flux Balance Analysis (TFBA) (Kiparissides & Hatzimanikatis, 

2017; Soh & Hatzimanikatis, 2014) was performed, for which the standard Gibbs free 

energy of formation (ΔGo
f) and reaction (ΔGo

r) were estimated with the Group 

Contribution Method (Jankowski et al., 2008). The curated reduced thermodynamic 

model consists of 365 reactions, 307 metabolites and 364 genes. 

However, even with integrating available data certain reactions can still operate in either 

the forward or reverse direction while remaining consistent with the observed physiology. 

To build the kinetic model, we need to define an explicit directionality for those reactions 

(Hameri et al., 2019). 

We constructed populations of non-linear large-scale kinetic models for 2 selected FDPs. 

We generated 50,000 stable kinetic models for each FDP, based on 1,000 steady-state 

solution samples using the SKiMpy (Symbolic Kinetic Models with Python) package 

(Weilandt et al., 2022). Each kinetic model consists of 2,692 parameters, capturing the 

complex cellular physiology of Pseudomonas putida cells. 

Here, we investigate how the directionality assumption of the reaction catalysed by 

enzyme phosphoglucose-isomerase (PGI) that interconverts glucose-6-phosphate and 

fructose-6-phosphate affects the predictions of the populated kinetic models. Based on 

this, we sampled the solution space to determine concentrations and fluxes and developed 

two kinetic models. We performed MCA (Wang et al., 2004) on these models and 

identified 17 key enzymes for each FDP that affect the production of catechol, the 

immediate precursor of muconic acid (Figure 1). Three enzyme targets that have a 

consistent, positive effect on muconic acid production in the two FDPs, are the ones 

catalysing NADP biosynthesis, 4-hydroxybenzoate degradation and p-coumarate 

degradation (Figure 1). The first reaction contributes to the overall production of ADP 

and NADP energy carriers, whereas the latter two take part in the p-coumaric acid 

degradation pathway, catabolising our main lignin derivative for muconic acid 

production, pCA. The directionality in the PGI reaction affects the sign of Flux Control 

Coefficients (FCCs) for several enzymes, such as reaction GLUPRT participating in the 

5-aminoimidazole ribonucleotide biosynthesis pathway. PGI reaction is an essential step 

of the glycolysis and gluconeogenesis pathways, and it was previously reported that it can 

operate in both directions (Ebert et al., 2011). Therefore, it is an interesting candidate to 

investigate its flux directionality effect on muconic acid production. 

 

 

328



   

Figure 1. Flux Control coefficients of the production of muconic acid for two different FDPs. 

Illustration of the top 17 enzymes across the FDPs in terms of absolute control over muconic acid 

production. The bars correspond to the mean values of FCCs for FDP1, where the directionality 

of PGI reaction is set forward, and for FDP2 where the directionality of PGI reaction is set 

backward. 

Conclusions 

Overall, this project contributes to the advancement of sustainable biobased chemicals 

and assists in designing future biorefineries. Moreover, the curated genome-scale model 

of Pseudomonas putida, along with the large-scale stoichiometric and kinetic models, are 

valuable for future biobased chemical research and development. The study's results may 

also facilitate the exploration of alternative target enzymes and production pathways that 

increase robustness to lignin-related feedstocks and muconic acid productivity, thereby 

propelling the field of biobased chemical production forward.  

Acknowledgements 

This work was conducted as part of an inter-university research collaboration project 

between the National Technical University of Athens (NTUA) and the Swiss Federal 

Institute of Technology in Lausanne (EPFL). 

The research project was funded by the Hellenic Foundation for Research and Innovation 

(H.F.R.I.) under the 2nd Call for H.F.R.I. Research Projects to support Faculty Members 

& Researchers (Project Number: 3817). 

329



   

References 

Almqvist, H., Veras, H., Li, K., Hidalgo, J. G., Hulteberg, C., Gorwa-Grauslund, M., Parachin, N. 

S., & Carlquist, M. (2021). Muconic Acid Production Using Engineered Pseudomonas putida 

KT2440 and a Guaiacol-Rich Fraction Derived from Kraft Lignin. ACS Sustainable Chemistry & 

Engineering, 9(24), 8097–8106. 

Ataman, M., Gardiol, D. F. H., Fengos, G., & Hatzimanikatis, V. (2017). redGEM: Systematic 

reduction and analysis of genome-scale metabolic reconstructions for development of consistent 

core metabolic models. PLOS Computational Biology, 13(7), e1005444. 

Ataman, M., & Hatzimanikatis, V. (2017). lumpGEM: Systematic generation of subnetworks and 

elementally balanced lumped reactions for the biosynthesis of target metabolites. PLOS 

Computational Biology, 13(7), e1005513.  

Ebert, B. E., Kurth, F., Grund, M., Blank, L. M., & Schmid, A. (2011). Response of Pseudomonas 

putida KT2440 to increased NADH and ATP demand. Applied and environmental microbiology, 

77(18), 6597–6605. 

Hameri, T., Fengos, G., Ataman, M., Miskovic, L., & Hatzimanikatis, V. (2019). Kinetic models 

of metabolism that consider alternative steady-state solutions of intracellular fluxes and 

concentrations. Metabolic Engineering, 52, 29–41. 

Jankowski, M., Henry, C. S., Broadbelt, L. J., & Hatzimanikatis, V. (2008). Group Contribution 

Method for thermodynamic analysis of complex metabolic networks. Biophysical Journal, 95(3), 

1487–1499. 

Kiparissides, A., & Hatzimanikatis, V. (2017). Thermodynamics-based Metabolite Sensitivity 

Analysis in metabolic networks. Metabolic Engineering, 39, 117–127. 

Kohlstedt, M., Weimer, A., Weiland, F., Stolzenberger, J., Selzer, M., Sanz, M. A., Kramps, L., & 

Wittmann, C. (2022). Biobased PET from lignin using an engineered cis, cis-muconate-producing 

Pseudomonas putida strain with superior robustness, energy and redox properties. Metabolic 

Engineering, 72, 337–352. 

Kuatsjah, E., Johnson, C. W., Salvachua, D., Werner, A. Z., Zahn, M., Szostkiewicz, C. J., Singer, 

C. A., Dominick, G., Okekeogbu, I., Haugen, S. J., Woodworth, S. P., Ramirez, K. J., Giannone, 

R. J., Hettich, R. L., McGeehan, J., & Beckham, G. T. (2022). Debottlenecking 4-hydroxybenzoate 

hydroxylation in Pseudomonas putida KT2440 improves muconate productivity from p-coumarate. 

Metabolic Engineering, 70, 31–42. 

Miskovic, L., & Hatzimanikatis, V. (2010). Production of biofuels and biochemicals: in need of an 

ORACLE. Trends in Biotechnology, 28(8), 391–397. 

Miskovic, L., Tokic, M., Fengos, G., & Hatzimanikatis, V. (2015). Rites of passage: requirements 

and standards for building kinetic models of metabolic phenotypes. Current Opinion in 

Biotechnology, 36, 146–153. 

Nogales, J., Mueller, J. L., Gudmundsson, S., Canalejo, F. J., Duque, E., Monk, J. M., Feist, A. M., 

Ramos, J. L., Niu, W., & Palsson, B. Ø. (2019). High‐quality genome‐scale metabolic modelling 

of Pseudomonas putida highlights its broad metabolic capabilities. Environmental Microbiology, 

22(1), 255–269. 

Park, M., Chen, Y., Thompson, M. G., Benites, V. T., Fong, B., Kim, Y., Baidoo, E. E. K., Gladden, 

J. M., Adams, P. D., Keasling, J. D., Simmons, B. A., & Singer, S. W. (2020). Response of 

Pseudomonas putida to Complex, Aromatic‐Rich Fractions from Biomass. ChemSusChem, 13(17), 

4455–4467. 

Salvachua, D., Johnson, C. W., Singer, C. A., Rohrer, H., Peterson, D. J., Black, B. A., Knapp, A., 

& Beckham, G. T. (2018). Bioprocess development for muconic acid production from aromatic 

compounds and lignin. Green Chemistry, 20(21), 5007–5019. 

330



   

Soh, K. C., & Hatzimanikatis, V. (2014). Constraining the flux space using thermodynamics and 

integration of metabolomics data. In Methods in molecular biology (pp. 49–63). 

Sonoki, T., Morooka, M., Sakamoto, K., Otsuka, Y., Nakamura, M., Jellison, J., & Goodell, B. 

(2014). Enhancement of protocatechuate decarboxylase activity for the effective production of 

muconate from lignin-related aromatic compounds. Journal of Biotechnology, 192, 71–77. 

Tokic, M., Hatzimanikatis, V., & Miskovic, L. (2020). Large-scale kinetic metabolic models of 

Pseudomonas putida KT2440 for consistent design of metabolic engineering strategies. 

Biotechnology for Biofuels, 13(1). 

Vardon, D. R., Rorrer, N. A., Salvachua, D., Settle, A. E., Johnson, C. W., Menart, M. J., Cleveland, 

N. S., Ciesielski, P. N., Steirer, K. X., Dorgan, J. R., & Beckham, G. T. (2016). cis,cis-Muconic 

acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization. Green Chemistry, 

18(11), 3397–3413. 

Wang, L., Birol, İ., & Hatzimanikatis, V. (2004). Metabolic Control Analysis under Uncertainty: 

Framework Development and Case Studies. Biophysical Journal, 87(6), 3750–3763. 

Weilandt, D., Salvy, P., Masid, M., Fengos, G., Eriksson, R. D., Hosseini, Z., & Hatzimanikatis, V. 

(2022). Symbolic Kinetic Models in Python (SKiMpy): Intuitive modeling of large-scale biological 

kinetic models. bioRxiv (Cold Spring Harbor Laboratory).  

Wu, W., Dutta, T., Varman, A. M., Eudes, A., Manalansan, B., Loque, D., & Singh, S. (2017). 

Lignin Valorization: Two Hybrid Biochemical Routes for the Conversion of Polymeric Lignin into 

Value-added Chemicals. Scientific Reports, 7(1). 

 

331



Flavio Manenti, Gintaras V. Reklaitis (Eds.), Book of Abstract of the 34th European 
Symposium on Computer Aided Process Engineering / 15th International Symposium on 
Process Systems Engineering (ESCAPE34/PSE24), June 2-6, 2024, Florence, Italy. 

Modelling the Reactive Oxygen Species Initiated 
Amyloid Aggregation and Inhibitory Action of 
Chlorogenic Acid 
Abdul Majid, Saneev Garg 

Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 
Uttar Pradesh, 208016, India 
majid20@iitk.ac.in 

Abstract  
 
Alzheimer’s disease (AD) is a common form of dementia which is closely linked with the 
reactive oxygen species (ROS) and the abnormal aggregation of amyloid beta (Aβ) 
protein in the human brain. Aβ protein aggregates to form plaques which deposit across 
the neurons and lead to neuronal cell death. Thus, Aβ protein is thought to be a major 
factor for AD pathogenesis. Currently, different strategies are being explored to prevent 
Aβ aggregation. Seeking therapeutic molecules that could inhibit the aggregation 
effectively, has been a major research challenge. Chlorogenic acid (CA), considered as 
an antioxidant, is reported to have an inhibition effect on Aβ aggregation. Herein, a 
previously reported kinetic model based on free radical polymerisation, assuming ROS 
as an initiator, is extended and used to study the Aβ aggregation and inhibitory effects of 
CA. Model parameter tuning is done with the experimental data to estimate the value of 
new parameter in the model. The simulated results from the model are observed to be in 
good agreement with the experimental data at a different concentration of CA. The model 
may also be extended to study the inhibitory effects of other drugs, such as polyphenols 
and metal chelators, showing a similar kinetic mechanism for inhibition of Aβ 
aggregation. 
 
Keywords: Kinetic modelling, Aβ aggregation, drug inhibition, Chlorogenic acid.  

1. Introduction  
Alzheimer’s disease (AD) is a common form of dementia characterized by abnormal 
protein aggregation leading to cognitive disabilities and memory loss (Knowles et al. 
2014; Mroczko et al. 2018). The late-onset disease, being more probable than early onset, 
affects almost 10% of the population above 65 years (Hao and Friedman 2016; Zhou et 
al. 2004). Currently, at least 50 million people are affected worldwide (Breijyeh and 
Karaman 2021).  
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Among the several proposed hypotheses, the amyloid beta (Aβ) cascade hypothesis has 
gained significant attention in previous few decades (Doig 2018; Rudge 2022).  
Aβ proteins are produced by a two-step sequential cleavage of amyloid precursor proteins 
(APP) which are sometimes cleaved by amyloidogenic pathways responsible for Aβ 
toxicity (Vijayan and Remya 2019). The hypothesis assumes that the excessive 
accumulation of Aβ leads to neuronal cell damage (Carrillo-mora and Colín-barenque 
2014).  
 
Huge in vitro experimental studies have been performed and corresponding mathematical 
models have been developed to study Aβ aggregation. A traditional mathematical model 
includes nucleation phase, elongation phase and plateau phase which are observed as a 
result of nucleus formation, fibril elongation and mature fibril/plaque formation 
respectively (Ghosh et al. 2010).   
Currently, only two types of small molecule drugs, cholinergic inhibitors to 
cholinesterase enzyme and antagonists to N-methyl d-aspartate (NMDA), have been 
approved by the Food and Drug Administration (FDA, USA) to treat AD symptomatically 
(Miculas et al. 2023). The available therapies only temporarily relieve the symptoms and 
no disease modifying drug has been developed to date which can prevent the disease 
pathogenesis (Urbanc 2021). Based on the amyloid hypothesis, different strategies are 
being employed to develop anti-Alzheimer’s drugs, with mechanisms of action mainly 
focusing on reducing the generation of amyloid precursor protein (APP), inhibiting the 
cleavage of APP by inhibiting the beta and gamma secretase and preventing Aβ 
aggregation (Miculas et al. 2023; Wu et al. 2022).  
 
Various mathematical models are reported to study the inhibitors’ mechanisms of action 
with Aβ species in vitro and to propose possible potential therapeutics. Therefore, a 
mathematical model is important to study the inhibitory action of molecule inhibitors to 
find the mechanism and possible therapeutics. Our previously reported kinetic model 
(Abdul and Garg 2023) was developed to study Aβ aggregation only. The model does not 
consider the effects of inhibitors and associated mechanisms of action on Aβ aggregation 
inhibition. The aggregation model is extended to simulate these effects and is the main 
scope of the current study.  
The objective of the current study is to develop a model involving simple ROS initiated 
free radical polymerisation kinetic equations considering the effects of AD drug on 
amyloid beta aggregation. In this study, the proposed model deals with amyloid beta 
aggregation and the inhibitory action of therapeutic molecule, CA, on Aβ40 aggregation. 
To the best of our knowledge, this is the first ever reported model which studies the 
inhibition action of drug via free radical mechanism. It may give further insights to 
develop novel drugs for the treatment of AD. 

2. Inhibition Model  
To study the inhibitory action of the therapeutic molecule, CA, our previously reported 
model (Abdul and Garg 2023), originally developed for Aβ aggregation, is further 
extended. Mancini and co-workers (Mancini and Weaver 2018) investigated that 
components of coffee (e.g., CA) show inhibitory action on Aβ40 fibrillation using ThT 
fluorescence. Moreover, Yang and co-workers (Yang and Zheng 2018) reported that CA 
could inhibit Aβ40 aggregation in a dose dependent manner.  
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In the extended model, only inhibitory action of CA has been considered. Therefore, a 
kinetic reaction between CA and Aβ40 monomer has been assumed as CA reacts with 
Aβ40 monomer and forms a 𝐶𝐶𝐶𝐶-𝑀𝑀 (here M represents Aβ40 monomer) molecule as 
shown below. 

 
Therefore, assuming the elementary reaction mechanism, the equation for monomer 
concentration (modification of monomer concentration, Equation 3 by (Abdul and Garg 
2023)) based on mass balance can be written as follows:  
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  = −𝑘𝑘𝑖𝑖𝑅̇𝑅𝑀𝑀 −  𝑘𝑘𝑝𝑝𝑀𝑀𝜆𝜆0 − 𝑘𝑘𝑚𝑚𝑀𝑀 𝐶𝐶𝐶𝐶   
(ii) 

 
where 𝑘𝑘𝑚𝑚 is the rate constant for monomer CA interaction. 
Rate equation for CA can be written as follows: 
 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

  = −𝑘𝑘𝑚𝑚𝑀𝑀 𝐶𝐶𝐶𝐶   
(iii) 

 
Therefore, the extended model consist of a total of 10 simultaneous differential equations, 
including basic model (Abdul and Garg 2023)(excluding equation for monomer in the 
basic model), and equations (ii) and (iii).  

3. Results and Discussion 

3.1. Model tuning and validation 
 
The experimental data (represented by diamonds in Figure 1) for CA inhibition at an 
initial concentration (CA0) of 112.9 µM is used to tune the extended model. The 
previously reported rate parameters (kd =5×10-8 s-1, ki = 4.5×10-8 M-1s-1, kp

 = 5.8×102 M-

1s-1, ktc = 4.8×101 M-1s-1
, ktd ~ 0) are used and no re-tuning is done except for the added 

parameter km, in the extended model. To solve the set of differential equations ode23s 
solver in MATLAB® is used. Model is tuned to estimate the value of the new parameter 
km. The error function (sum of the square of difference of experimental data model value 
data) is minimized using a nonlinear least square (LSQNONLIN) solver in MATLAB®. 
Experimental data shows that monomers (initial concentration of 35 µM) rapidly form 
fibrils at t ~ 0 with concentration of 17µM. Therefore, setting initial monomer 
concentration of 35 – 17 = 18 µM, the best fit value of parameter km is obtained as 4.8×10-

2
 M-1s-1

. The comparison (Figure 1) between experimental data (diamonds) and the tuned 
model prediction (solid line) is shown.  
 
 

𝐶𝐶𝐶𝐶 + 𝑀𝑀 
𝑘𝑘𝑚𝑚��   𝐶𝐶𝐶𝐶-𝑀𝑀   (i) 
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Figure 1. Comparison between model output with experimental data at monomer concentration of 

35 µM. 
 
Diamonds and squares show the dose inhibition experimental data at 112.9 and 169.35 
µM, respectively. Solid and dashed lines represent the tuned and predicted model output 
at dose concentration of 112.9 and 169.35 µM, respectively.  
 
Tuned model output is observed to be in good agreement with the experimental data with 
only one new parameter tuning. It is noted that there is a difference between model output 
and the initial two experimental data points. This difference is due to only one new added 
parameter tuning to the model and not tuning the previously reported parameters. 
3.2. Model 1 predictions at different CA dose concentration 
 
The experimental data is also available at another initial dose concentration (represented 
by squares in Figure 1). To analyze the model’s reliability, model simulations at an initial 
CA concentration of 169.35 µM are compared with the experimental data keeping all the 
parameter (kd, ki, kp, ktc, ktd, km) values constant. After changing the initial CA concentration 
only, the comparison between experimental data (Figure 1, squares) and the extended 
model simulations (Figure 1, dashed line) are shown in Figure 1. It is observed that the 
model prediction for different initial concentration of CA, without any further re-tuning, 
agrees well with the reported experimental data. 
3.3 Sensitivity of drug concentration and parameter 
 
To check the model robustness, sensitivity analysis of initial drug concentration (CA0) 
and associated parameter km have been performed on fibril concentration. It is expected 
that decreasing or increasing CA0 or km should decrease or increase the inhibition effect 
of drug, respectively. Similar trends can be observed in Figure 2 (a is for CA0 and b is 
for km). It can be seen that after changing the CA0 or km by 20% and 180% fibril 
concentration gets increased or decreased, respectively, as expected.     
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Figure 2. Sensitivity of drug concentration (CA0) and parameter (km) 

4. Conclusions 
In this study an extended model of a basic kinetic model (which solely studies the Aβ 
aggregation), to study the amyloid beta (Aβ) aggregation and the inhibition effects of 
chlorogenic acid (CA) drugs on Aβ aggregation is proposed. The CA molecule is reported 
to have an inhibitory effect on Aβ aggregation. Therefore, mechanisms involving Aβ 
aggregation inhibition have been incorporated to modify the previously reported model. 
The extended model requires only one new parameter to fit the reported experimental 
data. The model predicts the experimental data at different monomer concentrations in 
good agreement. The approach provides a relatively simple and inexpensive model for 
studying Aβ aggregation inhibition at different conditions. The model may further be 
modified to study other inhibitory molecules’ effect such as, large molecules (peptide-
based) and nanoparticle inhibitors on Aβ aggregation, especially when the molecule is 
antioxidant (works as a scavenger for ROS). Therefore, the model can be helpful in 
understanding the mechanism of action between Aβ and drug to develop possible 
therapeutics for AD in the near future. 
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Abstract 

Our work delves into anomaly detection (AD) within the chemical industry, which is vital 

for maximizing product yields and ensuring operational safety. Over the past decade, 

many AD methods based on deep machine learning have appeared [1], and they are 

usually developed, assessed, and compared using artificial process data from the 

Tennessee-Eastman Process (TEP) [3]. Real chemical processes may exhibit distinct 

anomalies and dynamics, potentially undermining the effectiveness of methods tailored 

solely to TEP data. In response, the present work presents findings on AD using deep 

learning for a continuously operated mini plant in our lab. The dataset, spanning several 

weeks of operation and encompassing fault-free and faulty operations, serves as the test 

set for 22 literature methods for AD with deep learning. We compare the performances 

with prior evaluations on TEP data [2].  

Keywords: Machine Learning, Anomaly Detection, Distillation, Data Generation 

1. Introduction 

Anomaly detection (AD) in the chemical industry is crucial for ensuring safety, 

maintaining quality standards, reducing costs, complying with regulations, optimizing 

processes, and, most importantly, preventing potential disasters or environmental 

damage. In the present work, we focus on AD in continuous chemical processes. 

Continuous chemical processes are integral to the industry for ensuring efficiency and 

consistent, high-quality output in a dynamic market landscape. These processes generate 

time series data, enabling real-time monitoring, predictive maintenance, and the detection 

of anomalies, thereby facilitating optimized operations and ensuring product quality and 

safety. For the last three decades, the Tennessee Eastman Process (TEP) has been the 

benchmark dataset for time-series anomaly detection, including previous works on 

anomaly detection in chemical processes [4]. Recently, we have published [3] an 

extensive comparison of 27 anomaly detection methods from the literature for 

unsupervised AD using a synthetic TEP dataset [32]. The TEP was created and published 

by Downs and Vogel in 1993 [5] and represents a simulated chemical process rather than 
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an actual industrial plant; therefore, the respective dataset is a synthetic multivariate time 

series that does not cover the full spectrum of possible operating scenarios or 

abnormalities encountered in real-time industrial settings. Since it cannot be guaranteed 

to simulate every effect of an occurring anomaly and its impact on the whole plant system, 

we wanted to examine possible performance differences of the models between synthetic 

TEP data and real-world data.  

Therefore, the key challenge is that the availability of chemical data in the public domain 

could be more extensive. The present work aims to improve this situation and generate 

experimental data from a continuous distillation plant in TUM Campus Straubing. The 

experimental data generated is a time series dataset with and without anomalies. Using 

this data, we tested 22 of the literature mentioned above methods on AD and compared 

their performance with respective results for the synthetic TEP data. 

2. Methods 

2.1. Experimental Data Generation 

The continuous distillation plant is a mini plant with a capacity of 5t/y feed (Figure 1). Its 

core is a steel column (operating pressure 1.5 bar). It is controlled and monitored using a 

LabVIEW system, the primary data collection tool. Multivariate time series data from 17 

sensors was collected. The distillation column has one pressure controller, two flow 

controllers, two level controllers, and two temperature controllers. Six control loops are 

implemented in LabVIEW, enabling control and operation of the plant. The control 

strategy within the LabVIEW system offers adaptability for easy adjustments as required.  

 

 
Figure 1: Setup of the continuous distillation plant (steel) for experiments with water  

 

Experiments conducted with a single component water generated time series data 

spanning 30 days. Choosing water as the sole component streamlined the process by 

removing the separation aspect and directed the focus toward the overall material balance. 

Using water also leads to increased safety, enabling the remote and autonomous operation 

of the plant. Experimental data with and without anomalies were generated and labeled. 

The labeled data was further used to train, test, and validate anomaly detection methods. 
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2.2. Anomaly Detection  

Advancements in time-series anomaly detection have prominently featured the evolution 

of unsupervised deep learning methods, notably with the application of sophisticated 

neural network architectures like recurrent neural networks (RNNs)[6], Long Short-Term 

Memory Networks (LSTMs)[7], and Variational Autoencoders (VAEs)[8] and various 

Generative Adversarial Network (GAN)[12] adaptations and operate independently 

without the need for labeled anomaly instances. Notably, RNNs and LSTMs, lauded for 

their sequential learning capabilities, excel in capturing extensive temporal dependencies, 

effectively pinpointing subtle anomalies. Conversely, an AE decodes and reconstructs 

input data, enabling the identification of deviations by comparing reconstructed 

sequences to the learned normal patterns. Furthermore, GANs create synthetic data 

instances and assess their authenticity against the original distribution, proficiently 

detecting anomalies by discerning disparities between generated and authentic data 

representations. 

These unsupervised deep learning models [9] are trained on patterns representing 

standard behavior within time series data, allowing them to internalize fundamental 

structures and representations of regular sequences. Consequently, anomalies reflecting 

deviations from the learned norms are effectively detected within the data. In our prior 

work [3], we extensively evaluated and compared 27 unsupervised deep anomaly 

detection techniques found in contemporary literature for time-series anomaly detection. 

This thorough assessment gauged their detection accuracies utilizing the synthetic TEP 

dataset.  

Our evaluation involved a comparative analysis of reconstruction-based methods[26], 

forecasting-based [13], generative methods [8], and hybrid approaches. Detecting 

anomalies within a time series involves generating anomaly scores[14] for each time step, 

with detection occurring if the score surpasses a predefined threshold. Commonly used 

evaluation metrics such as the F1-score [2] and the area under the precision-recall curve 

(AUPRC) [2] aid us in comprehensively assessing the performance of anomaly detection 

methods. The F1-score considers true positives, false negatives, and false positives, 

offering insights into precision and recall. Precision signifies the accuracy of identified 

anomalies among all flagged instances, while recall measures the model's capability to 

detect genuine anomalies. The AUPRC provides an overall evaluation of the model's 

performance across varied thresholds, offering insights into precision for different recall 

levels. Understanding the associated costs of missed anomalies (false negatives) versus 

falsely detected anomalies (false positives) in specific use cases is critical, necessitating 

threshold customization for optimal performance in real-world applications.  

The findings [2] indicated that, on average, reconstruction-based methods exhibited 

superior performance, followed by generative methods, with forecasting-based models 

demonstrating the least effectiveness in anomaly detection. To substantiate these 

observations using authentic process data, 22 models underwent training, testing, and 

validation phases utilizing experimental data derived from a continuous distillation plant 

operating with water. All methods were trained equally with a training data set of five 

runs with about 1000 time steps each. The starting phase of the plant was in all data sets 

removed, and all training data were free of anomalies and normalized. For a better 

comparison, the hyperparameters were not fixed but optimized with cross-validation, as 

in our previous evaluation[2] limited to a maximum of 24 hours, to adjust them to this 

new data set. For this cross-validation, we split the training set into folds of the same size. 

The training excluded one of these folds, on which we validated the trained model. This 

process was repeated by switching the folds to have every single one as a validation fold 
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one time. Therefore, the worst metrics scores for one of those validation folds marked the 

final score of the used hyperparameters. The ones with the best final score were chosen 

by repeating this process with different values and combinations of the possible 

hyperparameters. Afterward, all the optimal trained models were evaluated on a test data 

set containing ten other runs than the training set with 1,000-11,000 time steps each. 

These data contain anomalies of varying length and type. Again, for this evaluation, we 

compared the methods regarding their overall F1-Score and the AUPRC and ranked the 

average performance of their achieved ranking in both. 

3. Results 

Table 1: Results of the evaluation of 22 AD methods on real process data with water. 

Method Method Type F1-Score 
F1-Score 

ranking 
AUPRC 

AUPRC 

Ranking 

Combined 

Ranking * 

MTAD_GAT[15] Hybrid 0.9106 1 0.9442 1 1 (21) 

LSTM_AE_OCSVM[16] Hybrid 0.6460 2 0.7435 2 2 (16) 

THOC[17] Hybrid 0.6223 3 0.6702 4 3 (22) 

TADGAN[18] Generative GAN based 0.5893 4 0.6723 3 4 (18) 

LSTM_VAE_GAN[19] Generative VAE based 0.5101 5 0.6445 5 5 (15) 

MSCRED[20] Reconstruction based 0.4519 6 0.6004 6 6 (5) 

LSTM_AE[21] Reconstruction based 0.3484 7 0.4900 7 7 (4) 

DONUT[22] Generative VAE based 0.2464 9 0.4111 8 8 (6) 

TKN_AE[23] Reconstruction based 0.2580 8 0.3831 9 9 (7) 

BEATGAN[12] Generative GAN based 0.2232 10 0.3368 14 10 (1) 

DENSE_AE[24] Reconstruction based 0.1964 15 0.3586 10 11 (3) 

GMM_VAE[25] Generative VAE based 0.2084 11 0.3353 15 12 (13) 

UNTRAINED_AE[26] Reconstruction based 0.1988 14 0.3440 12 13 (10) 

LSTM_MAX_AE[14] Reconstruction based 0.2007 13 0.3386 13 14 (14) 

USAD[24] Reconstruction based 0.1926 16 0.3583 11 15 (12) 

OMNI[27] Generative VAE based 0.2010 12 0.3276 18 16 (8) 

STGAT MAD[28] Reconstruction based 0.1770 19 0.3297 16 17 (19) 

LSTM VAE Park[8] Generative VAE based 0.1864 17 0.3190 19 18 (11) 

MADGAN[29] Generative GAN based 0.1681 20 0.3296 17 19 (20) 
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Method Method Type F1-Score 
F1-Score 

ranking 
AUPRC 

AUPRC 

Ranking 

Combined 

Ranking * 

SIS_VAE[30] Generative VAE based 0.1803 18 0.3077 20 20 (9) 

TCN_AE[31] Reconstruction based 0.1387 21 0.3011 21 21 (2) 

GENAD[20] Reconstruction based 0.0812 22 0.2543 22 22 (17) 

* The combined ranking obtained with TEP process data is given in brackets. 

 

Table 1 displays the results obtained from the experiments with water. The methods are 

evaluated using the F1 score, AUPRC score, and a combined ranking based on these two 

scores with their average placement and score differences. MTAD_GAT, 

LSTM_AE_OCSVM, and THOC perform the best among all the methods, while 

SIS_VAE, TCN_AE, and GENAD have the lowest rankings. F1 and AUPRC scores of 

the methods are lower with the experimental data set than with the TEP data set. The 

rankings of these methods [2] with the TEP dataset exhibit significant divergence 

compared to the results obtained from the experimental process data. For the experimental 

data set, it was found that the hybrid methods perform best. We conject that this is the 

case because the data amount is limited and combined method architecture is better 

capable of training the data logic. 

4. Conclusions 

Hybrid-based deep learning anomaly detection (AD) techniques outperformed others 

when handling experimental data from the continuous distillation column with a single-

component water system. Conversely, despite excelling with TEP data, reconstruction, 

and generative methods did not demonstrate comparable success with the experimental 

dataset. We conclude that improving and comparing AD methods using synthetic datasets 

(like the TEP data) is insufficient to yield high-performance methods for real plants. 

All tested AD methods yielded notably low F1 and AUPRC scores on the experimental 

dataset, suggesting room for improvement by acquiring more process data from the 

continuous distillation mini-plant. Devising experiments aimed explicitly at generating 

anomalies that are not easily detectable by a human expert is also a crucial step for more 

effective training of these methods. It remains a pivotal, challenging aspect for future 

work. Future work should provide more publicly available experimental and synthetic 

data from physical modeling [11] and machine learning. We also plan to measure 

experimental data for the azeotropic distillation of n-butanol and water in future work. 

References 

1. N. M. Nor et al., 2020, Reviews in Chemical Engineering 36.4, 513–553, DOI: 10.1515/revce-

2017-0069 

2. F. Hartung et al., 2023, Chemie Ingenieur Technik, in press, DOI: 10.1002/cite.202200238  

3. J. J. Downs and E. F. Vogel, 1993, Computers & Chemical Engineering 17.3, 245–255,  

DOI: 10.1016/0098-1354(93)80018-I. 

4. Madakyaru, M., Kini, K.R, 2022, Int. j. inf. tecnol. 14, 3001–3010, DOI: 

    10.1007/s41870-022-01046-0         

342



   

 

5. J. J. Downs, E. F. Vogel, 1993, Comput. Chem. Eng., 17 (3), 245–255. DOI: 

https://doi.org/10.1016/0098-1354(93)80018-I 

6. J.J.Hopfield, 1982, PNAS, 79 (8) 2554-2558. DOI: https://doi.org/10.1073/pnas.79.8.2554 

7. S.Hochreiter, J.Schmidhuber, 1997, Neural computation, MIT Press, 9(8), 1735–1780. DOI: 

https://doi.org/10.1162/neco.1997.9.8.1735 

8. M. Soelch, et al., 2016, arXiv:1602.07109. DOI: https://doi.org/10.48550/arXiv.1602.07109 

9. L. Ruff, et al., 2018, Proc. Mach. Learn. Res. 2018, 80, 4393–4402. 

10. Lyzlova et al., 1979, Russian Journal of Physical Chemistry (Leningrad) 52.3 : 551-555. 

11. E. Forte, F. Jirasek, M. Bortz, J. Burger, J. Vrabec, and H. Hasse, 2019, Chemie Ingenieur 

Technik, 91.3, 201–214. DOI: 10.1002/cite.201800056. 

12. B. Zhou et al., 2019,  in Proc. of the 28th Int. Joint Conf. on Artificial Intelligence, 4433–4439, 

DOI:https://doi.org/10.24963/ijcai.2019/616 

13. P. Malhotra, L. Vig, G. Shroff, P. Agarwal,  2015, in Proc. of the 23rd European Symposium 

on Artificial Neural Networks, ES2015-56. 

14. A. H. Mirza, S. Cosan, 2018, in Proc. of the 26th Signal Processing and Communications 

Applications Conf., IEEE, Piscataway,1–4. DOI: https://doi.org/10.1109/SIU.2018.8404689 

15. H. Zhao et al., 2020,  in Proc. of the 20th Int. Conf. on Data Mining, IEEE, Piscataway, NJ 

2020, 841–850. DOI: https://doi.org/10.1109/ICDM50108.2020.00093 

16. M. S. Elsayed et al., 2020, in Proc. of the 16th Symposium on QoS and Security for Wireless 

and Mobile Networks, 37–45. DOI: https://doi.org/10.1145/3416013.3426457 

17. L. Shen, Z. Li, J. T. Kwok, 2020, in Proc. of the 34th Int. Conf. on Neural Information 

Processing Systems, Curran Associates, Red Hook, 13016–13026, Article 1092. 

18. A. Geiger, et al., 2020, in Proc. of the 8th Int. Conf. on Big Data, IEEE, Piscataway, 33–43. 

DOI: https://doi.org/10.1109/BigData50022.2020.9378139 

19. Z. Niu, K. Yu, X. Wu, 2020, Sensors, 20 (13), 3738. DOI: https://doi.org/10.3390/s20133738 

20. X. Hua et al., 2022, arXiv:2202.04250, 2022.DOI: https://doi.org/10.48550/arXiv.2202.04250 

21. C. Zhang et al., 2019, in Proc. of the 33th AAAI Conf. on Artificial Intelligence, AAAI Press, 

1409–1416. DOI: https://doi.org/10.1609/aaai.-v33i01.33011409 

22. H. Xu et al., 2018, in Proc. of the 27th Int. World Wide Web Conf. DOI: 

https://doi.org/10.1145/3178876.3185996 

23. Jiehui Xu et al.,2022, ICLR, https://arxiv.org/abs/2110.02642  

24. J. Audibert et al., 2020, in Proc. of the 26th Int. Conf. on Knowledge Discovery & Data Mining, 

3395–3404. DOI: https://doi.org/10.1145/3394486.3403392 

25. Y. Guo, W. Liao, Q. Wang, L. Yu, T. Ji, P. Li, 2018, Proc. Mach. Learn., 95, 97–112. 

26. S. Kim et al., 2022, in Proc. of the 36thAAAI Conf. on Artificial Intelligence, 7194–7201. DOI: 

https://doi.org/10.1609/aaai.v36i7.20680 

27. Y. Su et al., 2019,  in Proc. of the 25th Int. Conf. on Knowledge Discovery & Data Mining, 

2828–2837. DOI: https://doi.org/10.1145/3292500.3330672 

28. J. Zhan et al., 2022,  in Proc. of the 47th Int. Conf. on Acoustics, Speech, and Signal Processing, 

IEEE, 3568–3572. DOI: https://doi.org/10.1109/ICASSP43922.2022.9747274 

29. D. Li et al., 2019,  in Proc. of the 28th Int. Conf. on Artificial Neural Networks, Springer, 703–

716. DOI: https://doi.org/10.1007/978-3-030-30490-4_56 

30. L. Li, J. Yan, H. Wang, Y. Jin, 2021, IEEE Trans. Neural Networks Learn.Syst., 32 (3), 1177–

1191. DOI: https://doi.org/10.1109/TNNLS.2020.2980749 

31. M. Thill, W. Konen, T. Baeck, 2020, in Proc. of the 9th Int. Conf. on Bioinspired Methods and 

Their Applications, 161–173. DOI: https://doi.org/10.1007/978-3-030-63710-1_13 

32. A. C. Rieth et al., 2017, Additional Tennessee Eastman Process Simulation Data for Anomaly 

Detection Evaluation, Harvard Dataverse, 2017. DOI: https://doi.org/10.7910/DVN/6C3JR1 

33. Ferre, A., Voggenreiter, J., Tönges, Y. et al., 2021, MTZ Worldw 82, 26–31, DOI: 

https://doi.org/10.1007/s38313-021-0639-x 

343



Flavio Manenti, Gintaras V. Reklaitis (Eds.), Book of Abstract of the 34th European 

Symposium on Computer Aided Process Engineering / 15th International Symposium on 

Process Systems Engineering (ESCAPE34/PSE24), June 2-6, 2024, Florence, Italy. 

 

A Machine Learning Method to Extract Key Policy 

Decisions from Energy Transition Scenarios under 

Uncertainty 

Stefano Moret,a,* Florian Joseph Baader,a Wolfram Wiesemann,b Iain Staffellc 

and André Bardowa 
aEnergy & Process Systems Engineering, Department of Mechanical and Process 

Engineering, ETH Zürich, 8092 Zürich, Switzerland 
bCentre for Environmental Policy, Imperial College London, London, UK 
cImperial College Business School, Imperial College London, London, UK 

morets@ethz.ch 

Abstract 

Uncertainties in input parameters, such as fuel prices and energy demands, often lead 

energy modelers to present large sets of scenarios that are difficult to interpret. 

Leveraging decision trees, a popular machine-learning technique, we translate the 

complexity of energy transition studies under uncertainty into a small set of key decisions. 

Application of our method to an Integrated Assessment Model under uncertainty shows 

that the global energy transition is primarily determined by choices on heating and 

industry electrification. Our replicable framework reduces the vast amount of plausible 

energy system scenarios to a few interpretable storylines and unveils the most important 

trade-offs in the energy transition. 

Keywords: energy planning, uncertainty, machine learning, decision-making. 

1. Introduction 

Despite the stark reality of climate change as well as the evidence that immediate action 

is beneficial over a “wait-and-see” strategy, the Intergovernmental Panel on Climate 

Change’s (IPCC) latest report warns that “the pace and scale of what has been done so 

far, and current plans [to tackle climate change], are insufficient” (IPCC, 2023). This 

indecisiveness in policy deployment can, at least in part, be attributed to the extreme 

uncertainties affecting long-term energy planning and decision-making. 

Energy system optimization models (ESOMs) can help unravel this complexity and assist 

policymakers in defining quantitative energy transition pathways. While, historically, 

ESOM studies have focused on generating a single optimal solution, evidence that 

models’ assumptions and input data – such as fuel prices, demands, interest rates, etc. – 

are highly uncertain (Moret et al., 2017) motivated modelers to consider uncertainty. 
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However, uncertainty studies often generate hundreds of solutions that are challenging 

for decision-makers to interpret and act upon (Pickering et al., 2022). 

 

We present a machine learning method to streamline hundreds or thousands of energy 

system scenarios from uncertainty studies to a few interpretable storylines. The storylines 

yield qualitative descriptions of energy system configurations and are described by urgent 

policy decisions. Specifically, we show that training decision trees on key outputs of 

interest of ESOMs allows translating many quantitative energy transition scenarios into 

a small number of storylines. These storylines are determined by a few policy decisions 

and, thus, are accessible and interpretable to a broader public. 

2. Methods 

First, different energy system scenarios are generated by solving a mathematical 

optimization problem under uncertainty. Given a probability distribution for each 

uncertain parameter 𝜃, sampling – often Monte Carlo sampling – is performed to obtain 

N possible realizations of the uncertain parameter vector 𝜽. The energy model is run for 

each combination of input parameters 𝜽𝒊 , 𝑖 =  {1, . . . , 𝑁}, resulting in N energy scenarios. 

Second, k-means clustering (Hastie et al., 2009) is performed to group these N different 

scenarios into k clusters (where 𝑘 ≪ 𝑁) with respect to m outputs of interest y, 

corresponding to high-level outputs needed to inform decision-makers. k-means 

clustering is performed using the Python package sklearn.cluster.KMeans with default 

settings, and the number of clusters k is selected using the “elbow method” (Ketchen and 

Shook, 1996).  

Third, a decision tree (Hastie et al., 2009) is trained to identify the key decisions and their 

effects on the solution space. Decision trees are a supervised machine learning method 

and, hence, are trained on labeled data. In our case, the labeled data are the N energy 

system scenarios 𝒚𝒊  and the labels 𝒄 are the cluster numbers assigned by the previous 

step. The decision tree learns to predict the label 𝑐𝑖  given the energy system scenario 𝒚𝒊 . 

We limit the number of leaves of the tree to the number of clusters k as, in our numerical 

experiments, a tree with a number of leaves equal to the number of clusters has high 

prediction accuracy, i.e., 99% of the data points are correctly assigned to their clusters. 

Finally, we re-order the energy system scenarios to k clusters according to the rules of the 

decision tree, i.e., the few points that are predicted wrongly by the decision tree are re-

assigned to the other clusters accordingly, making the clustering more interpretable. 

3. Results 

We apply our method to the global decarbonization pathways under uncertainty studied 

by Panos et al. (2023), who recently presented the first Monte-Carlo assessment of an 

integrated assessment model (IAM). Specifically, their study presents 1000 possible 

global decarbonization pathways generated by sampling 18 uncertain parameters. By 

applying our method to their published dataset, these 1000 scenarios can be summarized 

by two key policy decisions: (i) electrification of heating and (ii) electrification of 

industry (Figure 1). The resulting decision tree has only 𝑘 = 3 leaves, corresponding to 

three storylines for the global energy transition, illustrating the consequences of each 

decision. At the root node lies the entire decision space with 1000 scenarios, as presented 

by Panos et al. (2023), with the radar plots and the open locks indicating the large ranges 

of variations in the results.  
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The first decision differentiates between scenarios with low and high shares of electric 

heating and thereby splits the set of solutions: A low share of electric heating is found to 

also imply low non-fossil transport and minimal electrification of industry. Moreover, the 

deployment of renewables is low. On the other side of the tree with a high share of electric 

heating, the share of non-fossil transport must also be high. As the next key decision, the 

tree further differentiates between solutions with a low and a high electrification of 

industry. A high electrification of industry then implies a high deployment of renewables 

and maximum electrification of heating. The extent to which the resulting storylines rely 

on renewable energy and sector coupling increases from left to right in Figure 1. Overall, 

our method breaks down the 1000 Monte Carlo results into a decision- tree with only two 

key decisions, translating the quantitative output of the IAM study into three storylines 

corresponding to three actionable policies. 

 

 

 

Figure 1: Decision tree translating 1000 scenarios for the global energy transition in 2100 from 

(Panos et al., 2023) into two key decisions (electrification of heating and industry) along five 

outputs of interest. The axes of the radar plots are normalized on the range of each output of 

interest, while the locks indicate the level of flexibility. The volume of the decision space at each 

node of the tree is expressed by Σ. 

4. Conclusions 

We present a machine learning method to extract key policy decisions from energy 

transition scenarios under uncertainty. Application to the global energy transition using 

an Integrated Assessment Model demonstrates that our method reduces the vast decision 

Metric

Fossils (238 - 1279 EJ/yr.)

Renewables (278 - 1119 EJ/yr.) 

Non-fossil transport (46 – 87%)

Electric heating (14 - 89%)

Electric industry (16 - 71%) 

Full decision space

Low electric heating High electric heating

High electric industry 

Full flexibility

Some flexibility

No flexibility

?

?Low electric industry

(b)

(a)

Σ =100%

Σ = 0.2% Σ = 19%

Σ = 1.3% Σ = 0.9%
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space to a small number of interpretable storylines and critical decisions that must be 

made to enable this transition. Additionally, we propose a new way to visualize these 

choices into decision trees, effectively prioritizing decisions and associating each choice 

with its implied consequences. This analysis unveils the most important interconnection 

and trade-offs between key policy decisions. These trade-offs (which can be thought of 

as pivotal policy decisions) are typically hidden both to the user and even to the creators 

of scenarios, as the volumes of results and high-dimensional solution space obscure ‘the 

wood for the trees’. By combining the strengths of energy systems models and their 

outputs with the simplicity and clarity of storylines, our tool empowers decision-makers 

to quickly uncover actionable insights. 
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Abstract 

With the advent of ChatGPT, natural language processing (NLP) models have gained 

tremendous interest from the research community and have been applied to a plethora of 

scientific domains like batteries, pharmaceuticals, recycling plastics, etc., to obtain 

insights from the existing corpus of literature, and thus making the process of reading, 

analyzing, interpreting, and reporting the results shorter and faster. However, the 

applications of such models are still limited to a few fields in the past, and perovskite 

solar cells (PSCs) are among them. Recently, PSCs power conversion efficiency climbed 

the mark of 26.1% in a single junction and 33.7% in silicon/perovskite tandem solar cells, 

putting them in the leading position of next-generation solar cells. However, optimizing 

decision variables in terms of materials selection and process conditions requires analysis 

of the huge database of experiments to draw better insights to make them market-

competitive in terms of cost and environmental impacts. In this article, authors have used 

two state-of-the-art NLP models, BERT and SciBERT, to analyze the corpus of stability 

data based on experimental datasets and further normalised based on storage and testing 

conditions to visualize the trends and compare their performance with regression-based 

models. The insights obtained while employing such models with different kinds of 

datasets where both alpha-numeric keys are presented as model features are also offered, 

highlighting the limitations of such models. The efficiency and effectiveness of such 

models in interpreting the causal relationships and predicting the trends will help in 

utilizing such models for tackling the challenges of optimizing material-process design 

problems (MPDP) with available data from literature. 

Keywords: Natural language processing, BERT, Machine learning, Perovskite solar cells 

1. Introduction 

Perovskite solar cells have presented a unique opportunity in the field of PV technologies 

to have more control over the different aspects of fabrication including the techniques or 

equipment employed, process parameters used, and materials selection (Huang, 2020) 

which is not the case with many existing 1st and 2nd generation PV technologies (Singh et 
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al., 2021). However, this paradox of choice also results in using more nuanced tools and 

techniques to optimize the overall production of PSCs which not only meets the 

requirements in terms of efficiency and stability but also emphasizes the design of 

environmental-friendly and sustainable PV technology for the future (Yoo et al., 2022). 

Given these possibilities, the amount of experimental work carried out has also presented 

an opportunity to use state-of-the-art techniques for finding better overall solutions from 

the myriad of existing possibilities (Jacobsson et al., 2022). 

Machine learning and artificial intelligence lie at the forefront of these new techniques 

that are now used in almost all domains (Sarker et al., 2021). Plenty of work has also been 

carried out in the domain of perovskite solar cells where the focus of application has 

varied from individual layer-level characteristics (Liu Y. et al, 2022) to cell (Liu Z. et al, 

2022) and module-level characteristics (Ramirez et al., 2023). Lu et al. (2021) and Hu et 

el. (2022) have discussed the trends in efficiency, bandgaps, Voc, Isc, and stability of PSCs 

using different kinds of machine learning techniques. However, recently with the advent 

of transformer-based models, many advanced natural language processing-based 

algorithms have made a mark in the field of ML/AI-based analysis. BERT (Devlin et al., 

2018), XLNet (Yang et al, 2019), and SciBERT (Beltagy et al., 2019) are all different 

variations of the NLP models based on transformer architecture. ChatGPT (OpenAI) and 

BARD are among the most advanced ones with the number of parameters greater than 

one billion. Given these tools at hand, it is important to analyze the effectiveness in 

dealing with scientific data, especially from the field of material science and 

optoelectronics. However, since the earlier models are mostly trained on web text and 

general science it is difficult to expect their high performance on domain-specific tasks 

(Xie et al., 2023) which is partly because of their limited vocabulary and also lack of 

embeddings for such specific data.  

Here, the NLP models were fine-tuned for the regression tasks of predicting the stability 

of PSCs by enhancing the vocabulary size of these models with existing perovskite solar 

cells FAIR (findable, accessible, interoperable, and reusable) dataset (Jacobsson et al., 

2022) and are compared with existing regression models. Finally, hyperparameter 

optimization for all models was carried out to realize the best performance on the dataset. 

2. Data and models  

In the first part of the article, existing machine learning techniques both linear and non-

linear are explored to set the base level of prediction capabilities of these techniques and 

provide a baseline for comparing the NLP models like BERT. Also, the objective is to 

predict the continuous values of stability and therefore regression-based analysis was 

carried out using these models.  

2.1. Data cleaning and processing  

The data for PSC stability was used based on the analysis presented by Zhang et al. (2022) 

for the FAIR database which has more than 42000 data points from the experiments and 

contain data related to the active materials (embedded materials), assisting materials, 

additives and techniques used for fabricating different layers along with the process 

parameters for certain cases. Thus, it can be assumed that data for the present analysis is 

a simulated data based on experiment with physics-based modeling to account for the 

variations for the storage conditions like temperature, humidity and light exposure. This 

original dataset contains around 7400 datapoints from 2013 to 2021. Afterwards, the data 

is cleaned for missing stability values and only data after 2017 is chosen to avoid the bias 

from the earlier experiments in the field. Also, the data was filtered to represent the most 
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commonly used perovskite thus avoiding sparse data depending on the light intensity, 

simulator class, perovskite-inspired structure, perovskite ABX3 structure, single crystal, 

and cell architecture. In the next step, cleaning of data was based on different layers of 

the stack, their deposition procedure, the solvent used, synthesis atmosphere, ions 

composition for perovskite, and additives used such that they represent most of the data. 

This cleaning procedure is adapted to improve the generalization of models as in other 

cases it will lead to very high dimensional data. Based on this finally we had 2783 data 

points which were then cleaned for JV measurement data (missing values for PCE, Voc, 

Isc, and FF). However, this dataset still has some missing values for certain columns and 

different amputation strategies were used to treat them while building ML models on top 

of them.  Before that, one-hot encoding strategy is used to treat the categorical data as 

most of the data exists in terms of the name of elements, compounds, or techniques. In 

terms of data engineering, a few new columns were also created taking into account the 

annealing process characteristics like different annealing temperatures, maximum 

annealing temperature, and total energy absorbed during annealing per unit mass and 

specific heat as it is related to the phase conversion and might have a good effect on 

stability. In the end, we have 444 features for our dataset including JV measurement 

characteristics and stability (TS80 (based on stabilized efficiency at the end of the burn-

in-region, Zhang et al. (2022))).  

While checking the quality of the dataset, it was found that there were several outliers in 

terms of stability which were cleaned using the z-score criteria of 3. Even after outliers 

removal, the data of stability was highly skewed on the right (positive skewed, skewness 

=9.12) and therefore log transformation was applied to make the data look more normally 

distributed (skewness=-0.07) which performs better with ML techniques. Also, the cell 

area values were imputed with the median values. Moreover, the perovskite additives and 

HTL additives columns were imputed with ‘undoped’ value. The columns with no 

variance are removed at this point. Afterward, stratification splitting of data was carried 

out using the log-transformed stability values so that training (80%) and test data (20%) 

have values from all kinds of stability regions. Figure 1 shows the variation in stability 

values with different kind of layers i.e., ETL and HTL in the overall stack. 

  

Figure 1: Range of stability values with different a) ETLs and b) HTLs 

It shows the range of values possible for any given type of material/stack depending on 

the other features of the overall cell. During the Pearson correlation check between the 

features of the dataset, it was found that log_TS80m is highly correlated to TS80 which 

is basically some kind of direct indication of stability. However, in real-life scenarios, we 
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would not have access to this data as this is something we would like to predict and 

therefore all features giving a direct measure of stability are removed. All other features 

have a lower than 0.22 correlation with the target variable i.e., log_TS80m. A pipeline 

with an imputation strategy for numerical values using median and standard scaler and 

one-hot encoding transformation for categorical attributes was used to treat the dataset at 

this point. Based on these transformations, the final data has 425 columns or features. 

2.2. Classical Machine learning models  

For ML modeling, initially, a screening is made on a set of 18 models without going for 

hyperparameter optimization using their default settings. Once models with relatively 

better performance were found, complete hyperparameter optimization was carried out 

either using GridSearchCV or RandomSearchCV depending upon the size of the search 

space to avoid excessive time consumption. For evaluating the models, two metrics were 

used, RMSE (root mean squared error) and R2 values (coefficient of determination). The 

models included in the first check included linear regression, decision tree regressor 

(DTR), random forest regressor (RF), support vector regression (SVM), KNeighbours 

regressor (KNN), extreme gradient boost regressor (XGB), ridge regressor (RR), lasso 

regressor, Bayesian regressor (BR), elastic net regressor (ELN), gradient boost regressor 

(GBR), Adaboost regressor (ADA), multi-layer perceptron regressor (MLP, neural 

networks), gaussian process regressor (GPR), extra trees regressor (ETR), kernel ridge 

regressor (KRR), and light gradient boost regressor (LGBM). Data was adapted 

accordingly to use these different kinds of algorithms/models. Finally, out of the 18 

models only 7 were selected for hyperparameter tuning. These models include RF, SVM, 

XGB, ELN, GPR, ETR, and LGBM. The cross-validation was inherently performed using 

5-fold CV in both these hyperparameter tuning methods. The performance of the models 

on the training and test dataset is shown in Figure 2 for both RMSE and R2 scoring 

metrics where RF model shows (the best performance in terms of both metrics without 

overfitting the training dataset (i.e., difference between the performance on 2 datasets is 

almost same). Here, the RMSE values are based on scaled log-transformed stability data. 

     

Figure 2: Classical models performance (R2 and RMSE) on a) training dataset and b) test dataset 

Based on the best model, the importance of various features was visualized using the 

recursive elimination method which recursively eliminates the least important features in 

the dataset. Figure 3 b) shows the relative importance of features where the highest 

contribution are from the JV measurements followed by energy absorbed, cell area, PSC 

thickness and maximum annealing temperature. Figure 3 c) shows SHAP analysis to see 

the nature of effect of these features where it was found that Voc, FF, PCE, Jsc are all 

positively impacting the stability. Also, the descriptors introduced after feature 

engineering like energy absorbed and maximum temperature during perovskite annealing 

are found to have positive impacts on the PSC stability performance. 
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Figure 3: a) RF model performance on test data, b) relative feature importance, and c) SHAP 

analysis for RF model 

2.3. NLP Machine learning models 

In this section, two state-of-the-art models, BERT (both cased and uncased) and its variant 

SciBERT were used to see the performance on the task of stability prediction.  In this 

case, since the models are based on transformer architecture, the starting dataset needs to 

be treated such that it can be used with these models. As most of the features in the dataset 

are categorical in nature, they can be directly used without any transformations as they 

are from the natural language domain. However, the numerical features due to a huge 

range of scale have to be treated in a manner that it doesn’t explode the vocabulary of the 

models while at the same time providing enough context for creating meaningful 

embeddings during the training process. To overcome this challenge, the numerical data 

was converted to scientific form with one decimal precision which significantly reduced 

the vocab size for all the numbers involved in the dataset. Afterward, the training data 

and test data (80:20) were created in a similar manner as for above-discussed regression 

models with log transformation of the target variable. During training both R2 and RMSE 

metrics were evaluated, however, improvements were made using R2 metrics. 

Hyperparameter optimization was carried out for learning rates (lr) and batch sizes (B) in 

grid search manner for BERT variants and random manner for SciBERT. Finally, the best 

models were selected based on their performance of the test data. With SciBERT, the best 

performance was found with uncased variant with R2 value as 0.22 (B=64, lr=2e-5) on 

test data. The tokenization based on SciBERT is shown in the figure below where color 

of the words are indicative of the relative scores assigned to them using integrated 

gradient method. For cased and uncased BERT, the best test performances (R2 value) 

were 0.225 (B=64, lr=2e-5) and 0.23 (B=64, lr=2e-5) which are lower a bit lower than 

 

 

Figure 4: BERT results for relative scores of a) first 15 words b) last 15 words c) test data fitting 

and d) entire sentence 
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classical regression models (Figure 3 a)). Moreover, for analyses of the features, scores for each 

word based on the integrated gradients method are used as shown in Figure 4 a) and b) where the 

color of words in the sentence corresponds to their relative scores in the final prediction (Fig. 5). 

3. Conclusions 

Here, the authors have shown how new ML techniques can be used for solving the most 

pressing challenges of the PSCs and performed an exhaustive study on the different 

classical regression-based models and state-of-the-art BERT model performance on the 

dataset of PSC efficiency. It is shown that NLP models can be used to infer information 

and trends from existing datasets that are already curated rather than training them on a 

huge corpus of raw data from the literature which can be time-consuming and might have 

plenty of unnecessary information. Moreover, training on such structured data also allows 

us to understand and leverage their abilities on datasets created based on critical insights 

and domain expertise. However, more efforts have to be made on the training part of such 

models to improve their overall performance in comparison to classical models. 
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Abstract 
Graph neural networks (GNNs) have shown great potential for predicting molecular 
properties. We herein utilize explainable artificial intelligence (XAI) methods to identify 
molecular fragments, e.g., functional groups, decisive for the GNN prediction of a 
particular property. We consider both pure component and mixture properties. We 
systematically search for molecular fragments that are frequently marked as important. 
We find that the identified molecular fragments comply with available chemical 
knowledge, therefore providing valuable insights into molecular structure-property 
relationships. 

Keywords: machine learning, molecular modeling, structure-property relationships 

1. Introduction 
Explainable artificial intelligence (XAI) provides promising methods for extracting 
chemical knowledge from molecular property data. Machine learning methods, 
particularly graph neural networks (GNNs), have recently been applied for predicting a 
variety of molecular properties that are relevant to process systems engineering such as 
fuel ignition qualities (Schweidtmann et al., 2020), activity coefficients (Sanchez Medina 
et al., 2023; Rittig et al., 2023), and solubility (Vermeire et al., 2022). While the 
developed GNNs achieve high prediction accuracies, they typically do not provide 
explanations for the predicted property values due to their black-box characteristic. 
Therefore, gaining insight into property predictions made by GNNs is of high interest and 
is actively investigated, cf. overviews in (Yuan et al, 2022; Wellawatte et al., 2023), with 
new explainability methods emerging from the field of XAI.  However, the focus in 
molecular applications to date has primarily been on explaining predicted property values 
for individual molecules, e.g., which molecular fragment of a specific molecule is most 
influential to the corresponding prediction. Herein, we are also interested in molecular 
fragments that are frequently marked as important in a diverse collection of molecules. 

354



   

Thereby, we identify generalizable relations of the molecular structure to a property, i.e., 
structure-property relationships, from molecular property predictions by GNNs.  

2. Explainable AI for Graph Neural Networks 
GNNs learn properties directly from a graph representation of molecules, with atoms as 
nodes and bonds as edges, by encoding the molecular graph through convolutional layers 
into a molecular fingerprint vector which is then mapped to the property of interest. To 
find explanations for GNN predictions, we herein investigate two recently introduced 
XAI methods, the GNNExplainer (Ying et al, 2019) and the Molecular Model Agnostic 
Counterfactual Explanations (MMACE) method (Wellawatte et al, 2022). The 
GNNExplainer marks atoms and bonds that are influential for the prediction. The 
MMACE identifies minimal structural changes that exert a large impact on the prediction. 
To systematically identify structure-property relationships, we apply the two XAI 
methods to the molecules in the respective training and testing data sets of the GNN and 
search for frequently occurring molecular fragments that have a high impact on the 
predicted property values. Specifically, we aim at the explainability of two of our 
previously developed GNNs. First, we investigate a GNN for predicting the research 
octane number (RON) of pure components (Schweidtmann et al., 2020), i.e., a well-
established measure for rating the knock resistance of a fuel. Secondly, we consider a 
GNN for mixture property prediction by the example of activity coefficients of solutes in 
ionic liquids (Rittig et al., 2023). 

3. Results and Discussion 
Fig. 1 shows the top molecular fragments identified by the MMACE. On the left, the most 
occuring molecular fragments are illustrated that lead to increases in RON when added 
(green) or removed (red) to a fuel molecule. Analogously, on the right, the molecular 
fragments are shown that result in a higher activity coefficient in ionic liquids on addition 
to or removal from a solute. In both cases similar structure-property relationships are 
identified by the GNNExplainer method (not shown here). 
For the knock resistance (Fig. 1, left), the MMACE suggests that decreasing the carbon 
chain length results in a higher RON, which complies with chemical intuition. Likewise, 
the addition of hydroxyl and carbonyl groups is identified to yield a higher RON. Both 
groups are well-known to exert strong effects on fuel autoignition and thus knock 
resistance.  

In case of the activity coefficient (Fig. 1, right), the polarity of the molecular fragments 
added to or removed from the solute is recognized to be of high importance for the GNN 

Figure 1. Molecular fragments identified by MMACE resulting in higher predicted values for the 
knock resistance (left) and the activity coefficient in ionic liquids (right). 
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predictions. For example, adding non-polar groups, such as methyl and methylene groups, 
yields higher activity coefficients. Since the polarity is one of the main influences on the 
type and strength of intermolecular forces (Pfennig, 2004), it is directly related to the 
activity coefficient and has also been included as input descriptor to activity coefficient 
prediction models, cf. (Lazzaroni et al., 2005; Sanchez Medina et al., 2023).  
We thus find that XAI allows us to identify molecular fragments that provide meaningful 
chemical insights into structure-property relationships in case of both applications. 

4. Conclusion 
We utilize XAI methods to extract chemical insights about structure-property 
relationships from GNNs for molecular property prediction, herein, for research octane 
number and activity coefficient prediction. We find that the identified molecular 
fragments comply with available structure-property knowledge. For example, hydroxyl 
and carbonyl groups as well as increasing lengths of carbons chains are known to exert 
strong effects on fuel knock resistance. Likewise, for the activity coefficient predictions, 
the polarity of substructures is known to have a high importance. The systematic 
explanation of structure-property relationships learned by GNNs thus successfully relates 
to chemical knowledge and provides promising insights for future investigations. As a 
next step, it would be interesting to consider interactions of multiple molecular fragments. 
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Abstract 
Model-based evaluation of Raman spectroscopy data is routinely conducted by use of 
indirect hard modeling (IHM). To develop a suitable IHM for a given analyte system, 
multiple decisions regarding the model settings must be made. These decisions require 
expert knowledge and exhaustive model development to identify the best suitable IHM 
for the analyte system. Herein, we propose the application of Bayesian optimization (BO) 
for the selection of most suitable settings for IHM development. We apply the BO 
algorithm available in the open-source software package BoFire to support the decision-
making in the IHM development process. The results indicate that by leveraging BO, the 
IHM generation can be significantly accelerated and IHM performance can be exploited. 

Keywords: Bayesian optimization, categorical variables, Raman spectroscopy. 

1. Introduction 

Indirect hard modelling (IHM) constitutes a physically-supported approach that predicts 
concentrations from spectral data such as near infrared (NIR) or Raman spectroscopy 
(Alsmeyer et al., 2004). The IHM method represents a multivariate regression technique, 
enabling concentration predictions of mixtures comprising overlapping component peaks 
(Alsmeyer et al., 2004, Kriesten et al., 2008). Meanwhile, the method relies on small 
calibration data sets (Alsmeyer et al., 2004, Echtermeyer et al. 2021). Finding the optimal 
IHM is a laborious and time-consuming task. Depending on the applied settings and the 
number of calibration measurements, the model generation can take several minutes. 
Additionally, the current state-of-the-art software PEAXACT lacks a programmable 
interface. The generation of an IHMs entails several decisions regarding the model 
settings. The performance of the IHM, quantified by calculating the coefficient of 
determination (R2) and root mean squared error of cross-validation (RMSECV) value for 
each component in the system under consideration, depends highly on the selected 
settings. Current IHM development often lacks a systematic approach to optimizing the 
model performance. We propose the strategic development of IHM models using 
Bayesian optimization (BO) with categorical inputs. BO is an established, efficient, and 
data-driven optimization method for intricate processes and (costly) experiments. We 
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leverage BO algorithms that can handle categorical input variables to enhance the IHM 
development. We benchmark the strategic IHM development via BO with a random 
sampling of the categories and exhaustive sampling, i.e., creating all possible 
combinations of model settings. 

2. Methods 
2.1. Indirect Hard Modeling 
 
Within the development process of IHM evaluation models, several decisions must be 
made, e.g., regarding the qualitative spectral analysis, pretreatment, and hard model 
settings. In this work, we consider the choice of type of baseline and standardization for 
spectral pretreatment and fitting mode as decision variables in the problem setup for IHM 
development, since they have been shown to highly affect the model performance. As a 
case study, we develop an IHM for the mixture during the polymerization of N-
Isopropylacrylamide-based microgels. Hence, the IHM components include the monomer 
(NIPAM), the polymer (PNIPAM), and the solvent (deionized water). 
 
2.2. Bayesian Optimization Algorithms 
 
BO algorithms that can deal with categorical input variables include the open-source 
software packages: BoFire, CoCaBo (Ru et al., 2019), GPyOpt, Gryffin (Häse et al., 
2021), Nemo-Bo, and NEXTorch (Wang et al., 2021). These software packages differ in 
the type of surrogate models and acquisition functions and optimization algorithms 
incorporated. All software packages can deal with continuous, discrete, and categorical 
type input variables. For BO-supported indirect hard modeling, we use the BoFire 
software package and compare the performance to random selection of sampling points. 
Furthermore, the data is approximated by a random forest surrogate model because 
random forest models are inherently well suited to handle categorical variables.  

3. Results 
We generated all possible IHM evaluation models with the combinations of settings, 
resulting in a total of 80 IHMs. In Figure 1, the progression of the objective values (R2 
and RMSECV) over the number of experiments is shown when applying the BoFire 
software package. Reaching a high R2 value and a low RMSECV value for each 
component of the polymer system in the model with a low number of experiments are 
desirable. Figure 1 shows the 68 experiments conducted after initialization with 12 
experiments. Within the first 20 experiments, only two instances with performance 
decrease (visually detectable by the two spikes in the progression) occur. Overall, it 
becomes clear that the algorithm follows a strategic approach, as the last experiments are 
stepwise resulting in a worse performance. Yet, a suitable stopping criterion needs to be 
defined for future applications of the BO supported method, as based on the exemplary 
progression of the objective values depicted in Figure 1 different criteria, e.g., number of 
experiments resulting in similar outcome or a fixed number of experiments to be 
conducted, would have yielded a different model performance. In contrast, randomly 
picking IHM settings to test results in high fluctuations of model performances due to the 
missing strategy. Therefore, the strategic BO-supported approach is preferable. 
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Figure 1 Results of the IHM development supported by BoFire. Left: R2 objective value for all 
components in the IHM evaluation model over number of experiments. Right: RMSECV objective 
value for all components in the IHM evaluation model over number of experiments. 

4. Conclusions 
In summary, the proposed method involving BO for IHM development allows an efficient 
decision-making process, focusing on the most relevant model settings for analysis. The 
findings indicate that BO is promising for selecting IHM settings and could be used in 
future studies for IHM evaluation of more complex systems involving multiple 
components and with additionally considered IHM settings, e.g., fingerprint region or 
number of peaks in deriving pure component models. By supporting the decision-making 
process in IHM development, the most suitable settings resulting in the best possible 
model performance can be determined with reduced effort. 
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Abstract 

Versalis has always considered the adoption of IT technology in industrial plants in 

synergy with OT technologies as a fundamental factor to ensure effectiveness, efficiency, 

safety and sustainability in the production processes of its industrial plants. Historically 

Versalis plants have always been operated with the support of advanced control systems 

and field data collection systems which are boundary between process systems and 

management systems. However, in the last 10 years, thanks to the maturity reached by 

advanced analysis algorithms, AI, IoT systems and integrated collaborative platforms, the 

design of the "Smart Plant" has been progressively defined. The recent push towards a 

complete review of the maintenance model, shared with all Eni downstream business, has 

also further evolved the ambitious reference target. 

In Versalis the "Smart Plant" embraces all site and Head Quarter operations processes, 

and IT and Business functions are working together along our transformation roadmap. 

Operation area:  

- full operation production systems replatforming with introduction of a single 

centralized cross-site Industrial Platform: 

- modeling and monitoring of the production process for all different types of 

production lines both liquid and solid products by integration with field data 

collection systems and laboratory data system 

- centralized HUB for access to industrial data to support monitoring of 

production efficiency and plant management, circular economy, CO2, energy 

management 

- machine learning models for advanced analysis of field sensors (recognize faults and 

operational deviations on critical assets in advance, optimize the process quality 

parameters, emission monitoring) 

360

mailto:Gabriele.provana@eni.com


   

- use of High-Performance Computer and specific package for fluid dynamic 

simulation 

- digitalization of on-site logistics processes, warehouses and tanks 

- planning support system (production planning and scheduling, turnaround and day 

by day ordinary maintenance activity planning scheduling and execution) 

- digitalization of processes from a paperless perspective (information flows with 

external government entities such as “ARPA” and “Customs and Monopolies 

Agency”) 

- Digitalization of field operators' activities by mobile devices for remote information 

and documents access and for manual data collection 

Safety area: 

- Real-time health and PPE monitoring of operators on field and in confined 

spaces and digitalization of work permits preparation and authorization process 

- Machine learning models for risks predictive alerting 

Cyber Security Area: network segregation, system access control enforcement and 

network traffic continuous monitoring 

Keywords: artificial intelligence, machine learning, industrial platform, process 

digitalization, real-time data, safety, cyber security 

1. Digital Chemistry 

Our path towards the smart plant is fundamentally based on data valorization to increase 

productivity, reduce risk and increase plant uptime, process digitalization to ensure 

operation efficiency, iot technologies to increase safety and best practices adoption to 

increase cyber resiliency. 

1.1. Artificial Intelligence 

Versalis has always believed in the potential of data and always considered the adoption 

of IT technology and artificial intelligence in industrial plants in synergy with OT 

technologies as a fundamental factor to ensure effectiveness, efficiency, safety and 

sustainability in the production processes. Historically Versalis plants have always been 

operated with the support of advanced control systems and field data collection systems 

which are boundary between process systems and management systems. However, in the 

last 10 years, thanks to the maturity reached by advanced analysis algorithms, AI, IoT 

systems and integrated collaborative platforms, the design of the "Smart Plant" has been 

progressively defined.  

Focusing on AI, Versalis journey through machine learning and deep learning models can 

benefit on Eni AI center of excellence with strong internal skills that oversees market 

technologies, tests them, and engineers them to encourage agile and at the same time 

conscious use.  

Versalis started with the development, through internal resources of data scientists, of 

specific use cases and now has a set of engineered environments to develop its own or 

package-based models [1]. The first machine-learning models were targeted to intercept 

and predict degradation phenomena in asset performance to increase production capacity 

and optimize maintenance activities (for example the prediction of cracking furnaces’ 
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coking and runlength for next decoking activity simulation, prediction of furnace 

vaporizers fouling, root causes analysis of plate fouling and formation of agglomerates 

phenomena in polythene’s reactor, compressor failure prediction). Over the years it has 

been put in place a cloud platform environment as hub for machine learning, first for 

R&D [5], then extended to any use cases that leverage field sensors data, with the aim of 

speeding up and engineering the ingestion, modeling, notification and results sharing 

phases. At the same time, market solutions, with physical or data driven approaches, were 

evaluated, and adopted to increase the speed of diffusion by exploiting the knowledge 

gained in non-specific application areas [3]. The recent emphasis on generative AI has 

been also treated with a structured approach, starting from understanding the potential of 

technology, testing it in experimental contexts and conducting assessment sessions of 

potential application areas from which use cases emerged in terms of training support, 

maintenance activity on filed support, plant image evaluation, automatic report generation 

and process trouble shooting support.   

1.2. Industrial Platform 

The main factors that inspired the rethinking of the industrial operations application 

portfolio were systems capacity for scalability and flexibility with respect to the corporate 

structure evolution needs, and the opportunities to improve collaboration and the 

valorization of data that the new platforms and market solutions can guarantee together 

with consolidation of some application components geographically distributed. 

We designed our model by capitalizing and consolidating features and processes on a 

centralized, modern and flexible collaborative platform that we recently introduced into 

our application portfolio, the Dassault Systeme platform (collaborative operation 

platform COP) by integrating it into a composite architecture with specific domain 

package and where necessary custom packages developed with a platform as a service 

perspective. The mantra that guided our choices can be summed up in three words: 

modernize, centralize and share. In this context, the target model that we have defined 

and the project streams that we have activated provide: 

- implementation in COP of recipes management and production budget, tracking and 

accounting by consolidating geographically distributed components in the local data 

rooms 

- implementation and consolidation in COP of industrial reporting for production 

efficiency calculation on a monthly and daily based, extension to energy management 

and CO2 calculation and near-real-time monitoring of the main plant phenomena 

- implementation of an environment for simulation integrated with recipe and margin 

calculation models to support what-if analyses 

- implementation of a custom cloud solution to support tank farm management and 

digitizing the integration flow with “Customs and Monopolies Agency” 

- implementation of a mobile app integrated with COP to support field operations 

digitalizing data collection and reporting unsafe conditions 

The program is very ambitious due to the breadth and relevance of the processes involved 

and the industrial sites impacted on an international level. It is currently underway and is 

expected to be completed by 2025 [2]. 

1.3. New Maintenance model 

In the Maintenance area, has been activated a program that aims to increase operational 

effectiveness and optimize costs through the simplification and digitalization of processes 
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and the introduction of artificial intelligence capabilities. The scope of the program cuts 

across the various downstream oil, chemical and power generation businesses and is 

related to warehouses technical materials optimization and maintenance processes 

optimization (predictive and prescriptive maintenance, ordinary maintenance, turnaround 

management). The program consists of 7 project streams to leverage, evolve and share 

solutions that have proven effective in different businesses and 1 project stream which 

involves the introduction of a new platform. All the project streams are underway and 

expected to be completed by the end of 2026 [3]. 

1.3.1. Maintenance 

In the maintenance area the main streams are: 

- smart maintenance worker: creation of an integrated maintenance platform that 

leverages and integrates existing asset integrity systems, field data acquisition 

systems and ERP system, digitalizing field activities and enabling collaboration 

between skills  

- paperless office: implementation of a custom cloud solution for workflows and 

documentation digitalization along the maintenance orders creation and accounting 

process flow  

- turnaround coworking tool: preparation of a common multi-business repository for 

sharing multi-year shutdown plan to intercept potential synergies or related risks 

- integrated operation windows: implementation in COP of a sensor monitoring 

solution for critical assets to intercept operational conditions that can accelerate 

degradation phenomena and compromise the assumptions underlying the Risk Based 

Inspection analyzes 

- asset performance monitoring: adoption of an artificial intelligence solution for the 

advanced monitoring of critical static and rotating assets for predictive e prescriptive 

recognition of failure patterns (failure agent) and deviations from reference operating 

conditions (anomaly detection agent); the adoption of a market platform based on 

machine learning technologies allows us to accelerate the roll-out path on the main 

critical assets on different plants. 

As an additional stream we started a study to identify a new platform in the maintenance 

management system area to support the planning, scheduling and execution processes of 

ordinary, extraordinary and turnaround maintenance activities. 

1.3.2. Asset Performance monitoring focus 

The identified solution for advanced asset performance monitoring is package based 

Aspentech MTELL that has already been successfully implemented in refinery context 

and deployed on a range of equipment such as furnace, heat exchangers, pumps, columns, 

compressors, reactors & boilers. The package that combines physical and data driven 

approach and offers different type of agent that allow you to choose the right one based 

on your maintenance strategy: 

- rules based, best for simple monitoring: monitor sensor and calculated sensor data in 

real time to trigger alerts when data points are out of bounds 

- conditions based, best for rapid response: correlate sensor and calculated sensor data 

with usage to trigger alerts for degradation that is occurring 
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- first principle based, best for assessing degradation: physics-driven calculations to 

assess asset degradation based on pre-defined criteria 

- machine learning, best for predicting degradation: proven, pre-selected pattern 

recognition algorithms to predict asset degradation based on embedded domain 

knowledge 

- brind your own model, best for unique use cases: custom-created algorithms by 

citizen data scientists for advanced / unique use cases 

We are in a roadmap to deploy the solution on the main Versalis over the next 2 years 

starting from the main critical asset and process, based on a value map with measurable 

critical success factors that covers production gain, environmental gain, maintenance and 

inspection planning optimization. 

1.3.3. Material and spare parts warehouses 

In the warehouse management area, the main streams are: 

- warehouse dashboard: implementation of a shared monitoring environment for the 

technical materials and spare parts warehouse stock to improve single business 

control and enable cross-business synergies in the use of surplus materials 

- warehouse automation: adoption of a market package specialized in the automation 

of inbound, outbound and inventory processes of technical materials and spare parts 

using RFID, BARCODE, QRCODE technology integrated with the company ERP 

1.4.  Digital Safety 

The safety of operators on field has always been a priority for Eni and Versalis and 

therefore over the years different technologies have been tested and adopted to support 

the prevention and mitigation of risks connected to the activities carried out by internal 

and third-party personnel at our plants. Also, in this area, the interventions are divided 

into different streams: 

- electronic work permit: we developed an Eni application, to support the process of 

compiling, managing and archiving work permits with the aim of increasing control 

and monitoring of all the risks connected to the process, prevent interference between 

different maintenance teams operating in the same area, digitize work permit 

documentation, with easier archiving, retrieval and tracking of information 

- smart safety: use of wearable devices and algorithms able to detect dangerous 

situations in real time through specific use cases for monitoring the use of personal 

protective equipment, monitoring access to restricted areas, automatic "man down" 

notification, SOS requests, management of system emergencies with automatic 

counting at the safe point and geolocation in the plant 

- safety pre-sense: application of natural language processing and machine learning 

models to predict possible risk situations through advanced analysis of the amount 

of security events recorded in the central Eni repository to generate alerts from weak 

signals or recurring situations of danger and enable a new approach to incident 

prevention and improvement of recording and analyzing safety data and the 

possibility of increasing prevention through targeted actions; in this context, an 

experiment is underway to extend the scope of analysis also to process data to 

correlate them with incidents (e.g. maintenance interventions in the plant) 

The roll-out program in Versalis plants is underway and specific KPIs are calculated to 

ensure the maximum possible benefit in terms of safety of personnel in the field [4]. 
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1.5. Machine Learning HUB 

The potential that arises from the use of advanced analytics models in operations, R&D 

and HSE has pushed us to set up a cloud environment on which to quickly and easily 

implement models for different use cases [5]. 

The characteristics of the environment we have implemented are: 

- enhance the representative and collaborative capacity of analyzes between functions 

through advanced, real-time and mobile data visualization tools 

- design an enterprise solution for the ingestion, modeling, notification and sharing 

phases of plant monitoring via machine learning 

- already opened near-real-time field and laboratory data integration and further data 

sources ready to set up ensuring scalability 

More specifically, in the hub we created models based on machine learning technology: 

- models for optimizing the quality of production processes through real-time data 

monitoring from process data, laboratory data and other unstructured data sources 

- ARMA models predicting the value of the main emission parameters for cracking 

furnace and polymer plant to be capable to monitor these parameters even in case of 

dedicated sensor fault. 

1.6. Cyber Security OT 

The growing threat represented by cyber risks led us to activate a broad enforcement 

program across all industrial sites aimed to enforce the resilience of OT systems. 

An assessment study completed in the past have allowed us to set up a program with a 

risk-based approach which is divided into the following intervention guidelines applied 

according to a model consistent with the mapped risk cluster: 

- business continuity system enforcement and cyber active monitoring probes 

- network segregation enforcement between process network connected with industrial 

control system and office network connected to filed data acquisition system 

- data acquisition system hardening and continuous lifecycle management of industrial 

control system 

2. References in the text 

3. Conclusions 

The digital chemistry vision contributes and aligns with Versalis’s strategy aimed at 

maintaining technological and industrial leadership to maintain a positioning in the 

market of high added value applications, be a completely sustainable and diversified 

company and contribute to achieving the goal of carbon neutrality. 
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Abstract 
Synthetic polymers are a key material class in many applications with importance to our 
society, such as plastics and novel energy materials. This causes an increasing demand 
for new synthetic polymers with superior properties. However, due to their complex 
hierarchical and highly versatile structure, the theoretical design space for polymers is 
large. Generative polymer design is a promising approach to accelerate polymer materials 
discovery and reduce experimental screening costs. Yet, generative polymer design is still 
in its infancy with most previous approaches focusing on generating the repeating units 
of polymers without additional structural information. Here, we present our recently 
published graph-to-string variational autoencoder (VAE) that builds upon a recent 
polymer graph representation including stoichiometries and chain architectures of 
monomer ensembles. The model enables de-novo generation of copolymer structures 
including the monomer stoichiometry and chain architecture. In this work, we 
demonstrate three different sampling strategies to generate novel polymers, namely 
sampling from noise, around a seed polymer, and through interpolation between two 
polymers. All methods generate novel polymers not found in the training data, mainly 
through new monomer combinations and novel monomer chemistries. Sampling around 
seed molecules and interpolation between molecules illustrate how variations in the latent 
space change the generated polymers. 

Keywords: generative molecular design, synthetic polymers, variational autoencoder, 
transformers, graph neural network 

1. Introduction 
De-novo generative design of molecules is an increasingly popular approach to 
intelligently design molecules in-silico, reducing experimental screening time and costs. 
Generative models are commonly trained on a large corpus of molecular data and 
facilitate the generation of promising novel molecular structures which can then be 
synthesized in the lab. Yet, compared to the small molecule world, generative synthetic 
polymer design is still in its infancy. One reason is the overall small amount of available, 
accessible, and sufficiently detailed polymer data (Amamoto, 2022; C. Kim et al., 2018; 
Otsuka et al., 2011). Second, unlike for small molecules, the definition of a machine-
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readable data representation that accurately corresponds to the final polymer material is 
difficult (Amamoto, 2022; Hatakeyama-Sato, 2022; Yan & Li, 2023). This results from 
the stochastic nature of polymers and their different structural levels reaching from 
monomer chemistry over monomer composition and stoichiometry to chain architecture 
and linking structure, visualized in Figure 1.  

Most previous works on generative design of polymers focuses mainly on generating 
single polymer repeating units with little or no information about the higher-order 
structural levels (S. Kim et al., 2023; Ma & Luo, 2020). In this work, we demonstrate our 
recently published graph-to-string variational autoencoder (VAE) (Vogel et al., 2023), a 
generative model that has been trained on polymer representations that include the 
stoichiometry of the monomer ensemble and the chain architecture of the polymer 
(Aldeghi & Coley, 2022). The model encodes the training data to a continuous numerical 
latent space that can be used to generate novel copolymers including the monomer 
stoichiometry and chain architecture. We demonstrate three different sampling strategies 
in the model’s latent space, namely sampling from noise, around a seed molecule and 
through interpolation between known molecules. Finally, we discuss the implications of 
the sampling results for future work.  

2. Methods
2.1. Representations and Data 

The model is trained on the dataset published by (Aldeghi & Coley, 2022), which is built 
upon the polymer space of (Bai et al., 2019). The dataset comprises combinations of eight 
A-monomers with 682 B-monomers with the stoichiometries 1:1, 1:3, and 3:1 and three
chain architectures (alternating, random, block), leading to a dataset of 42966
copolymers. Additionally, we augment the dataset by allowing B-B copolymers with the
same selection of stoichiometries and chain architectures, as described in Vogel et al.
2023. We work with the polymer graph representation introduced by Aldeghi & Coley,
2022 together with an equivalent string format, both including the information about
stoichiometry and chain architecture. Further information regarding the polymer
representations can be found in (Vogel et al., 2023).
2.2. Model 

We use our recently published model to encode the polymer graph to a latent 
representation 𝐳𝐳𝐱𝐱 with latent dimension 32 and to decode it to the corresponding polymer 
string. As shown in Figure 2, in the encoding step the model utilizes a graph neural 
network to learn the mean 𝛍𝛍𝐱𝐱 and standard deviation 𝛔𝛔𝐱𝐱 of the data which is then 
reparametrized using a gaussian prior. The decoder is based on the transformer 
architecture, using the latent representation through encoder-decoder attention and 

Figure 1: Structural levels of polymers: Monomers, combination of monomers and 
stoichiometry, chain architecture, and chain linking structure
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through concatenation with the token embeddings. More details on the model architecture 
and training hyperparameters are provided in the original paper (Vogel et al., 2023). 

Figure 2: Simplified overview of Graph-to-string VAE model for synthetic polymer design 
(Vogel et al., 2023). Polymer graphs are encoded in a wDMPNN (Aldeghi & Coley, 2022) to 

learn 𝛍𝛍𝐱𝐱 and 𝛔𝛔𝐱𝐱 which are then reparametrized to the latent representation 𝐳𝐳𝐱𝐱. The latent 
representation is fed to a Transformer decoder that decodes the equivalent polymer strings. 

2.2.1. Sampling: from noise, around seed, and using interpolation 
In this work, we demonstrate de-novo generative design of synthetic polymers using three 
different sampling techniques. First, novel polymers can be generated by sampling latent 
vectors from Gaussian noise 𝒛𝒛𝐧𝐧_𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠𝐠 and decoding these using the trained model. 
Second, we sample novel polymers around a given seed molecule, i.e. by repeatedly 
adding noise 𝒏𝒏 (of latent dimension 32) elementwise to a seed latent vector 𝒛𝒛𝐬𝐬, leading to 
𝒛𝒛𝐬𝐬+𝐧𝐧. Lastly, we interpolate between molecules, i.e. between two latent codes for two 
known molecules 𝒛𝒛𝐦𝐦𝐦𝐦 and 𝒛𝒛𝐦𝐦𝐦𝐦. One can take the mean or interpolate in a stepwise 
manner. In this work, we create ten interpolated latent codes 𝒛𝒛𝐢𝐢,𝐦𝐦𝐦𝐦→𝐦𝐦𝐦𝐦, by interpolating 
elementwise in equidistant steps between the two latent codes of the known molecules. 
For instance, let latent dimension one be 0.2 for 𝒛𝒛𝐦𝐦𝐦𝐦 and 0.75 for 𝒛𝒛𝐦𝐦𝐦𝐦, then the 
interpolated values of latent dimension one 𝑧𝑧1,𝑖𝑖,m1→m2,  would be {0.25, 0.3, 0.35, … , 0.7} 
for the respective interpolated latent vectors 𝒛𝒛𝒊𝒊,𝐦𝐦𝐦𝐦→𝐦𝐦𝐦𝐦, 𝑖𝑖 ∈ {1, 2, 3, … , 10}.  

3. Results and Discussion
In the following, we show the results of de-novo generation of synthetic polymers 
focusing on the three proposed sampling techniques. Moreover, we discuss how the 
monomer chemistries, stoichiometry, and chain architecture change when changing the 
latent codes of polymers. 
3.1. Sampling from gaussian noise 

We use the model to sample 16000 polymers from gaussian noise leading to polymers 
with 77 % novelty (percentage of polymers not in training set), 40 % diversity (percentage 
of unique polymers), and >99 % validity (polymer string corresponds to a valid 
molecule). Further, when investigating the novelty per structural category, we observe 
10.9 % novel B monomer chemistries and 2.3 % novel A monomer chemistries. We 
observe no novel stoichiometries and chain architectures, meaning that the model is 
currently limited to generating the classes found in the training data. Thus, the overall 
novelty is introduced through novel monomers and novel combinations of structural 
components. This indicates that structural categories with a higher variation in the training 
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data lead to higher novelty during sampling, demonstrating the necessity to diversify the 
dataset in all structural categories in future efforts. 
3.2. Sampling around a seed molecule 

Figure 3 shows example molecules when sampling 512 times around a seed molecule by 
repeatedly adding noise to the seed latent code 𝒛𝒛𝐬𝐬. We observe variation from the seed 
molecule in all structural levels, i.e. monomer A, monomer B, stoichiometry, and chain 
architecture. Also, there are several instances of sampling the seed molecule itself (in this 
example 3 out of 512). The level of noise can be varied, with less noise leading to less 
changes from the seed molecule. Figure 3b reveals that, for this example, the structural 
level that is varied the most when adding noise is monomer B, followed by monomer A, 
stoichiometry, and the chain architecture. The higher variation in monomer B is expected, 
since the diversity in the training data is the highest. As already mentioned in Section 3.1, 
we also find novel B-monomers and few novel A-monomers (not present in the dataset) 
indicated as the red hatched bar in Figure 3b. 

Figure 3: Sampling around a seed molecule. (a) Different structural categories (monomer A, 
monomer B. stoichiometry, and chain architecture) are varied. (b) The bar chart shows how often 
out of 512 samples the respective structural categories are varied from the seed molecule. The red 

(hatched) bars indicate novelty in the respective structural category. 
3.3. Interpolation between molecules 

Figures 4a and 4b show examples of the interpolation path between two copolymers, 
where monomer A is depicted in the upper part and monomer B in the lower part. The 
interpolation pathway reveals that the different structural levels transform stepwise from 
the start molecule to the end molecule. Furthermore, we observe that the stoichiometry 
and chain architecture change less frequently, yet altering the latent code sufficiently 
leads to a structural change in the decoded polymer. On the contrary, the monomers 
change already for smaller variations of the latent vector throughout the interpolation, 
especially monomer B, as expected based on the diversity of monomer B in the dataset. 
Notably, all polymer intermediates in Figure 4 are not found in our dataset and are novel, 
valid copolymers. The novelty of intermediates in Figure 4a is only due to novel 
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combinations, meaning that all monomers in this interpolation path are found in the 
dataset. In the example in Figure 4b we also observe novel monomers, in line with novel 
A and B monomers found when sampling around seed molecules (see Figure 3b).  

In both examples, we see that heteroatoms (no C or H) and functional groups play a key 
role how the monomers change. Heteroatoms like S, F, Cl, N, and O determine whether 
polymers are encoded in similar regions in the latent space. For instance, in Figure 4b, 
the start molecule contains four oxygen atoms, while the end molecule does not contain 
any. Throughout the interpolation path, the oxygen atoms are disappearing in the decoded 
molecules. Similarly, the end molecule contains a chlorine atom, while the start molecule 
does not. In the middle of the interpolation part a chlorine atom appears, changing its 
position in the polymer between the two monomers until reaching the end molecule. This 
behavior is desirable, since functional groups such as chloride or nitro groups determine 
the properties of the polymer and therefore polymers with the same functional groups 
should be close in latent space.  
Furthermore, all sampled polymers are conjugated copolymers, in line with the chemical 
space that the model is trained on which consists of conjugated copolymers used as 
photocatalysts (Bai et al., 2019).  

Figure 4: Two examples of interpolation paths between two polymers showing sequential changes 
in monomer A (upper molecule), monomer B, stoichiometry and chain architecture. Changing 
parts of the polymer compared to the previous step are highlighted in blue circles. The green 

number indicates for how many steps this polymer is decoded on the interpolated path. 
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4. Conclusions
We developed a model for de-novo generative design of synthetic copolymer structures 
including monomer chemistries, stoichiometry and chain architecture. Our approach 
increases the level of information about the polymer, enabling the generation of polymer 
structures that represent the polymer material more accurately. Here, we demonstrate with 
three sampling techniques how the model can be used to generate novel copolymers and 
show that novelty is introduced by new combinations of known structural levels, novel 
monomer chemistries and the combination of the two. Moreover, in this work we show 
that polymers with similar functional groups and heteroatoms are encoded in similar 
regions of the latent space. Prospectively, with an increased diversity of the dataset on all 
structural levels, we envision a model that can generate novel and diverse polymer 
structures, including, for instance, novel stoichiometries.  
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Abstract 
The research for the optimal flowsheet is a key part of process synthesis. However, 
optimization at a structural level is difficult due to its discrete nature, and current 
approaches may not guarantee a good exploration of possibilities. A continuous structural 
domain could be useful for systematizing this research and exploration. 

In this work, a machine learning model is trained to develop a continuous representation 
for flowsheets: every process can be turned into a point in space, and points in space can 
be translated back into processes. The model’s capability of generating new processes 
from random points in space is assessed. Results show that, although capable of grouping 
similar processes together, in clusters, it may not always propose structurally feasible 
flowsheets. Dataset generation and hyperparameter finetuning could also be improved 
before the model is coupled with process synthesis approaches. 

Keywords: Process Synthesis, Machine Learning, Artificial Intelligence, SFILES 

1. Introduction 
In process synthesis, finding the optimal flowsheet for a given application is challenging, 
and it may be difficult to explore the realm of possibilities. While heuristics can be used 
for proposing relevant alternatives, they may miss better, less intuitive ones. 
Superstructural (see Mencarelli et al. (2020)) and generative approaches (see Nabil et al. 
(2022)) search a wider range of processes, but may not ensure a systematic exploration 
of the domain of feasible structures – which is difficult to represent mathematically. In 
contrast, mapping the discrete space of process flowsheets to a continuous one could 
prove useful, since optimization exploration techniques could be applied. 
The goal of this work is to develop a model that learns a continuous, vector-space 
representation of process flowsheets, from which new ones can then be sampled. In this 
space, it is desired that two similar processes be found close to each other, while two very 
different flowsheets should be further apart. The motivation behind this objective is to 
eventually use this model to systematize the research of the optimal flowsheet – since a 
continuous space would yield a better way to analyse and quantify the exploration of 
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alternatives, and enable the use of sampling and optimization strategies for proposing new 
ones. 
This work takes inspiration from the paper by Gómez-Bombarelli et al. (2018), in which 
a Variational Autoencoder was used to develop a continuous representation for molecular 
structures – being used for running property optimization directly in the continuous space. 
Here, their publicly available codes were adapted for flowsheets, with a few additions for 
improving model learning efficiency. 

2. Representation Learning Model 
2.1. Representation Learning and the Variational Autoencoder 
Representation Learning is a branch of Machine Learning that attempts to automatically 
identify patterns and features in raw data – and develop efficient representations for it. 
The Variational Autoencoder (VAE) is a deep learning model composed of two separate 
parts: an encoder and a decoder. The encoder is a dimensionality reduction model, that 
transforms an input (in our case a flowsheet) into a representation vector (also called a 
“latent” vector); while the decoder tries to reconstruct the original input from said vector. 
While each of these parts are used separately, for different purposes, they are trained as a 
single model: the VAE receives an input and tries to reconstruct it, passing through a 
latent space of smaller dimension (which forces the model to learn an efficient 
representation). The model relies solely on the similarities between flowsheets to learn. 
The “variational” label, put simply, entails that noise is added to the encoded vector 
during training to improve learning, and that the loss (i.e., the objective function used for 
training the model) is composed of a reconstruction term and a regularization term. The 
former ensures that the model is capable of translating points from the latent space back 
into the correct processes; the latter forces the data to be close together in the latent space, 
improving the continuity of the representation. In practice, the VAE is probabilistic in 
nature, a property that yields attractive generative capabilities. 
2.2. Input: SFILES notation 
To train a Neural Network (NN) with process structures, it is necessary to convert them 
into a format that can be understood by the model (a matrix). To bridge this gap, the 
SFILES 2.0 notation (Vogel et al., 2023a) for representing process structures is used. It 
mirrors the SMILES standard used for molecules (used by the molecular VAE authors) 
and represents flowsheets as a string of “words” (or, more generally, “tokens”) making 
the task analogous to a Natural Language Processing problem – which is well-studied in 
the Machine Learning field. A token may represent an equipment or special symbols 
(such as recycles and branches). When all tokens relevant to the problem are listed, each 
one can be associated to a (“one-hot”) vector. The string of tokens thus becomes a 
sequence of vectors, which makes up the model’s actual input.  
2.3. Output: decoding strategy 
Because of the discrete nature of the problem, the flowsheet is decoded one word at a 
time. At each step, the model outputs a probability for each word and picks that step’s 
word randomly, according to those probabilities. Then, this token is used as an input for 
decoding the next one, and so on. While other probabilistic decoding strategies are 
possible (see Vogel et al. (2023b)), this step-by-step sampling was kept for simplicity. 
This means that the model’s performance is probabilistic. Because of this, when 
evaluating the model, encoded vectors will be run multiple times through the decoder, 
and results will be presented according to this number of “decoding attempts”. For 
comparison, a “greedy”, deterministic, strategy will also be used: in it, the token with the 
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highest probability is picked at each step. An illustration of the complete VAE is shown 
in Figure 1. 

 
Figure 1: Illustration of a VAE and example of a process represented as a SFILES string. 

3. Case Study: Thermodynamic Cycles 
3.1. Methodology 
To train the model, a dataset of around 300,000 randomly generated thermodynamic 
cycles is used with a 90 %/10 % training/validation split. These processes are composed 
of 7 different types of equipment: compressors, turbines, heaters, coolers, integrated heat 
exchangers, stream splitters and mixers. All flowsheets are structurally feasible – they 
are closed cycles and equipment connectivity is respected – but they are not necessarily 
well-performing or logical from a thermodynamical standpoint. This dataset stems from 
the works by Nabil et al. (2023) and was kindly provided by the authors. An extra dataset 
(hereinafter “test” dataset) with 100,000 cycles was created by one of the generative AI 
models mentioned in the referenced paper and is used for further analysis. 
The VAE’s process reconstruction accuracy (i.e., the fraction of correctly reconstructed 
processes in a set) for each dataset is used for verifying if the model was able of learning 
and generalizing. Note that the reconstruction of a given process is considered as a failure 
as long as at least one token is incorrectly decoded in the sequence. Token-wise accuracies 
(the fraction of correctly decoded tokens in the set) are also presented for discussion. To 
analyse the model’s capacity of generating new flowsheets, points will be randomly 
sampled from the latent space and decoded. The fraction of valid (structurally feasible 
SFILES), unique, and new (not present in the training dataset) flowsheets will be used for 
quantifying performance. 
Since the model is given multiple decoding attempts, it is necessary to define which 
decoded flowsheet will be assigned as final. Here, the methodology used by the molecular 
VAE’s authors is adapted, for taking feasibility into account. After a point is decoded 
multiple times, each process is screened for feasibility. Then, each one is re-encoded into 
latent space, using the encoder part of the VAE (without adding noise to the result). 
Finally, the valid process which is the closest to the sampling point is chosen as the 
“assigned” decoding. This methodology is illustrated in Figure 2. 

 
Figure 2: Illustration of the structure assignment methodology for a point in latent space (2D in 

this example). The final decoding is the valid process which is closest to the point. 
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3.2. Results 
3.2.1. Reconstruction accuracies 
Models with different numbers of latent space dimensions were trained for a total of 40 
epochs. They will be referenced as a function of their dimensionality (e.g., model 100D 
has a 100-dimensional latent space). Because GPU acceleration was not possible, training 
times were a limiting factor, and most hyperparameter values were kept as default (e.g., 
the dimension size of 196 was the default). As mentioned in section 2.1, the model is 
trained with a regularization term. Following the molecular VAE’s authors’ 
recommendation, the weight of this term is increased during training, following a sigmoid 
curve. Here, its value is varied from 0.001 at epoch 21 to 0.999 at epoch 31 (steeper than 
default values, because of the long training times). Table 1 shows results for the best two 
models, for the epoch (training iteration) with minimal validation loss. 
 
Table 1: Reconstruction accuracies for the best two models. 

  Reconstruction accuracy 
Model Decoding type Training Validation Test 
100D Greedy (token-wise) 98.5 % 98.3 % 87.8 % 

 Greedy (process-wise) 85.7 % 84.3 % 45.4 % 
 10 attempts (process-wise) 87.2 % 86.3 % 45.8 % 

196D Greedy (token-wise) 98.3 % 98.2 % 87.0 % 
 Greedy (process-wise) 80.5 % 79.5 % 42.0 % 
 10 attempts (process-wise) 86.3 % 85.6 % 45.0 % 

 
As expected, the models achieve better accuracies with more attempts (since greedy 
decoding is deterministic, it represents one decoding). Since process reconstruction fails 
if at least one token is incorrectly decoded, very high token-wise accuracies are needed 
to achieve good process-wise accuracies. It is observed that the 100D model achieves 
slightly better reconstruction accuracies than the 196D. However, the former peaks at 
epoch 23, while the latter peaks at epoch 25, when the regularization weight is higher 
(though not yet 1). Model 196D is thus expected to have better latent space properties. 
Because of the steep variation of the regularization weight, a harsh deterioration of 
validation accuracy and loss were observed after the best epoch, from which the models 
did not recover by the end of training. For smaller dimensions, the drop in accuracy is 
greater and the recovery is much worse – which is shown in Table 2, where validation 
process reconstruction accuracies (10 decoding attempts) are presented for both the best 
and last epochs. Although the 196D model should have better latent space properties by 
the last epoch (40), which has a smaller regularization loss, it proved much worse for 
generating feasible flowsheets from the latent space. For this reason, only the best epoch 
models were kept for the next analyses. 
 
Table 2: Evolution of validation process reconstruction accuracy (10 decoding attempts) 
according to latent space dimension and epoch. 
  Reconstruction Accuracy 

Model Best epoch number Best epoch Last epoch 
20D 22 70.7 % 0.00 % 
50D 23 83.0 % 0.25 % 
100D 23 86.3 % 0.31 % 
150D 22 83.2 % 13.1 % 
196D 25 85.6 % 77.5 % 
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Finally, it is observed that test accuracies are much worse than training and validation’s, 
which was expected since the test set was generated in a different way (likely containing 
flowsheets that do not resemble the ones in the training set). This indicates that the model 
has trouble to generalizing beyond its training distribution. 
3.2.2. Latent space analysis 
Ten thousand points were sampled from the latent space and decoded according to the 
methodology described in section 3.1. Table 3 presents the proportion of valid; valid and 
unique; and valid, unique and new processes decoded from the sampling. Note that these 
values consider only the 10,000 assigned decodings, and not the total number of decoded 
SFILES (10,000 times the number of decoding attempts). 
 
Table 3: Sampling results for the best models. 

  Process Percentages 
Model Decoding attempts Valid Unique New 
100D Greedy 17.7 % 17.7 % 17.0 % 

 10 attempts 41.5 % 41.5 % 40.5 % 
 100 attempts 72.4 % 72.3 % 71.2 % 

196D Greedy 21.9 % 21.8 % 20.9 % 
 10 attempts 52.3 % 51.8 % 50.4 % 
 100 attempts 84.6 % 83.2 % 81.5 % 

 
It is observed that the 196D model has better sampling results, as expected from its better 
latent space properties and despite 100D’s slightly better reconstruction accuracies. It is 
observed that the models are not always capable of decoding valid SFILES from arbitrary 
points in space: processes will often include equipment with more (or less) connections 
than they should, or not be cyclical (necessary in this case study’s application). The 
proportion of valid decodings can be improved by increasing the number of decoding 
attempts, but this only means that at least one feasible process was generated, out of all 
attempts. This indicates that the model may struggle to find other similar and feasible 
processes around the same point. When analyzing the decoded processes in latent space, 
it is seen that the decoded SFILES are found in clusters, rather than being evenly spaced, 
as illustrated in Figure 2. An example of processes decoded from a same point is shown 
in Figure 3. 

 
Figure 3: Example of processes sampled from a same point in latent space. 
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The choice of picking the closest valid process from the sample coordinates as the 
assigned decoding can be the subject of discussion, especially since the encoder and the 
decoder are used separately. When running multiple decoding attempts, a natural option 
would be to pick the SFILES decoded the most often, which should relate to the decoder’s 
confidence – the distance serving as a tiebreaker. Also, depending on the intended use, 
multiple – if not all – valid decoded processes can be taken into consideration. 
3.3. Limitations 
Language-based notations may allow multiple ways of representing the same flowsheets. 
Even if a canonical representation is defined, it is hard to guarantee that similar processes 
will always have similar token-by-token representations. This may cause the model to 
have two representations for the same process in different parts of the latent space. 
The use of directed graphs would be more adequate, but graph generative models are far 
more complex than language-based ones. A possible middle ground for this application 
could be to use a graph representation as an input for the encoder, while keeping the 
SFILES notation for the decoder’s output. 

4. Conclusions 
In this work, the development of a continuous representation for process flowsheets is 
studied. It is observed that the model can generate new, valid flowsheets from the 
representation space, and that similar structures can be found next to each other. However, 
performance can still be improved: in some cases, only one feasible process was decoded 
in 100 attempts, while it would be desired that multiple feasible, similar processes could 
be sampled from a same region. 
Training data generation must also be improved. Since the generated processes do not 
need to be simulated, data generation is inexpensive. However, the time needed to train 
the model was not. Adapting the model for GPU acceleration would allow the use of more 
data and hyperparameter optimization. 
Future works could seek to improve model performance and to use its generation 
capabilities to feed generative approaches, to allow a more efficient exploration of 
alternatives. Following the molecular VAE paper, the model could also be coupled with 
performance data, and running optimizations directly in latent space could be tested. 
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Abstract 
Identifying impactful solutions for global grand challenges often requires concerted 
research efforts that span molecular, material, device, systems, and infrastructure length-
scales and transcend disciplines. In this contribution, we argue predictive multiscale 
mathematical models, often grounded in scientific theories, provide principled 
approaches to realize molecular-to-systems engineering. Using a membrane example, we 
present a tutorial on science-based data analytics including nonlinear regression, practical 
identifiability, parameter uncertainty quantification, and model-based design of 
experiments (MBDoE). Next, we provide a tutorial on how to use Pyomo.DoE to perform 
MBDoE for parameter precision optimization in the open-source Pyomo ecosystem. We 
conclude the best practices for using models at advance collaborations across disciplines 
(i.e., outside process systems engineering). 
 
Keywords: data science, nonlinear regression, digital twins, membrane science, software 
engineering 

1. Mathematical Modeling Facilitates Collaboration 
Sustainability is considered a “wicked problem” (Lönngren and Van Poeck 2021) because 
of the complex interdependencies between social, natural, and engineered systems. These 
problems thus require interdisciplinary teams and new modeling strategies to consider 
complex interactions across molecular, material, device, process, and infrastructure scales 
(Eugene, Phillip, and Dowling 2019). Informed by our recent in collaborations ranging 
from water treatment (Eugene, Phillip, and Dowling 2021), refrigerant recycling (Befort 
et al. 2023), and additive manufacturing (K. Wang et al. 2023), we argue predictive 
mathematical models are a critical important tool for bridging length and timescales as 
well as disciplines. 

2. Tutorial on Science-based Data Analytics 
Through a short tutorial on membrane modeling, we show systematic steps for building, 
training, and validating mathematical models, illustrated in Figure 1. 
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Figure 1. Science-based modeling workflow adapted from literature (Franceschini and 

Macchietto 2008; J. Wang and Dowling 2022) in the Pyomo ecosystem. Starting with preliminary 
data and prior knowledge, the modeler postulates one or more mathematical models grounded in 

engineering science. Physically meaningful parameters in these models are estimated via 
nonlinear optimization. Sensitivity and uncertainty analyses determine which parameters are 

estimable from the available data. Optionally, statistical information criteria can facilitate model 
selection. Finally, model-based design of experiments recommends the next most valuable 

measurements to discriminate between candidate models or increase parameter precision or both. 
 
Diafiltration is a membrane staging technique to efficiently separate charged molecules, 
with current applications focused on valuable products such as proteins and buffer 
exchange (Ouimet et al. 2022). Motivated by the ongoing global transportation 
electrification, we contemplate optimizing diafiltration cascades for lithium-ion battery 
recycling (Harper et al. 2019). We previously showed how molecular-to-systems 
optimization using science-based mathematical models facilitates systematic evaluation 
of trade-offs in membrane system design and sets quantitative materials property targets 
for new applications (Wamble et al. 2022). However, this analysis was predicated on 
mathematical models for membrane transport. 
 
Motivated by this goal of designing new membrane materials and systems using 
predictive science-based models, we share how the synergies between data analytics (e.g., 
dynamic modeling, nonlinear parameter, Fisher information analysis) and transport 
experiments (e.g., sensor design for time-series measurements) led to the new 
Diafiltration Apparatus for high-Throughput Analysis (DATA) technique for higher 
throughput membrane characterization (Ouimet et al. 2022). Using the DATA framework 
as a motivating example, we present a tutorial on science-based data analytics: 

1. Postulating a dynamic model to describe changing concentrations as rejections 
as a function of time, 

2. Using weighted nonlinear regression to balance prediction errors across three 
experimentally measured quantities, 

3. Performing estimability analysis to demonstrate the importance of diafiltration 
experiments which sweep a large concentration range, 

4. Using model-based design of experiments (MBDoE) to identify the operating 
regions with the most information (Liu et al. 2022). 
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Our tutorial shows how these data science tools directly inform apparatus design and 
experiment optimization, ultimately leading to predictive science-based mathematical 
models with quantified parametric uncertainty. 

3. Pyomo.DoE and Model-based Design of Experiments (MBDoE) 
Open-source tools, including Pyomo and Pyomo.DoE (J. Wang and Dowling 2022), 
enable model-based data analysis in Python while exploiting state-of-the-art nonlinear 
optimization solvers. In summary, MBDoE first sequentially determines the best 
experiments to discriminate between a set of candidate mathematical models (Olofsson 
et al. 2019). Then, in parameter precision mode, MBDoE sequentially recommends 
experiments to reduce parameter uncertainties (Franceschini and Macchietto 2008). 
Recently MBDoE algorithms have been combined with automated experiments 
(Pankajakshan et al. 2023) to establish digital twins (Kuchemüller, Pörtner, and Möller 
2021). Pyomo.DoE helps Pyomo users automatically formulate and solve MBDoE for 
parameter precision optimization problems. In this contribution, we provide a tutorial for 
specifying models in Pyomo.DoE. We conclude by summarizing ongoing development 
activities for Pyomo.DoE. 

4. Conclusions and Key Contributions 
Through the membrane example, we show how science-based data analystics, especially 
MBDoE, provides a framework to characterize transport properties of membranes 10x 
faster than conventional experiments. Moreover, this example provides a tutorial on key 
data analytics tools. 
 
While MBDoE is a powerful paradigm, it requires expertise in mathematical modeling, 
optimization, and statitics. To reduce these barriers, we are developing Pyomo.DoE, a 
package for MBDoE within the popular Pyomo modeling ecosystem. 
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Abstract 
The anthropogenic CO2 emissions reinforce the global warming phenomena. Post-
combustion absorption is the most mature technology to reduce the CO2 footprint. In the 
last decade, many solvent blends have been developed and tested to improve the process 
efficiency. However, testing such solvent blends relying only on laboratory experiments 
is expensive and laborious. Computational screening represents a viable solution for this 
challenge. A reliable model to predict the absorption performance of CO2 in solvent 
blends is needed to achieve this task. Graph neural networks (GNNs) are a machine 
learning technique that correlates a graph structure with its properties through a learned 
molecular representation. They have shown significant capabilities in correlating the 
physic-chemical properties of a mixture with the molecular structures of its components. 
This work aims to build and analyse a model correlating the chemical composition of a 
mixture with its CO2 solubility using GNN. The model considers the molecular structure 
of the components in the mixture, their concentrations, and other process parameters (i.e., 
process temperature and CO2 concentration in the gas) as input variables. The model 
output is the CO2 molar fraction within the liquid at equilibrium. Several model 
configurations were tested, and the most performant one employed three graph attention 
layers with an embedding size of 16. The final model returned a mean absolute percentage 
error and a root mean squared error of 26.86% and 0.011 on the entire test set, and 22.34% 
and 0.011 on test data involving only new molecular structures. 
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Keywords: CO2 capture, Graph neural networks, QSPR relationship, Solvation. 

1. Introduction 
Global warming is one of the main challenges humanity is facing. It is enforced by 
anthropogenic CO2 emissions. Many technologies are available to reduce carbon 
footprint; the most mature is post-combustion capture (Bui et al., 2018). This solution 
employs chemical solvents to absorb the CO2 molecules in a flue-gas stream. The state-
of-the-practice employs aqueous monoethanolamine (MEA) solutions at 30%wt. as the 
absorbent liquid. The chemistry of the solvent significantly affects the efficiency of the 
process; for this reason, many studies focus on the experimental investigation of novel 
solvent blends, investigating the CO2 absorption capacity of both organic and ionic liquids 
(Aghel et al., 2022). Solvent design is a promising way to improve the efficiency of such 
a process; however, the experimental investigation of the solvent mixtures is very time-
consuming and laborious. Digital solvent screening represents a viable solution for this 
challenge. However, a reliable model to predict the absorption performance of CO2 in 
solvent blends is needed to achieve this task. The absorption properties of the solvent 
blend are connected to the chemical properties of the mixture components; therefore, 
correlating these two properties is the most promising way to achieve the modelling task. 
In amine blends and non-ionic solvents, absorption is typically driven both by chemical 
and physical mechanisms. Consequently, modelling such behaviour is challenging. In 
recent years, machine learning (ML) techniques have shown outstanding capabilities in 
predicting solubilities (Vermeire et al., 2021). They rely on experimental data of a given 
system to predict its behaviour and performance in given scenarios. More specifically, 
graph neural networks (GNNs) are an ML technique that correlates a graph structure with 
its properties through a learned molecular representation. Such a modelling technique has 
already been applied to predict the CO2 solubility in ionic liquids (Jian et al., 2022). Many 
studies are available in the literature correlating the molecular structure of non-ionic 
liquids with absorption properties using ML techniques, such as Orlov (2021) and Orlov 
(2022). However, to the best of our knowledge, the literature lacks studies considering 
mixtures between organic components and water and the process conditions (i.e., 
temperature and CO2 partial pressure in the flue gas) employing GNNs. This work aims 
to fill this gap by proposing a modelling methodology which applies GNN to predict the 
CO2 solubility in non-ionic liquids. The model considers a mixture of up to two organic 
components and their concentration in water at different process conditions. 

2. Methodology 
The data to train the network was obtained from literature and involved mixtures of 
organic liquids with up to two organic components. Overall, the dataset contained 1902 
data points involving 25 unique organic molecules. Each data point contains the chemical 
structure of the organic components and their mass fraction, the mass fraction of water, 
the absorption temperature, the equilibrium CO2 partial pressure and the molar fraction 
of the dissolved CO2 within the absorbent liquid. 
All the information was used as network input except the molar fraction of the dissolved 
CO2, which was used as model output. The information about the chemical structure was 
coded into molecular graphs through SMILES. The following properties characterised 
each node of the graph: 1) whether the atom is a hydrogen bond acceptor, 2) if the atom 
is in a ring and the dimension of the ring it is in, 3) the number of lonely pairs, 4) 
electronegativity, 5) atomic number and 6) hybridisation. All the node features were 
reported as continuous variables. The following properties characterised each edge 
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between the nodes: 1) the bond type (i.e., single, double, aromatic), 2) whether the bond 
is in a conjugated system, 3) whether the bond is in a ring, and 4) the bond length. All the 
edge features were reported as continuous variables except for the bond type, which was 
reported as a one-hot encoding. In addition, each molecular graph was characterised using 
the physical properties of the molecules, namely: 1) total number of hydrogen bond 
acceptor sites on the molecule, 2) total number of hydrogen bond donors on the molecule, 
3) total number of hydrogen within the molecule, 4) total number of carbon within the 
molecule, 5) total number of oxygen within the molecule, 6) total number of nitrogen 
within the molecule, 7) total number of sulphur within the molecule, 8) total number of 
rotatable bounds within the molecule, 9) molecule topological surface area, 10) molecular 
radius, 11) molar mass. The physical molecular information was included to support the 
information obtained from the molecular graph. This information could be learned from 
the molecular graph; however, this would require a more complex graph layer structure. 
Therefore, an explicity of physical molecular information was added to the network to 
improve the efficiency of the model training. The node, bounds and molecular properties 
were obtained using RDKit, a cheminformatics toolkit. In order to test the network 
performance, part of the dataset was held out from the training and used as the test set; it 
contained 566 data points. All the data points referred to 2-methylpiperizine (2MPZ) were 
used in the test set. Such a part of the test set comprised 42 data points. Additionally, to 
evaluate the performance under process conditions, random data points involving 
mixtures containing monoethanolamine (MEA), methyldiethanolamine (MDEA) and 
piperazine (PZ) were included in the test set. The training set was employed for the 
network hyperparameter identification and its training, while the test set was never used 
in the training; it was used only to evaluate the performance of the final model following 
the model hyperparameter identification and training step. 
Figure 1 reports the structure of the employed network. The information from the 
molecules was extracted using graph convolutional layers. This work tested two 
convolutional layers: the one reported by Kipf and Welling (2017) and Veličković et al. 
(2018). Now on, the former is referred to as GCN and the latter as GAT. The training 
involved their implementations included in PyTorch Geometric 2.2.0 and employed the 
default settings. The information obtained from the convolutional layer was embedded in 
arrays using average and maximum pooling for each molecule. Such operators get the 
average and the maximum values over each matrix column returned by the convolutional 
layers. In addition, a further array was employed, including molecular information 
calculated via RDKit. The three arrays were concatenated, generating an array that is 
molecule-specific. After that, the molecule-specific arrays of the two organic components 
were multiplied by their mass fraction and summed. The obtained array was used as input 
to a multilayer perceptron (MLP) with the process conditions to calculate the dissolved 
CO2 amount. Prior to the usage in the MLP, the following scaling techniques were applied 
to the input: the molecular features were standardised, the temperature input was 
normalised in the range [0,1], and the CO2 pressure was firstly logarithmically scaled and 
then normalised in the range [0,1]. The MLP comprised two hidden layers, the first 
containing 20 nodes and the following 5 nodes. The layer had many nodes as the input, 
and the output layer contained only one output neuron. The internal activation functions 
were rectified linear units, while the output node employed a sigmoid function. The 
activation functions were found by manual grid search. 
The number of graph layers, the type of graph layers and the embedding size were chosen 
using a grid search. The identification of the network hyperparameters was performed 
using a 10-fold cross-validation. Each fold contained mixtures with at least one molecule 
not included in the other folds; this way, the score on the test folder represents the model 
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performance when dealing with unknown molecular structures, and the network selection 
is more reliable. A full-factorial investigation was performed involving two graph layers 
(i.e., GCN and GAT), three sizes of the molecular embedding (i.e., 16, 32 and 64) and 
three amount of graph layers (i.e., 1, 2 and 3). The network showing the lower median 
values of the mean squared error on the validation folds was selected. All the networks 
were trained using Adam optimiser for 500 epochs with a learning rate of 3·10-3. 
 

 
Figure 1. Structure of the employed Graph Neural Network. In this figure: Graph Convolutional 

Layers (GCL), Average Pooling (AP), Mean Pooling (MP), Molecular Features (MF), Graph 
feature (GF), Organic representation (OR). 

The network showing the best performance in the 10-fold cross-validation was trained on 
the entire training set, applying ensemble learning over 30 networks. Each network was 
trained on the entire train set with different initial guesses of the model weights. The 
results of the 30 networks were averaged and re-scaled to the original output values scale. 

3. Results and discussion 
Among the various networks, the most performant one on the 10-fold cross-validation 
employed a structure containing three graph attention layers per molecule, with a 
molecular embedding size of 16. Figure 2 reports the performance of this model, 
including the parity plots and the metrics on the test set. The root mean squared error 
(RMSE) and the mean absolute percentage error (MAPE) were employed. 
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Figure 2. Parity plot and metrics of the model on the test set. a) Model performance on the entire 

test set. b) Model performance on the test molecules not included in the train set. The 
abbreviations are as follows: 2-methylpiperizine (2MPZ), sulfolane (SULF), ethylene glycol 

(MEG), 1-methylimidazole (1MIMI), Dimethyl sulfoxide (DMSO), N-methyl-2-pyrrolidinone 
(NMP). 

Figure 2a reports the performance of the model on the entire test set. In this case, the 
predictions are made both on molecules not included in the training set and on those 
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included in the training set but at different process conditions. In this case, the model 
returns a MAPE value of 26.86% and a RMSE of 0.011. In addition, most of the points 
related to the molecules already included in the train set fell in the range ± 20%. This 
result highlights the prediction accuracy of the model over the process conditions. 
Figure 2b reports the model accuracy on molecules it was not trained on. In this figure, 
only the points related to the 2MPZ are included. The model showed a MAPE of 22.34% 
and a RMSE of 0.011 in these conditions. From the figure, it is possible to assess how 
most of the points are within the error range of ± 20% when the organic blend is composed 
of only 2MPZ or 2MPZ-NMP. However, the predictions significantly diverge for all the 
other mixtures. The training data included points involving the other molecules within 
the organic part with 2MPZ; however, they included MEA or MDEA instead of 2MPZ. 
We hypothesise that this is related to the fact that both MEA and MDEA do not include 
cyclic structures in the molecule and have only one nitrogen atom in their structure; on 
the other hand, 2MPZ have a cyclic structure and includes two nitrogen atoms. However, 
further investigations are required to prove this hypothesis. 

4. Conclusions 
In this work, we obtained a model estimating the CO2 solubility within an organic 
mixture, given the molecular structure of the components and the process conditions. The 
model was obtained employing graph neural networks. The model generalisation 
capabilities were evaluated on unseen molecular structures and process conditions. In 
both cases, the trained model showed acceptable prediction accuracy with a mean 
absolute percentage error of 26.88% on the overall test set and 22.34% on the test set, 
including only unseen molecular structures.  
A continuation of this work would be a more systematic investigation of further network 
structures to improve the model accuracy since some bias toward some input variables is 
reported. In addition, a further improvement would be assessing the estimation of other 
physical parameters affecting the capture process efficiencies.  
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Abstract 

This work investigates the effects of adversarial attacks on the combined decision-making 

process of electricity price forecasting and optimization-based demand side management 

(DSM). At the example of a grid-scale battery, this work shows how attackers can induce 

significant changes in system operation by adding targeted modifications to the input data 

of the decision-making process. Furthermore, this work proposes a black-box approach 

using empirical emulators (adversarial surrogate models) of the decision-making process. 

The proposed attack leads to significant changes in the DSM schedules and the obtained 

profits, even for small perturbations of the input data.  

Keywords: Demand side management, electricity price forecasting, machine learning, 

adversarial attacks, safety  

1. Introduction 

The process systems engineering (PSE) community is and has been at the forefront of 

developing algorithms for optimization-based DSM for flexible process operation, which 

can achieve cost savings in the energy- and chemical industries (Ave et al., 2018; Baader 

et al., 2020). Solving DSM problems typically requires solving large-scale optimization 

problems, which use predictions of electricity price data as parameters (Morales et al., 

2014).  

The success and increased application of machine learning-based decision making in 

DSM and other PSE disciplines increases the risk of malicious interference from outside 

parties. Most machine learning algorithms used in DSM do not consider the threat of 

adversarial attacks, i.e., data corruption aimed at deteriorating machine learning model 

outputs (Xu et al., 2020). This work investigates the vulnerability of flexibly operated 

industrial processes to such adversarial attacks. Opposed to the known threat of hackers, 

adversarial attacks are data-based attacks that implement attacks without access to the 

operation itself. Attack design methods, such as the fast gradient sign method (FGSM) 

(Goodfellow et al., 2015), rely on the sensitivity information of the machine learning 

model with respect to its input features to generate adversarial noise that is added to the 

original data. Such adversarial noise patterns can either pursue a targeted attack, i.e., 

aiming to induce specific predictions or untargeted attacks, i.e., forcing predictions that 

are as far from the correct output as possible (Xu et al., 2020).  
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At the example of a grid-scale battery, this work showcases the effects of adversarial 

attacks on the decisions made in optimization-based DSM. The grid battery operators aim 

to return a profit by trading on the day-ahead electricity market. As the actual prices are 

unknown, the full decision-making process consists of electricity price forecasting and 

solving a DSM optimization problem. As in most real-world applications, neither the 

forecasting model nor the DSM optimization model are publicly available. Therefore, this 

work proposes to train an emulating regression model of the full decision-making process 

of electricity price forecasting and optimization via a black-box attack scheme. This type 

of process emulating model is referred to as adversarial surrogate model (ASM) 

throughout this work. Using gradients of the ASM, the attacker designs minimal 

perturbations to the residual load forecasts that aim to deteriorate the trading decisions 

and lead to financial losses.  

The trading decisions of the battery operators are made using a linear scheduling model. 

The optimization problem is solved using electricity price forecasts from state-of-the-art 

forecasting models such as LASSO regression and artificial neural networks (ANN) that 

use residual load forecasts as their input features (Trebbien et al., 2023). The results show 

how minimal changes in the input data can induce significant financial losses to the 

operation of the electricity storage. Thus, data-based adversarial attacks pose a threat to 

comparable decision-making processes in the energy- and chemical industries.  

2. DSM of a grid-scale battery and multi-period electricity price forecasting 

This Section introduces the DSM case study and the multi-period electricity price 

forecasting scheme. Note that this Section states the models for completeness. The 

attacker has no access to of knowledge of the scheduling or the forecasting model.  

2.1. DSM of a Battery Storage 

This work investigates the DSM of a grid-scale battery. The battery operation aims to 

return a profit by trading on the day-ahead market. Problem (P) shows the optimization 

problem to determine the optimal trading decisions. The problem considers a 1200 kWh 

storage capacity, and the formulation is adapted from previous work (Cramer et al., 2022) 

and general formulations for day-ahead trading (Morales et al., 2014). The formulation 

assumes a constant efficiency 𝜂 = 0.9 for charging and discharging, making Problem (P) 

a linear optimization problem.  

 max
𝑊𝑡

𝑖𝑛,𝑊𝑡
𝑜𝑢𝑡

∑ 𝑃𝑡
𝐷𝐴(𝑊𝑡

𝑜𝑢𝑡 − 𝑊𝑡
𝑖𝑛)Δ𝑡24

𝑡=1   

(P) 

𝑠. 𝑡. 𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 −
1

𝜂
𝑊𝑡

𝑜𝑢𝑡 − 𝜂𝑊𝑡
𝑖𝑛   

 0 ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥  

 𝑆𝑂𝐶𝑡=24 = 𝑆𝑂𝐶𝑡=0  

 0 ≤ 𝑊𝑡
𝑜𝑢𝑡 ≤ 𝑊𝑚𝑎𝑥   

 0 ≤ 𝑊𝑡
𝑖𝑛 ≤ 𝑊𝑚𝑎𝑥   

In Problem (P), 𝑊𝑡
𝑖𝑛 and 𝑊𝑡

𝑜𝑢𝑡 are the trading decisions for the 𝑡-th hour, 𝑊𝑚𝑎𝑥  is the 

maximum (dis-)charging rate, 𝑆𝑂𝐶𝑡 is the state of charge at hour 𝑡, 𝑃𝑡
𝐷𝐴 is the day-ahead 
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price at the hour 𝑡, and Δ𝑡 is the trading interval of 1h. Generally, the battery will charge 

during low-price hours and discharge during high-price hours. The problem solves 

efficiently using the gurobi optimization software.  

2.2. Multi-period electricity price forecasting 

The decision-making process uses multi-period forecasting to predict the electricity price 

based on day-ahead residual load forecasts, which are the most important features for 

day-ahead electricity prices (Trebbien et al., 2023). The multi-period approach matches 

the structure of the day-ahead markets where all 24-time intervals are set at the same time. 

The general form of the multi-period forecasting is a multivariate regression problem that 

reads: 

𝑷𝐷𝐴 = 𝑇(𝑾𝑟𝑒𝑠.  𝑙𝑜𝑎𝑑
𝐷𝐴 ) (1) 

Here, 𝑷𝐷𝐴 is the vector of day-ahead electricity prices, 𝑾𝑟𝑒𝑠.  𝑙𝑜𝑎𝑑
𝐷𝐴  are the residual load 

forecasts, and 𝑇 is a multivariate regression model. To implement the multivariate 

regression, this work uses a linear regression model with a LASSO penalty, a fully 

connected ANN, and a convolutional ANN (TCN). All regression models are 

implemented using the Python-based machine learning library TensorFlow. 

3. Black-box attacks using adversarial surrogate models 

This Section proposes an approach to fitting an emulator to the full decision-making 

process for DSM. The ASM is used to compute sensitivities that provide quantitative 

information to design adversarial noise.  

3.1. Emulating decision-making processes via adversarial surrogate models 

The individual steps of the decision-making process are unknown to external attackers, 

i.e., the attacker does not know the EPF model nor the DSM model. Furthermore, the EPF 

takes place within the secure company network and, thus, the prices forecasts cannot be 

intercepted by the attacker. Instead, the attacker only knows the input and output data. 

For the considered case, this assumption is reasonable as the final DSM decisions are the 

target values of the attacks and the input data consists of the most widely used input data 

for electricity prices forecasting, i.e., the residual load forecasts (c.f. Section 2.2 for 

details). This work proposes a black-box attack strategy based on what this work calls an 

Figure 1 Concept of the adversarial surrogate model (ASM). EPF and DSM models are inside the 

secure company boundary. The ASM is trained to emulate the full decision-making process. 
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adversarial surrogate model (ASM). Thus, the attack only has to intervene with the data 

pipelines to and from the company instead of the infiltrating the company network itself.  

Figure 1 shows the ASM scheme. The ASM is trained on the residual load forecasts and 

the buy/sell commitments of the company under attack. The evaluation of the ASM then 

reads: 

𝑾̂𝑏𝑢𝑦,𝑠𝑒𝑙𝑙 = 𝐴𝑆𝑀(𝑾𝑟𝑒𝑠.  𝑙𝑜𝑎𝑑
𝐷𝐴 ) (2) 

Here, 𝑾̂𝑏𝑢𝑦,𝑠𝑒𝑙𝑙  are the ASM prediction of the trading decisions. In the following, the 

ASM provides gradient information that describes how the decisions of the company 

change based on changes to the input data, i.e., the residual load forecasts.  

3.2. Heuristic attack target for the design of adversarial attacks 

Adversarial attacks allow for either targeted or untargeted attacks (Xu et al., 2020), i.e., 

attacks that pursue a specific target or randomly worsen the outputs, respectively. This 

work proposes a dampening heuristic to design targeted attacks. Following the intuition 

that a constant operation is worse than a flexible operation based on variable electricity 

prices, the proposed dampening attack aims to force trading decisions towards a constant.  

This work uses the simple yet effective fast gradient sign method (FGSM) (Goodfellow 

et al., 2015) to compute adversarial noise patterns that are added to the original input data: 

𝑾̃𝑟𝑒𝑠.  𝑙𝑜𝑎𝑑
𝐷𝐴 = 𝑾𝑟𝑒𝑠.  𝑙𝑜𝑎𝑑

𝐷𝐴 + 𝜖 ⋅ 𝑠𝑖𝑔𝑛 (∇MSE(𝐴𝑆𝑀(𝑾𝑟𝑒𝑠.  𝑙𝑜𝑎𝑑
𝐷𝐴 ), 𝑾̅̅̅𝑏𝑢𝑦,𝑠𝑒𝑙𝑙)) (3) 

Here, 𝑾̃𝑟𝑒𝑠.  𝑙𝑜𝑎𝑑
𝐷𝐴  is the adversarially modified data, ∇MSE is the gradient of the MSE loss 

function, 𝑾̅̅̅𝑏𝑢𝑦,𝑠𝑒𝑙𝑙  is the historical mean of the trading decisions, and 𝜖 is a scaling 

parameter called attack rate (Goodfellow et al., 2015).  

4. Results 

This Section investigates 

the effects of the black-

box attack proposed in 

Section 3 to the grid-scale 

battery problem presented 

in Section 2. In particular, 

Section 4.1 shows the how 

the attacks affect the 

operational schedules and 

Section 4.2 shows the 

statistics of the changes in 

profits for different attack 

rates and the three 

different regression models. 

This Section only considers 

attacks on the full decision-

making process as the individual components like the EPF and the DSM models are 

unknown to the attacker, i.e., the attacker cannot evaluate the effect of the attack on the 

EPF performance or the sensitivity of the DSM model to the electricity prices directly.  

4.1. Storage schedules 

Figure 2 shows the schedule of the grid-scale battery storage on July 1st, 2019, for 

different attack rates. The figure relates the actual day-ahead electricity price with the 

Figure 2 Changes of the scheduling decisions for attack rates 

𝜖 = 0.005, 𝜖 = 0.01, 𝜖 = 0.02 in relation to the actual day-

ahead electricity price on July 1st, 2019. 
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state of charge schedule of the battery storage. The blue line labeled TCN shows the 

battery operation schedule obtained with the forecasts from the TCN without any 

perturbations. The schedule clearly shows how the battery is charged in the early morning 

between midnight and 4 am, when the electricity prices are low, and discharged between 

5 am and 7 am, when the electricity prices peak. A similar cycle then repeats later in the 

day. With increasing attack rates, the operation of the electricity storage changes to less 

favorable schedules. In particular, the recharging, which previously started around noon 

and continued during the low-price hours of the afternoon, now starts earlier when the 

electricity prices are still high. For instance, for an attack rate of 𝜖 = 0.02, the battery is 

charged between 6 and 7 am when the electricity price is at its peak. The schedules shown 

in Figure 2 highlight how small perturbations to the input data can lead to significant and 

harmful changes in the scheduled operation of the grid-scale electricity storage.  

4.2. Profits 

Ultimately, the adversarial 

attack in this work aims to 

turn the profitable 

operation of the battery 

storage to lower profits or 

even losses. Figure 3 

shows the mean and 

variance bands of the 

profits obtained via DSM 

of the battery storage. The 

profits are computed for 

results for each day in 

2019 and attack rates 

between 0 and 1 to obtain 

representative statistics. 

The results show decreasing profits for all three forecasting models. However, the decline 

in profits obtained with LASSO regression is significantly slower compared to the two 

neural networks, where the profits decrease quickly and even lead to losses. The drop of 

in profits confirms the observation from Figure 2 that the proposed black-box attack leads 

to a deterioration of the decisions made by the optimizer in Problem (P). The LASSO 

regression is fitted using a regularization of the scale parameters of the linear regression. 

Thus, the LASSO prediction is dominated by its bias term, i.e., a constant that is not 

affected by the adversarial attack. Therefore, the LASSO regression model is more robust 

towards the attacks. Meanwhile, the neural networks include many scaling parameters 

making the impact of small perturbations more significant. Notably, the profits obtained 

with LASSO forecasts without any attacks are significantly lower compared to the two 

neural networks. Hence, a trade-off occurs between the accuracy of the electricity price 

forecast and the robustness towards adversarial attacks.  

5. Conclusions 

This work considers a case of an adversarial attacker aiming to attack the combined 

decision-making process of EPF and DSM. In the considered case, the attacker has no 

access to the individual models and cannot intervene with any intermediate state of the 

decision-making process. The main proposal of this work is an ASM that emulates the 

decision-making process by training a regression model on the inputs and outputs of the 

Figure 3 Profits obtained in DSM of the grid scale battery storage 

for the three forecasting models and attack rates between 0 and 1. 
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decision-making process; the residual load forecasts that form the basis of the price 

forecasts and the decisions made via the optimization problem. 

The results of the grid-scale battery case study show that small perturbations based on 

targeted gradient information can lead to significant damage in DSM. Notably, the 

attacker can design and implement the black-box attack without accessing the company's 

internal network directly. Instead, the data pipelines to and from the company need to be 

monitored and only the input data must be modified. Thus, the proposed attack poses a 

potential threat to the profitability of companies practicing DSM and additional work is 

required to develop defensive strategies.  
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Abstract 

Surrogate models from machine learning have no guarantees regarding extrapolation. 

However, they will also predict results in areas where the original model is known to be 

infeasible. Classifiers can be used to model the boundary of the feasible region. Here, 

classifiers are analysed and extended towards dynamic systems. A rigorous, dynamic 

model is sampled in different ways and the feasible region is identified by data-driven 

classifiers. The suitability of different architectures is evaluated for the case study of a 

flash separation unit. The most suitable classifier will be used to improve real time 

optimization using surrogate models by preventing faulty extrapolations and forcing all 

points of the solution to be in the feasible region. 

Keywords: imbalanced classification, data-driven models, feasible region, dynamic 

systems. 

1. Introduction 

Chemical processes can be described by complex nonlinear dynamic models. These 

models have a limited feasible region, e.g., a common flash unit model is only valid in 

two-phase region or a distillation column model is only defined in the proper fluid 

dynamic operation area. Hard and hidden constraints like these are included in the 

formulation of first principles models. However, the computational cost of these models 

often prohibits their application in real time optimization. In contrast, data-driven 

surrogate models are fast to evaluate, but there is typically no information on the region 

of validity included in the model. Hence, these models return results even for points 

outside the feasible region, which are obviously bad extrapolations. Real plant operation 

is frequently performed close to these bounds, so information on the feasible region 

should be added to the surrogate models. Similar has been done before for steady state 

models by e.g., (Penteado et al., 2020). (Schweidtmann et al., 2022) use a classifier to 

identify the boundaries of a training dataset und use this as the region of validity for their 
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surrogate model. The actual feasible region of the process is not investigated. However, 

the method is applied for optimization on a dynamic model. We focus on exploring the 

feasible region of the rigorous model and matching the surrogate model’s region of 

validity to it. This enables safe operation close to the bounds. For this, it is mandatory to 

incorporate data of non-converging trajectories into the training dataset. 

2. Methods  

In this study we use a rigorous model of a flash unit 

with non-ideal thermodynamics, depicted in Fig. 1, to 

first generate data and then investigate the suitability 

of the following classifier architectures: random 

forest, k-nearest neighbors, and balanced bagging 

classifier (Guillaume Lemaître et al., 2017). The 

rigorous model is only valid in the two-phase region 

and is described in more detail in (Brandner et al., 

2023). Different cases are investigated, where 

scenarios for heat flux and feed composition are 

generated by a step or a pseudorandomized sequence. 

These signals have a wide spread, so the simulation 

diverges at the end of almost all simulation scenarios, 

whenever the system leaves the two-phase region. 

However, this results in highly imbalanced datasets 

with a lot of valid points (along the time series) and 

only very few points describing the boundary of 

convergence and beyond (typically the last point of such a time series). 28 datasets with 

3 different sampling rates (10 / 100 / 1000 s-1) are investigated. The share of non-

converging points amounts to 0.8, 0.1, and 0.01 %, respectively for the three sampling 

rates. For the classification, four different sets of features are selected: (i) the states x (T, 

p, xB, yD), (ii) x and the controls u (Q, xF), (iii) x and gradient information dx, (iv) x, u, 

and dx. For ease of implementation, the gradient of the systems internal energy and the 

component hold-ups were used instead of the before mentioned states. Although, it might 

be less intuitive, the system is fully described by this information. All datasets are then 

split into 80% training and 20% test data, while keeping the same ratios of the two classes 

in both sets and are used to train different classifiers. Tab. 1 shows the truth table for the 

models. The geometric mean score (g-score), which is the geometric mean of sensitivity 

and specificity (Eq. (1)), was used to score their performance. 

𝑔 =  √
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∙

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (1) 

Table 1: Truth table for classifier 

 Classifier predicts 

non-convergence 

Classifier predicts 

convergence 

Rigorous model 

does not converge 
TP FN 

Rigorous model 

converges 
FP TN 

LC

PC

Figure 1: Flowsheet of the flash unit 

with controls Q and xF 
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3. Results and Discussions 

There are eight datasets with a timestep of 0.001, and each 10 with a timestep of 0.01 and 

0.1. The mean, as well as the min and max value of the g-score of all datasets are shown 

in Fig. 2 for four different architectures (3-nearest-neighbors (3-NNC), 5-nearest-

neighbors (5-NNC), random-forest (RFC), and balanced-bagging classifier (BBC)) 

against the four different feature sets. The results show that in general a higher sampling 

rate renders the classification problem more difficult and thus leads to a worse 

classification accuracy. However, while the classification metric is better for small 

sampling rates, the actual bounds of the feasible region cannot be described accurately in 

these cases. In contrast to the classic k-NN- and RFC classifiers, the BBC is an ensemble 

method, that makes use of the undersampling technique and was specifically developed 

for imbalanced datasets. The achievable g-scores are much better than with the other 

architectures and the metric seems to be surprisingly independent of both the timestep 

and the selected features. 

 

Figure 2: Comparison of different classifier architectures. Mean, min, and max value of all 

datasets for different feature sets. 

4. Conclusions  

In a case study, we evaluated the suitability of different data-driven classifiers for 

describing the feasible region of a dynamic model of a flash separation unit. Different 

sampling rates and classification techniques have been analyzed and compared. Of the 

investigated model architectures, the balanced bagging classifier is best in predicting, 
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whether the rigorous model is solvable at a given state. To the best of our knowledge this 

is the first instance of a classifier used for describing the feasible region, instead of the 

valid range of training data. We consider the present work a proof of concept for dynamic 

models in general. This classifier will subsequently be used in combination with a data-

driven regression model, to guarantee feasibility of the solutions of optimization 

problems. 
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Abstract 

The transition toward a sustainable chemical industry relies on the ability to quantify the 

environmental impacts of chemical production. Life cycle assessment (LCA) is a holistic 

method that quantifies the environmental impacts of chemical productions across multiple 

impact categories. However, conducting a thorough LCA study is challenging in the early 

process design stages due to limited LCA data availability. This work estimates LCA data 

of organic chemicals by designing a pathway-resolved framework using machine-

learning-based retrosynthesis. Our method automatically predicts the life cycle 

inventories (LCI) and the corresponding environmental impacts solely using SMILES 

codes of target chemicals as the input. We verify this framework with a benchmark dataset 

of 136 organic chemicals, including industrially validated LCIs. The results show that our 

framework can accurately predict LCIs and the environmental impact of all impact 

categories. Our framework thus allows for filling data gaps in LCA databases for early-

stage process design and accelerates the transition toward a sustainable chemical industry. 

Keywords: Environmental impacts, predictive LCA, retrosynthesis, machine learning. 

1. Introduction 

Integrating environmental impacts at the early stages of process design is essential for 

fostering a sustainable chemical industry. Life cycle assessment (LCA) is a standardized 

method that comprehensively quantifies potential environmental impacts across various 

impact categories, such as climate change and toxicity (ISO 14040). However, current 

LCA databases only cover a limited number of chemicals, necessitating tedious LCA 

work to assess any other chemicals. These LCAs require extended life cycle inventory 

(LCI) data that quantify the material and energy requirements needed to produce the target 

chemical. This data is challenging to acquire during the early stages of process design 

(Chebaeva et al., 2021). 

To mitigate the lack of LCA data, two types of methods have been developed to predict 

the environmental impacts of chemical production: 1) machine-learning-based (ML-

based) methods and 2) stoichiometry-based methods. ML-based methods, for example, 

Kleinekorte et al. (2023), usually use molecular descriptors as the input. The resulting 
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accuracy is limited because of data scarcity for training, and the input ignores the actual 

conversion pathway. Stoichiometry-based methods, for example, Langhorst et al. (2023), 

integrate chemical synthesis details from literature but are, therefore, also time-

consuming and labor-intensive. In particular, the impacts of the reactants need to be 

known so that the data problem is only shifted to them. 

To bridge the gap between the two types of pioneering methods, we design a pathway-

resolved machine-learning framework to automatically estimate LCIs and the 

corresponding environmental impacts of organic chemical production. For this purpose, 

we integrate an ML-based retrosynthesis tool (Schwaller et al., 2020).  

2. Method 

Our pathway-resolved ML-based framework predicts the LCI data required to produce a 

specific chemical and its reactants. The LCI data is used subsequently to calculate the 

environmental impacts. The framework consists of three modules to ensure reliable 

environmental impact predictions for chemical production (see Figure 1):  

1. First, an ML-based retrosynthesis tool (Schwaller et al., 2020) provides possible 

synthesis pathways and potential precursors to produce the target chemicals.  

2. Second, this synthesis pathway data is analyzed by an optimization model to 

determine the stoichiometric coefficients of the reactants and possible byproducts. 

Thereby, we know the stoichiometries along the full predicted synthesis pathway.  

3. Lastly, the reaction equations along the predicted synthesis pathway are used for 

stoichiometric estimation methods to predict the LCIs of producing the target 

chemical. To calculate the environmental impacts, the LCIA scores of reactants are 

taken from available LCA databases. For reactants not available in the considered 

LCA databases, we use feedforward neural networks with a similar structure as the 

one proposed by Wernet et al. (2008) to predict proxy LCIA scores of the reactants.  

 

 
Figure 1. Flow chart of the proposed pathway-resolved ML-based framework to predict reactants' 

environmental impacts (EIs). 

3. Results 

Our pathway-resolved ML-based framework is verified by comparing the predicted LCIs 

and the estimated environmental impacts with a benchmark dataset of 136 organic 

chemicals (Langhorst et al., 2023). This dataset includes industrially validated LCIs for 

each chemical. As an underlying LCA database, we use Ecoinvent version 3.5 (Wernet et 

al., 2016) and the ReCiPe (H) V1.13 method (Huijbregts et al., 2017). Since the 
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retrosynthesis tool mainly identifies the reactions along the synthesis pathways, we focus 

our analysis on the predicted reactants' environmental impacts. 

In our dataset, our framework identifies 60 chemicals with predicted reactants sourced 

entirely from the Ecoinvent database. For the remaining 76 chemicals, for which the 

reactants are not fully listed in the Ecoinvent database, the framework calculates proxy 

LCIA scores via neural networks. 

For the 60 chemicals with reactants in Ecoinvent, Figure 2 exemplifies the predicted 

reactants' environmental impacts on global warming impact (GWI) and freshwater 

ecotoxicity potential (FETPinf). This analysis distinguishes between two groups of 

chemicals: those for which our framework predicts the same synthesis pathways as the 

one in the benchmark dataset and those for which an alternative pathway is predicted.  

Our framework performs remarkably regarding Spearman’s rank correlation coefficient 

when the predicted pathways are the same as in the benchmark, 0.93 for the GWI and 

0.99 for the FETPinf, respectively. The corresponding mean absolute percentage error 

(MAPE) is 0.11 for the GWI and 0.12 for the FETPinf, respectively. The MAPE is 

between 0.11 and 0.16 for all 18 impact categories.  

 The validation is not possible in cases where an alternative synthesis pathway is predicted 

since this difference does not imply an incorrect prediction. Manual analysis of the 

predicted pathways using SciFinder shows that 89% of them exactly match the ones in 

the existing literature. The presented framework is transparent by providing the details on 

the assumed pathways. 

 
Figure 2. Predicted reactants' environmental impacts compared to the benchmark reactants' 

environmental impacts. Left: global warming impact (GWI), right: freshwater ecotoxicity 

potential (FETPinf). Blue dots indicate chemicals for which our framework predicts the same 

synthesis pathways as considered in the benchmark dataset. Pink (light) dots represent chemicals 

for which our framework predicts synthesis pathways different from those in the benchmarks. 
 

These results demonstrate that our framework can reliably predict the LCIs for organic 

chemical production, accurately estimate the environmental impacts when the predicted 

synthesis pathways match the benchmark, and predict reasonable alternative pathways in 

a transparent manner for the LCA practitioner to check and verify. 
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4. Conclusions 

This work proposed a pathway-resolved framework using ML-based retrosynthesis to 

predict the environmental impacts of organic chemical production by using the SMILES 

code of the target chemical as the only input. Our framework provides transparent 

information on synthesis pathways, stoichiometric coefficients of the predicted chemical 

reactions, and the estimated byproducts.  

The results show that our framework can accurately predict LCIs and the environmental 

impact of all impact categories. Due to the transparent modelling of the synthesis 

pathways and LCIs of chemical productions, the framework can be adapted for specific 

LCA databases, LCIA methods, and system models. Our framework thus allows for 

filling data gaps in LCA databases for early-stage process design and accelerates the 

transition toward a sustainable chemical industry. 
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Abstract 
Faults in industrial processes can lead to significant financial losses and severe safety 
concerns. Thus, timely identification of faults is crucial. Fault classification, usually 
based on supervised machine learning approaches, uses historical process data to extract 
fault characteristics and classify them accurately. However, the limited availability of 
fault data in real-world plants hampers effective model training, as conventional 
supervised learning depends on sufficient training data. Consequently, creating synthetic 
fault data that captures the temporal evolution of variable trajectories can be a viable 
solution to enrich the dataset. In this study, we proposed a synthetic method using Fast 
Fourier Transform (FFT) to generate fault data, applied to the Tennessee Eastman Process 
(TEP) dataset to augment fault data and improve classification accuracy. Besides, we use 
the gradient boosting classifier as our classifier to determine whether our synthetic fault 
data can assist the detection post fault occurred by comparing the testing accuracy of the 
classifiers training with and without fault data augmentation. The case study results 
illustrate the feasibility of the proposed method. 

Keywords: fast Fourier transform, fault classification, imbalanced data, data 
augmentation. 

1. Introduction 
In chemical industry operations, it is essential to maintain the normal functioning of 
process variables, including the concentration, temperature, and flow rates of materials 
flowing into and out of each unit. This is crucial for achieving mass production and 
preventing malfunctions. Fault classification, typically reliant on supervised machine 
learning techniques, plays a significant role in enhancing fault detection and diagnostics. 
This approach leverages historical process data to accurately identify and categorize fault 
characteristics. However, a major challenge in this approach is the dependency on 
extensive training data, which is often scarce in real-world plants due to the infrequent 
nature of historical fault occurrences (Jiang and Ge, 2020). Consequently, generating 
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synthetic fault data to augment the training dataset emerges as a practical strategy to 
improve the accuracy of fault classification. 

Industrial processes involve the operation of multiple units and the interaction of diverse 
components, resulting in process data that is typically represented as multivariable time 
series. Generally, the emergence of a process issue is not attributable to the abnormality 
of a single variable. Consequently, it is essential to generate synthetic fault data that 
accurately reflects the temporal evolution of faults. The generative adversarial network 
(GAN) is a popular method for dataset augmentation, prized for its ability to generate a 
wealth of data from random noise. However, training GAN models can be challenging 
due to the min-max competition between the generator and the discriminator. Often, the 
discriminator rapidly outpaces the generator, leading to the latter's underperformance and 
a tendency to produce overly conservative data outputs (Klopries and Schwung, 2024). This 
imbalance can be particularly problematic when generating time series data akin to 
industrial process data, as GANs may struggle to capture the temporal evolution of the 
series, instead generating data that represents an average of the entire series. 

we introduce a novel data synthesis method utilizing the fast Fourier transform (FFT) to 
address the challenges associated with augmenting multivariable time series data. By 
applying FFT, we transform our time series fault data into the frequency domain. This 
transformation reveals the amplitude compositions of sinusoidal waves across various 
frequencies, simplifying the analysis process. We then generate synthetic fault data by 
applying the Inverse Fast Fourier Transform (IFFT) to these processed frequency-domain 
data, effectively reconstructing time series data that retain the essential characteristics of 
the original faults. 

2. Methodology 
2.1. Fast Fourier transform-based data synthesis method 
FFT is an algorithm designed to compute the discrete Fourier transform (DFT) with 
enhanced efficiency. It transforms data from the time domain into the frequency domain 
(Rapuano and Harris, 2007). The DFT is mathematically represented as shown in Eq. (1), 
where W denotes 𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑁𝑁 , with N being the size of the data set. In this equation, X(k) 

represents the frequency domain data obtained post-transformation, while x(n) 
corresponds to the original time domain data collected at sampling time n.  

𝑋𝑋𝑖𝑖(𝑘𝑘) =  ∑ 𝑥𝑥𝑖𝑖(𝑛𝑛)𝑊𝑊𝑘𝑘𝑘𝑘𝑁𝑁−1
𝑛𝑛=0 , 𝑘𝑘 =  0,1, … ,𝑁𝑁 − 1;   𝑖𝑖 = fault or normal       (1) 

 
∆𝑋𝑋(𝑘𝑘) =  𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑘𝑘) − 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑘𝑘)           (2) 
  
𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓′ (𝑘𝑘) =  ∆𝑋𝑋(𝑘𝑘) + 𝑋𝑋′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑘𝑘)      (3) 
 
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛) =  ∑ 𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓′ (𝑘𝑘)𝑊𝑊−𝑘𝑘𝑘𝑘𝑁𝑁−1

𝑘𝑘=0      (4) 
 
The framework of the proposed fault data synthesis method is depicted in Figure 1.The 
process initiates by applying FFT to each process variable, as per Eq. (1). This step 
transforms the data from the time domain (xfault(n) or xnormal(n)) to the frequency domain 
(Xfault(k) or Xnormal(k)). Next, we analyse the differences between normal and fault 
operation data in the frequency domain (Eq. (2)), identifying what termed “waveform 
variations” (∆𝑋𝑋(𝑘𝑘)). These variations not only describe the disturbance post fault occurs 
but also capture the evolution of the fault. Subsequently, we randomly overlay these 
waveform variations onto other normal operation data sets in the frequency domain 
(𝑋𝑋′𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑘𝑘)), as depicted in Eq. (3). This procedure generates the frequency  
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Figure1. The flow chart of our fault data synthetic method based on FFT 

 
compositions for synthetic fault data (𝑋𝑋𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓′ (𝑘𝑘)). The final step involves applying inverse 
FFT (as per Eq. (4)) to convert these compositions back into the time domain, resulting 
in synthetic fault data (𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑛𝑛)) that aligns in the same format with the original 
process data. 

2.2. Gradient boosting  
After integrating the measured process data with the synthetic fault data, we employ 
gradient boosting (Friedman, 2002) as the classifier for fault classification. Gradient 
boosting is a powerful algorithm that sequentially combines multiple “weak learners” to 
form a stronger model. Each learner in the sequence is trained using the residual errors 
from the previous model as its target. The optimal model we aim to construct can be 
described by Eq. (5), where F represents the cumulative model, with the subscript m 
denoting the sequence of the models. The term h refers to the new model being trained, 
which will be added to F, and ρ is a small positive coefficient, typically ranging between 
0 and 1.  

𝐹𝐹𝑚𝑚+1 = 𝐹𝐹𝑚𝑚 + 𝜌𝜌ℎ𝑚𝑚              (5)  
 
Let 𝑦𝑦𝑖𝑖  represent the observed value and 𝑦𝑦�𝑖𝑖 is the predict value from the model Fm. The 
objective of gradient boosting is to fit the new model ℎm to the residuals of Fm (as shown 
in Eq. (6)). This approach allows each new model to correct the errors made by the 
previous models, progressively improving the overall accuracy of the classifier. 

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑦𝑦𝑖𝑖 −  𝐹𝐹𝑚𝑚(𝑥𝑥𝑖𝑖) =   𝑦𝑦𝑖𝑖 −  𝑦𝑦�𝑖𝑖             (6) 
 
In our study, we utilized decision trees as the weak learners within the gradient boosting 
framework, while the total number of weak learners was chosen to be 100. The loss 
function selected for optimization is the multinomial deviance. We set the learning rate 
at 0.01 to ensure gradual model improvement. During the boosting process, a maximum 
of 52 features were randomly chosen at each split for every tree, providing a balance 
between diversity and model complexity. Additionally, we constrained the size of each 
decision tree by limiting the number of nodes to a maximum of 21. 

3. Case Study 
3.1. Tennessee Eastman Process 
The Tennessee Eastman process (TEP) (Rieth et al., 2017) dataset was used as the case 
study to illustrate the feasibility of the proposed method. The TEP encompasses five key 
units: a reactor, a product condenser, a vapour-liquid separator, a recycle compressor, and 
a product stripper. The dataset encompasses 21 distinct types of faults, including step 
changes, random variations, slow drifts, sticking, and some unknown types. A 
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comprehensive description of each variable and fault type is available in reference (Downs 
and Vogel,1993). In each run, there are 52 variables recorded over 500 sampling points, 
with the exception of fault 6. Fault 6 involves a shutdown occurring 6 hours after the fault 
onset, resulting in a total of 140 sampling points. Faults are introduced after an hour of 
normal operation. Consequently, the initial twenty sampling points represent normal 
operational conditions, while the subsequent 480 points correspond to data during the 
fault condition. 

3.2. Fault data synthesis by FFT 
We applied FFT to the TEP dataset for the purpose of synthesizing fault data. Given that 
FFT is designed to process one variable at a time, we systematically applied FFT to the 
data of each variable sequentially. To account for the fact that the frequency components 
identified by FFT can vary with different lengths of input data, we implemented a moving 
window approach. This approach involved slicing the data using a window of 50 sampling 
points and a step size of 10 sampling points. The next step involved calculating the 
waveform variations for each fault type. This was achieved by subtracting the amplitude 
composition of the normal operational data from that of the fault data. We then integrated 
these waveform variations with the amplitude compositions of normal operational data, 
which had not been previously used in the waveform variation calculation, to create new 
amplitude compositions representative of the faults. Finally, we generated time-series 
synthetic fault data by applying inverse-FFT to these newly formed amplitude 
compositions. 

In this study, we assumed that the known historical data for each fault type was 
represented by the first run of data in the TEP dataset. In this context, 140 sampling points 
were available for fault 6 and 500 sampling points for other fault types as well as normal 
operational data. To generate the synthetic fault data, five runs of normal operational data 
were randomly selected. 

3.3. Classifier training 
Before training the classifier, the process data was standardized and then pre-processed 
by applying a moving window technique which involves a window length of 20 sampling 
points and a step size of 1 sampling point. Consequently, for each run of normal operation 
data, this process yielded 461 data windows. For fault 6, which has a shorter duration, we 
obtained 101 data windows. For other fault types, we generated 181 data windows 
representing the transition state and 261 windows for the steady state. The first ten hours 
of data following a fault occurrence was categorized as transition data, with the 
subsequent data classified as steady state. For training purposes, we included all windows 
of transition data and a selection of 90 windows from the steady state data. For testing, 
we used all available data windows. 

In terms of training the classifier, we initially used five runs of normal operation data and 
one run of data for each fault type, prior to data augmentation. Post-augmentation, we 
enriched the training dataset with an additional 10 runs of synthetic data for each fault 
type. 

4. Results And Discussions 
For data visualization purposes, we projected both the original fault data from the TEP 
dataset and the synthetic fault data into a common coordinate system defined by three 
principal component axes: pc1, pc2, and pc3. First, we represented each run of fault 
process data as a single point in the PCA score plot. This was done to assess whether the  
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(a)                                                             (b) 

Figure 2. PCA score plot of fault 7:  
(a) each point represents one run; and (b) each point represents one window 

      
(a)                                                       (b)  

Figure 3. Heatmaps comparing original and synthetic fault data:  
(a) fault 1; and (b) fault 8 

    
(a)                                                                     (b) 

Figure 4. Confusion matrices of classification accuracy (%):  
(a) before and (b) after data augmentation  

overall information and diversity of our synthetic fault data were comparable to that of 
the original fault data. The results, as depicted in Figure 2 (a), indicated that the 
distributions of most synthetic faults closely resembled those of the original faults. This 
similarity demonstrates the effectiveness of our method in capturing the essential 
characteristics of faults while maintaining diversity. Subsequent analysis involved 
representing each moving window of data as a point in the PCA score plot. This approach 
allowed us to determine whether our synthetic data successfully captured the temporal 
evolution of fault trends. The results, shown in Figure 2 (b), revealed that our synthetic 
fault data closely followed the trajectory of the original fault data, indicating our method’s 
capability to replicate fault trends in time series relationships. 
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We also evaluated our synthetic data using heatmaps, which visually represent the 
numerical fluctuations of the 52 variables through color variations. The results indicated 
that the numerical fluctuations in our synthetic fault data closely mirrored those in the 
original data, confirming the successful extraction of fault trends (Figure 3).  

To ascertain the impact of our synthetic data on fault classification effectiveness, we 
trained two gradient boosting classifiers. The first classifier was trained using the original, 
imbalanced TEP dataset, while the second was trained with our augmented dataset, which 
included the synthetic data. The results demonstrated a significant improvement in testing 
accuracy, from 75.08% to 91.40%, before and after data augmentation, respectively. This 
marked improvement, as shown in Figure 4, validates the efficacy of our data 
augmentation approach in addressing the challenges posed by imbalanced datasets in fault 
classification problems.  

5. Conclusions 
In this study, we investigated the effectiveness of time series data augmentation in 
chemical industrial processes, particularly focusing on datasets with imbalanced fault 
distribution, and examined whether the inclusion of generated data could enhance fault 
classification accuracy. We applied FFT to analyse the waveform compositions of various 
faults and generate synthetic fault data, the characteristics of which were visualized using 
PCA score plots and heatmaps. These visualizations demonstrated that the synthetic data 
successfully captured the dynamic and sequential properties of the fault progression over 
time. Additionally, the overall variable fluctuations in the synthetic data closely mirrored 
those in the original dataset, encompassing both the transition and steady states following 
a fault occurrence.  To quantify the impact of data augmentation on fault classification, 
we compared the confusion matrices of classifiers trained with and without the augmented 
data. These comparisons clearly showed that the inclusion of the synthetic data led to a 
significant improvement in classification accuracy. 
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Abstract 
Catalyst degradation poses a substantial hurdle for the commercialization of 
electrochemical CO2 reduction, leading to diminished activity and selectivity. The 
significant experimental cost associated with catalyst characterization limits the in-depth 
understanding of this degradation. Machine learning has emerged as a promising tool to 
bypass these costly procedures, though its limited interpretability has often complicated 
its application. This study introduces an interpretable machine learning framework 
capable of accurately predicting catalyst conditions using linear sweep voltammetry 
(LSV) in sub-seconds, while also shedding light on identifying the origins of catalytic 
degradation. Based on a comprehensive dataset of 5236 LSV experiments, a 
convolutional neural network was trained and demonstrated superior predictive 
capabilities for total current and faradaic efficiency. The insights derived from the model 
are further elucidated through explainable artificial intelligence (XAI), pinpointing key 
degradation factors. To validate the XAI interpretation, surface analysis experiments were 
conducted, underscoring the reliability of the proposed approach. This novel framework 
offers potential applications in various catalytic processes, battery degradation, and 
chemical process monitoring, indicating its potential for rapid and reliable performance 
monitoring. 
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Abstract 
Radioactive particle tracking (RPT) is a non-intrusive method to measure the velocity 
profiles in single and multiphase systems. It tracks a radioactive particle by measuring 
the γ-rays it emits using NaI scintillation detectors positioned around the reactor 
(Alghamdi et al., 2022). Traditionally, this method relies on a mathematical model that 
incorporates Monte Carlo simulations to establish the relationship between radiation 
intensity and particle positions. The model requires three unknown inputs for every 
detector. These parameters are obtained through a calibration procedure which includes 
manually placing the particle at multiple known positions and solving an optimization 
problem to identify the model parameters (Zambonino and Santos, 2023). RPT has some 
limitations. It assumes a uniform attenuation coefficient for the system, which may not 
fully represent complex multiphase reactors. The model is also sensitive to detector and 
calibration point positioning, leading to a build-up of reconstruction error if these 
quantities are not known with great accuracy. In this work, we introduce a novel approach 
that bypasses the need for calibration prior to reconstructing the tracer particle’s position 
in RPT experiments. We implement a collaborative robot (cobot) to move the tracer 
particle inside the volume of interest, recording the exact position of the particle in time. 
The freedom to program a robotic arm enables strategic volume sampling, extensive data 
accumulation, and the creation of a dataset linking positions to detector counts. Instead 
of following the conventional calibration process to determine unknown parameters in 
the mathematical model, we utilize this dataset to train an Artificial Neural Network 
(ANN) model. The model predicts the particle position by analyzing the received photon 
counts from each detector surrounding it. Therefore, this ANN model can reconstruct the 
particle positions free from the limitations and artifacts typically associated with the 
mathematical model. Consequently, it yields lower prediction errors when compared to 
traditional methodologies. Due to these improvements, RPT will be able to accommodate 
larger-scales multiphase reactors, facilitating the design and scale up procedures. 
 
Keywords: Radioactive Particle Tracking, Artificial Neural Networks, Robotics 
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1. Methodology 
 
1.1. Database generation 
 
We use a Doosan cobot (A0912) mounted on a fixed pedestal. The cobot carries a tracer 
particle attached to the tip of a metallic rod, held securely by a custom in-house-developed 
gripper. Its operation is managed through a controller, which itself is controlled by a 
computer executing a Python script. 
We program the cobot in a way that moves the tracer within the specified volume, passing 
through hundreds of positions and mapping the entire volume. The cobot logs the position 
of the tracer along with the corresponding time throughout the entire experiment at 
determined time intervals. While the cobot is in movement and on an entirely distinct 
system, we capture the photon counts at each 10 ms interval using scintillation detectors 
strategically positioned around the volume.  
The RPT hardware starts recording photon counts data slightly before the robot's 
movement. Both systems operate on different clocks and different temporal scales, 
necessitating an external synchronization. To effectively organize these positions and 
their associated photon counts into dataset for training the ANN model, a post-processing 
procedure is required. 
1.2. Data post-processing for database generation 
 
The post-processing of raw data comprises three steps: 

• Time delay calculation: to find the time delay between the two systems, we 
establish a handshake protocol.  We specify one detector to communicate with 
the cobot. The cobot places the particle in front of the detector at a distance of 
20 cm. Subsequently, the cobot moves the particle toward the detector's face at 
a constant velocity. Following this approach, the cobot then returns the particle 
to its initial position. The reciprocating motion of the robot leads to the 
generation of two peaks in both the RPT signal and particle position. By aligning 
these two peaks, we can determine the lag between the two systems. 

• Smooth out the noise: because of the quantized nature of γ-rays, the radiation 
emitted by the radioactive tracer particle exhibits continuous intensity 
fluctuations over time. We apply a 1st order Savitzky–Golay filter to smooth out 
the noise from the signal. 

• Time step synchronization: the alignment of the position and photon counts 
datasets is essential due to their distinct time intervals. The goal is to calculate 
photon counts data at the instants which the cobot recorded the positions. To 
accomplish this, we utilize the time steps from the cobot dataset and employ a 
nearest interpolation technique to determine the photon counts at these specific 
time steps. 

1.3. ANN for position reconstruction 
 
ANN is comprised of interconnected neurons organized into layers: the input layer, 
hidden layers, and output layer. The input layer incorporates photon counts received by 
the array of detectors at each time step. The hidden layers consist of nodes designed to 
capture the non-linearity between the input and output (Bibeau et al., 2023) which is the 
spatial position of the tracer particle at each time step, including the coordinates x, y, and 
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z. The details of the chosen architecture for the back calculation of the particle position 
from the photon counts data can be found in Table 1. 
Table 1 Architecture summary of the ANN model 

Parameter Value 
Number of hidden layers 5 

Number of neurons in each hidden layer 256, 128, 64, 32, 16 
Hidden layers activation function tanh 

Optimizer Adam 
Error function MSE 
Learning rate 0.00001 

Batch size 50000 
Number of epochs 6000 

2. Results and discussion 
We sample a cube with dimensions measuring 6 × 6 × 6 cm, surrounded by a 
configuration of 8 detectors. In this experiment, we used a sealed Scandium source with 
an activity of 125 μCi. The cobot guides the particle through 300 sampling points within 
the cube. While transitioning from one point to another, we capture data on photon counts. 
Figure 1 shows the configuration of the cube in surrounded by scintillation detectors. 
 

 
Figure 1 Detector configuration around the sampling volume 

We evaluate the accuracy of the position reconstruction algorithm across various datasets 
using performance metrics, including Mean Absolute Error (MAE) and Standard 
Deviation (SD) for each directional component in the x, y, and z directions, as well as the 
Mean Euclidean Distance Error (MEDE). We train the ANN model with part of the 
experimental dataset (70%) and test it with the rest of the dataset (30%) until the point 
that it doesn't overfit the data.  
Moreover, to demonstrate the model's performance, at the end of the sampling step, the 
robot moves the tracer particle in a spiral trajectory, and we subsequently reconstruct this 
path using the trained model.  
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Table 2 Position reconstruction performance indices 

 MAE (mm) SD (mm) MEDE (mm) 
x 0.4 0.3 1.2 

 
 

y 0.4 0.3 
z 0.9 0.7 

 
Table 2 shows the performance metrics corresponding to 8100 reconstructed positions 
inside a 3D spiral path within the sampled cube's volume. Figures 2 and 3 illustrate the 
spiral path from the actual movement of the robot alongside the reconstructed path via 
ANN implementation. 
 

 
Figure 2 xy plane view of spiral reconstructed 

trajectory  

 
Figure 3 xz plane view of spiral reconstructed 

trajectory 

 

3. Conclusion 
This work introduces Monte Carlo-free RPT. We employ a cobot to establish a database, 
linking hundreds of thousands of positions within the volume of interest to the 
corresponding photon counts recorded by strategically positioned scintillation detectors 
surrounding the volume. Using this massive dataset, we train an ANN model to 
reconstruct the radioactive particle motion in an RPT experiment. 
To validate this method, we reconstruct 8100 points along a 3D spiral. A thorough 
comparison with the actual cobot-recorded positions shows a significant improvement in 
reconstruction accuracy, MEDE of 1.2 mm, compared to recent experimental works in 
the literature, 3.84 mm, (Yadav et al., 2020).  
Our dynamic data sampling, in contrast to static or time-averaged approaches, closely 
mimics real experimental conditions, contributing to a more realistic representation of 
photon count during the experiment. Furthermore, the validation procedure also uses the 
dynamically sampled data.  
It's also worth mentioning that this innovative approach improves operator safety by 
eliminating the need for manual calibration and minimizing contact with radioactive 
particles. 
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Abstract 

The transition to sustainable energy systems in the face of growing renewable energy 

adoption and electrification is a complex and critical challenge. The Renewable Energy 

Hub Optimizer (REHO) emerges as a powerful decision support tool designed to 

investigate the deployment of energy conversion and storage technologies in this evolving 

landscape. REHO leverages a Mixed-Integer Linear Programming (MILP) framework 

combined with a Dantzig-Wolfe decomposition to simultaneously address the optimal 

design and operation of energy communities, catering to multi-objective considerations 

across economic, environmental, and efficiency criteria. This paper introduces REHO and 

highlights its key features and contributions to the field of sustainable energy system 

planning. 

Keywords: Renewable Energy Community, MILP, Multi-Objective Optimization, Open-

Source. 

1. Context 

Cities around the world are moving towards increasing the penetration of local energy 

harvesting and storage capacities to render their energy consumption more sustainable 

and less dependent on a geopolitical context. Intensification of renewables deployment is 

witnessed in the past decade and keeps continuing, leading to important techno-

economic-social trade-offs in energy strategy. This transition blurs the boundaries 

between demand and supply and creates new types of stakeholders. Adopting a district-

level approach for energy system planning seems thus particularly relevant, as it promotes 

the valorization of endogenous resources and enables economies of scale while 

preserving local governance (Heldeweg, 2020). The emergence of the concept of 

renewable energy communities is a clear example of this growing interest for energy 

planning at the neighborhood scale (Dóci, 2015). Energy communities are expected to 

play a pivotal role in the ongoing energy transition by fostering decentralized, sustainable, 

and community-driven approaches to energy production and consumption. Through the 

collaborative efforts of residents, utilities, and institutions, they offer a techno-economic 
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framework to support the paradigm shift from centralized energy systems to a distributed 

and district-level model (Caramizaru, 2020). 
Optimizing an energy community at the district-level is a complex and computationally 

intensive task due to its network structure and interdependent decision variables. Facing 

this problem, a common method is to fix some degrees of freedom through assumptions 

and scenarios based on expert knowledge (Reynolds, 2019; Pickering, 2019). Many 

studies in literature assumes energy demand profiles (Murray, 2020) or predetermines the 

energy system configuration (Chakrabarti, 2019; Alhamwi, 2018; Kramer, 2017). The 

issue with such assumptions is the consideration of energy carriers to be delivered instead 

of energy end use demands to be satisfied. By assuming a priori some investment 

decisions into energy capacities, the solution space is reduced, and such model does not 

unveil the full potential of energy communities. However, modeling subsystems as 

entities embedded in a larger system should reveal the interdependency of the decision-

making and exploit the main benefits of energy communities to coordinate decisions both 

at the building and district-level. 

In addition to addressing the need for a more holistic problem statement, another notable 

gap in the existing research pertains to the limited generalizability of findings. A 

predominant trend in the literature involves the examination of singular case studies, 

within a specific neighborhood. While certain authors have explored the overarching 

implications of local residential systems, their investigations predominantly hinge on 

building-level energy systems (Stadler, 2019; Kotzur, 2020). 

This gap has motivated the development of Renewable Energy Hub Optimizer (REHO), 

a comprehensive decision support tool for energy system planning at the district-level, 

considering simultaneously diverse end use demands, multi-energy integration, and 

buildings interactions. 

2. Districts as energy hubs 

The energy hub concept (Mohammadi, 2017) is used to model an energy community 

where multi-energy carriers can supply diverse end use demands through building units 

and district units optimally interconnected and operated. 

 

Figure 1: District energy hub model in REHO. 
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Figure 1 displays the input data necessary to characterize a district-level energy hub to be 

optimized with REHO: 

o the geographic boundaries of the considered territory; 

o the end use demands, resulting from the building stock and local weather; 

o the technologies available and their specifications regarding cost, life cycle, efficiency; 

o the endogenous resources; 

o and the energy market prices for district imports and exports. 

 

The optimal solution minimizing the specified objective function will then be fully characterized 

by the decision variables defining the energy system configuration. These decision variables are 

the installed capacities of the building and district units among the available technologies, their 

operation throughout a typical year, and the resulting energy flows (buildings interactions and 

district imports/exports). 

3. The REHO package 

3.1. Model foundations 

REHO exploits the benefits of two programming languages to explore the solution space 

defined by the district energy hub input data. Figure 2 illustrates the tool architecture: 

o The data management structure is written in Python and used for input 

parameters preprocessing, and decision variables postprocessing. 

o The optimization model is written in AMPL, encompassing objective functions, 

modelling equations, and constraints at building-level and district-level. 

 

Figure 2: Diagram of the REHO architecture. 

3.1.1. Data reduction 

The task of optimally designing and scheduling energy systems with a high share of 

renewable energies is complex and computationally demanding. REHO includes machine 

learning techniques to cluster yearly input data. The model operates in the conventional 

way with typical periods p of 24 timesteps t, but it can be freely adapted to a finer or 

coarser granularity as required. 
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3.1.2. MILP formulation with decomposition 

A Dantzig-Wolfe decomposition is applied on the district-level problem to define a 

master problem (MP) and one sub-problem (SP) for each building. Linking constraints 

allow the problem to iteratively converge to the solution minimizing the global objective 

function: the MP sends optimal district-level prices to the SPs, which in turn send back 

optimal building-level design proposals. The building-level optimization model is based 

on Stadler (2019) and the decomposition methodology is described in Middelhauve 

(2022). 

 

3.2. Embedded features 

3.2.1. Multi-Service Consideration 

REHO encompasses a wide range of end use demands, including thermal comfort 

(heating and cooling loads), domestic hot water, domestic electricity, mobility, and 

information and communication technologies needs. 

3.2.2. Multi-Energy Integration 

REHO incorporates various energy sources and networks, such as electricity, fossil fuels, 

biomass, biofuels, district heating and cooling networks, and hydrogen. This holistic 

approach ensures a comprehensive representation of the energy landscape. 

3.2.3. Multi-Scale Capabilities 

REHO's flexibility spans various scales, from individual buildings to entire districts. The 

district-scale optimization feature capitalizes on synergies between buildings, allowing 

them to function as an energy community and enabling energy and financial flows 

between buildings. In addition, such an approach opens the possibility of deploying 

district-level infrastructures. 

3.2.4. Multi-Objective Optimization 

REHO’s versatility extends to multi-objective optimization, accommodating objectives 

related to economic (capital and operational costs), environmental (life cycle analysis and 

global warming potential), and efficiency criteria. Epsilon constraints provide fine-

grained control, enabling decision-makers to explore trade-offs and identify Pareto fronts. 

3.2.5. PV orientation 

Given the pivotal role of photovoltaic (PV) systems in the energy transition, their optimal 

deployment is of paramount importance and must consider the specific characteristics of 

the building morphology, the local solar irradiance, and the grid curtailment restrictions. 

REHO integrates the deployment of solar panels on roofs and facades, with the possibility 

to take into consideration the orientation of surfaces. 

3.2.6. Electric mobility 

REHO enables the integration of electric vehicles into neighborhoods, including the 

possibility of smart charging, unidirectional or bidirectional. The fleet of electric vehicles 

can thus be used to provide an energy storage service. 

3.2.7. Grid constraints 

As the electrification of diverse sectors gains momentum, the demands placed on the 

electricity grid are expected to further escalate. The existing electrical grid, originally 

designed for centralized power generation and unidirectional energy flows, now faces 

new demands and complexities. REHO allows for the consideration of the local grid 

specifications, through line and transformer capacities, or peak power shaving and 

curtailment measures. 
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3.2.8. District heating and cooling 

REHO enables the deployment of district heating and cooling networks, with 

consideration of several heat transfer fluids and distribution temperatures. Infrastructure 

costs are also incorporated, based on the topology of the considered neighborhood. 

3.2.9. Open-source and interoperability 

REHO is available as an open-source and collaborative Python library, supported by 

comprehensive documentation. It is deployed as a PyPI package, boasting its capability 

to interface and exchange information with other tools. 

4. National-level case study 

By providing the relevant input data regarding energy needs and endogenous resources, 

investigations on energy communities can be carried out in a wide range of urban 

territories. Such real-world applications demonstrate the significance of REHO’s 

capabilities and its potential to shape resilient and sustainable energy systems. 

The interoperability of REHO also enables extensive studies. As a demonstration, it was 

combined with the QBuildings GIS database (Loustau, 2023), allowing for the 

optimization of Switzerland’s entire building stock comprising 2.6 million entities. 

REHO can run over the 17,844 districts of the country – where is district is defined as the 

batch of buildings deserved by the same MV/LV transformer (Gupta, 2021). 

As an example of the investigation results, Figure 3 displays the gradual electrification 

and integration of renewables for Switzerland, and the expected performance in terms of 

annual costs. The values reflect the weighted average of the building stock surface area. 

 

Starting from an energy system based on fossil fuel to satisfy the residents end use 

demands, the costs are likely to drop by 41% when integrating heat pumps combined with 

PV panels, and to 73% when enabling electric vehicles. Considering the integration of 

decentralized data centres into the building stock further stimulates synergies within the 

neighbourhoods and sets the cost reduction at 76%. Finally, the investigation regarding 

building isolation shows that an improvement of the thermal envelope translates to 

staying within a similar range of annual costs, while considerably reducing the demand 

for heat. These findings could serve as an encouraging benchmark contributing to energy 

planning towards net zero carbon cities in 2050.  
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5. Conclusion 

Energy communities are poised to play a pivotal role in the generation, distribution, and 

management of renewable energy resources. In this context of evolving energy landscape, 

REHO stands as a versatile and indispensable tool for stakeholders in the renewable 

energy transition. Its MILP framework, consideration of diverse end-use demands, multi-

energy integration, multi-scale adaptability, and multi-objective optimization drive 

informed decision-making in energy system planning. 

Relevant links 

REHO package: https://pypi.org/project/REHO/ 

REHO documentation: https://reho.readthedocs.io/en/main/ 
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Abstract 
Flexible operation of an electrochemical recovery process of succinic acid can potentially 
yield economic benefits. We conduct experiments on the process and retrieve data for 
data-driven dynamic modeling. We then perform offline dynamic scheduling with 
discrete-time Hammerstein-Wiener (HW) models to obtain the globally optimal process 
schedule. We acknowledge the high computational requirements of the solution approach 
and propose a wavelet-based adaptive grid refinement algorithm for global optimization 
(GO) (AGRAGO), which employs a refinement criterion based on Lagrangian 
multipliers. AGRAGO is implemented in our in-house software for deterministic GO, 
MAiNGO. It is, then, used to automatically allocate the available control parameters in 
the grid to provide superior solutions in less CPU time. We demonstrate the applicability 
of AGRAGO and observe improved results compared to uniform control sampling while 
still detecting high computational expenses for dynamic GO. Overall, global dynamic 
scheduling (GDS) with AGRAGO leads to 14.1% economic savings. 
 
Keywords: electrochemical acid recovery, demand-side-management, global dynamic 
scheduling, Hammerstein-Wiener model, adaptive grid refinement 

1. Introduction 
Optimal process scheduling provides economic savings to electricity-intensive processes 
(Mitsos et al., 2018). When process dynamics are time-relevant to electricity price 
fluctuations, they are accounted for to ensure schedule accuracy, resulting in a dynamic 
optimization (DO) problem (Bhatia and Biegler, 1996). Although typically solved with 
local optimization methods or model simplification techniques (Dias and Ierapetritou, 
2019), optimal dynamic scheduling is often applied to complex processes necessary to be 
considered to avoid intractable scheduling objectives (Yang et al., 2014). Nonconvex 
global dynamic optimization (GDO) is considered among others (Floudas and Gounaris, 
2009) by Kappatou et al. (2022), who introduce an approach of deterministic GDO using 
a HW nonlinear process model. The optimization problem is solved after control 
parametrization and time discretization using ODE relaxations (Singer and Barton, 2004) 
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and a branch-and-bound (B&B) algorithm. The high computational demands of the 
method favor grid refinement approaches (e.g., Chen et al., 2012) that optimally decide 
on the control discretization to use fewer optimization variables (DoFs) and reach high-
quality solutions. Schlegel et al. (2005) introduce an adaptive refinement algorithm based 
on wavelets to solve continuous-time DO problems sequentially. Schäfer et al. (2020a,b) 
extend their work to quasi-steady-state scheduling problems introducing a refinement 
criterion based on Lagrangian multipliers. 
We here give a summary of our latest work (Papadimitriou et al., 2023), where we 
perform GDS to a downstream electrochemical process of succinic acid recovery 
(Schröder et al., 2022) using HW models (Kappatou et al., 2022) trained on experimental 
data. To reduce the computational expenses, we then propose a wavelet-based adaptive 
grid refinement algorithm for GO (AGRAGO), applicable to DO problems, based on 
previous works (Schlegel et al., 2005; Schäfer et al., 2020a,b), which we include in our 
software for deterministic GO, MAiNGO (Bongartz et al., 2018). 

2. Data-driven dynamic modeling 
We focus on a downstream process (Fig. 1) of bio-based succinic acid recovery (Schröder 
et al., 2022) as a promising candidate for scheduling application. We perform experiments 
on the first electrolysis cell and obtain data on the power consumption (model output) 
over the process molar throughput (model input) by applying current density variations 
while reaching full acid protonation. The data are used to identify a single-input, single-
output HW model. Discrete-time dynamics and an ANN trained on the H function are 
used to decrease computational expenses. The model uses a 4th- (H,) and a 2nd-degree 
(W) polynomial, and a 4th-order LTI. The resulting model fitting is 95 % (1 - NMSE). 

3. Deterministic global dynamic scheduling 
We consider the scheduling problem of flexible operation of the process of Fig. 1 to adjust 
the molar throughput (u) leading to varying power consumption levels (y) while reaching 
a fixed daily acid production under one-day hourly changing German spot electricity 
prices of February 7, 2023. The problem is formulated, according to Kappatou et al. 
(2022), as a GDO problem, and is solved for a piecewise constant control parametrization 
and varying control time series - discretization (n), using MAiNGO (Bongartz et al., 
2018)). The ANN relaxations are provided by MeLOn (Schweidtmann and Mitsos, 2019).  
 

 
 

Figure 1. Succinic acid recovery process flowsheet (Schröder et al., 2022) and Hammerstein-
Wiener (HW) process model representation. The HW model consists of a linear dynamic block 

(LTI) placed between two nonlinear static blocks (H and W). 
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The results indicate an overall increasing objective value improvement and an 
exponential scaling of the computational expenses over the number of control 
discretization points (n). The latter poses limits to the real-time applicability of the 
method, considering a 12-hour gap between price announcement and implementation. 
The highest economic benefit of the solution accepting this limit is 13.1 %. The 
corresponding schedule gives the dynamic process response to the price fluctuations. 

4. Wavelet-based adaptive grid refinement algorithm for global 
optimization (AGRAGO) 
We propose an adaptive control grid refinement algorithm for GO (AGRAGO) based on 
discrete wavelet transformations (Schlegel et al., 2005; Schäfer et al., 2020a,b) for full 
exploitation of the price fluctuations while decreasing computational expenses or 
equivalently using fewer DoFs. AGRAGO works iteratively (Fig. 2); first performing 
(D)GO given a certain control grid, then post-processing the optimization results 
evaluating the coefficient values and the Lagrangian multipliers associated with the 
deactivation and activation, respectively of a coefficient to, last, construct the grid of the 
next iteration. The algorithm terminates heuristically. 
AGRAGO is integrated into MAiNGO (Bongartz et al., 2018) for automatic refinement 
and, in contrast to previous works, allows for application to a wide selection of problems, 
including GDS. It, additionally, incorporates the concept of batches (subhorizons of the 
same power-of-two grid intervals) to allow matching setpoint and problem parameter 
(i.e., price) changes and suggests GO in the space of the original control parameters rather 
than the wavelet coefficients (Schäfer et al., 2020b). The adaptations improve the results 
in terms of objective value and CPU time, respectively.  

We solve the problem using AGRAGO, similar to Section 3, considering three batches 
and a set of equality constraints related to the coefficients’ deactivation. We note a similar 
computational scaling and improved savings for the same n compared to uniform control 
sampling. AGRAGO exhibits high savings for only a few DoFs (1.7 % higher compared 
to equidistant sampling for five n). The best solution achieved with AGRAGO respecting 
the computational time limitations gives 14.1 % savings. The resulting optimal schedule 
suggests higher benefits from lower production during the high and medium prices and 
more flexible adjustments during the lower prices to fulfill the daily production demand.            

5. Conclusions 
We perform experimentation and data-driven dynamic modeling for an electricity-
intensive process for electrochemical acid recovery. We consider the flexible operation 
of the process for participation in a day-ahead electricity market and solve the dynamic 
optimization problem to global optimality. We note the high economic savings attained 
and the high computational demands of the approach. We propose a wavelet-based 
adaptive grid refinement algorithm for global optimization (AGRAGO) for automatic 
control discretization refinement applied to global dynamic scheduling. AGRAGO 

 

  
Figure 2. Simplified graphical representation of AGRAGO. 
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application results in higher savings, reached in less computational time and an overall 
economic gain of 14.1 %.  

References 
T. Bhatia, L.T. Biegler, 1996, Dynamic optimization in the design and scheduling of multiproduct 
batch plants, Industrial and Engineering Chemistry Research, 35, 7, 2234–2246. 
D. Bongartz, J. Najman, S. Sass, A. Mitsos, 2018, MAiNGO - McCormick-based Algorithm for 
mixed-integer Nonlinear Global Optimization,  http://permalink.avt.rwth-aachen.de/?id=729717. 
W. Chen, K. Wang, Z. Shao, L.T. Biegler, 2012, Chapter 11: Direct Transcription with Moving 
Finite Elements, Control and Optimization with Differential-Algebraic Constraints, 233-252. 
L.S. Dias, M.G. Ierapetritou, 2019, Optimal operation and control of intensified processes -  
challenges and opportunities, Current Opinion in Chemical Engineering, 25, 82-8. 
C.A. Floudas, C.E. Gounaris, 2009, A review of recent advances in global optimization, Journal 
of Global Optimization, 45, 3-38. 
C.D. Kappatou, D. Bongartz, J. Najman, S. Sass, A. Mitsos, 2022, Global dynamic optimization 
with Hammerstein–Wiener models embedded, Journal of Global Optimization 84, 321–347. 
A. Mitsos, N. Asprion, C.A. Floudas, M. Bortz, M. Bonvin, A. Caspari, P. Schäfer, 2018, 
Challenges in process optimization for new feedstocks and energy sources, Computers & 
Chemical Engineering, 113, 209-221.   
C. Papadimitriou, T. Varelmann, C. Schröder, A. Jupke, A. Mitsos, 2023, Globally optimal 
scheduling of an electrochemical process via data-driven dynamic modeling and wavelet-based 
adaptive grid refinement, Optimization and Engineering, 1-39. 
P. Schäfer, A.M. Schweidtmann, P.H. Lenz, H.M. Markgraf, A. Mitsos, 2020, Wavelet-based grid 
adaptation for nonlinear scheduling subject to time-variable electricity prices, Computers & 
Chemical Engineering 132, 106598. 
P. Schäfer, A.M. Schweidtmann, A. Mitsos, 2020, Nonlinear scheduling with time-variable 
electricity prices using sensitivity-based truncations of wavelet transforms, AIChE Journal, 66, 
10, e16986. 
M. Schlegel, K. Stockmann, T. Binder, W. Marquardt, 2005, Dynamic optimization using 
adaptive control vector parameterization. Computers & Chemical Engineering 29, 8, 1731-1751. 
C. Schröder, M. Gausmann, A. Jupke, 2022, Markt- und Stromsystem, Managementsysteme und 
Technologien energieflexibler Fabriken, Energieflexibilität in der deutschen Industrie, 2, 297-316. 
A.M. Schweidtmann, A. Mitsos, 2019, Deterministic global optimization with artificial neural 
networks embedded, Journal of Optimization Theory and Applications,180, 3, 925–94. 
A.B. Singer, P.I. Barton, 2004, Global solution of optimization problems with parameter-
embedded linear dynamic systems, Journal of Optimization Theory and Applications, 121, 613–
646. 
Z. Yang, K. Li, A. Foley, C. Zhang, 2014, Optimal Scheduling Methods to Integrate Plug-in 
Electric Vehicles with the Power System: A Review, 47, 8594-8603. 

423



Flavio Manenti, Gintaras V. Reklaitis (Eds.), Book of Abstract of the 34th European 
Symposium on Computer Aided Process Engineering / 15th International Symposium on 
Process Systems Engineering (ESCAPE34/PSE24), June 2-6, 2024, Florence, Italy. 

PULPO: A Technosphere-Wide Lifecycle 
Optimization Package  
Fabian Lechtenberga, Robert Istrateb, Antonio Espuñaa, Moisès Graellsa, 
Gonzalo Guillén-Gosálbezc* 
aDepartment of Chemical Engineering, Universitat Politècnica de Catalunya, 
Barcelona, Spain 
bInstitute of Environmental Sciences (CML), Leiden University, Leiden, Netherlands 
cDepartment of Chemistry and Applied Bioscience, Institute for Chemical and 
Bioengineering, ETH Zurich, Zurich,Switzerland 
gonzalo.guillen.gosalbez@chem.ethz.ch  

Abstract 
Life cycle optimization (LCO) couples multi-objective optimization with life cycle 
assessment (LCA). It is often carried out by adding LCA-based linear equations to the 
mathematical formulation, which are parameterized with data retrieved from 
environmental databases. While the mathematical model is used to optimize the 
foreground system (i.e., the system of decisions over which the modeller has a degree of 
control), its influences on the parameters of the background system (i.e., the system 
which provides inputs to the foreground such as electricity or transport) are omitted in 
this approach. The main limitation of this approach is that it does not allow to optimize 
decisions in the background system (i.e., those activities in the supply chains of the 
main processes in the foreground system). Moreover, in large-scale assessments, 
technological changes in the foreground will affect the background, making LCO less 
accurate unless full integration between optimization and LCA is attained. To overcome 
these shortcomings, this work introduces PULPO, a novel framework integrating 
mathematical optimization with LCA. Building upon open-source tools, PULPO allows 
for concurrent optimization of foreground and background decisions, accounting for 
feedback loops between them. A case study on sustainable methanol production 
demonstrates PULPO's effectiveness in designing constrained and coupled global 
supply chains considering a range of impact categories. 

Keywords: methanol, supply chain, carbon capture and utilization, open-source 

1. Introduction 
In Process Systems Engineering, LCA indicators have been integrated into process and 
supply chain optimization problems to quantify trade-offs between economic and 
environmental performance, facilitating sustainable decision-making (Ferdous et al., 
2023). However, process modeling & optimization and LCA are often combined 
offline, that is, LCA data expressed via eco-vectors representing the impact linked to 
mass and energy flows in the foreground (e.g., 1 kWh, 1 kg of chemical) are retrieved 

424



   

from environmental databases and incorporated into mathematical models as 
parameters. Here, the mathematical model represents the foreground system (e.g., 
chemical plant, supply chain) over which we have a certain level of control (i.e., 
through the optimization of the decision variables). Meanwhile, LCA data denote the 
background system (surrounding activities providing inputs to the foreground system) 
that is often assumed to be fixed during optimization. This approach omits feedback 
loops between both systems. For example, when optimizing the power system of a 
country, the carbon footprint of power technologies will depend on the composition of 
the power mix, which needs to be decided by the optimization model. In the process 
systems realm, the optimization of a supply chain model including degrees of freedom 
such as capacity and planning decisions may constitute the foreground decisions. The 
static environmental indicators obtained from the background (surrounding activities 
such as electricity, transport, storage etc.) parameterize the linear LCA-based equations 
in the model.  
Following the traditional offline integration, such a model would assume fixed carbon 
footprints of the power technologies, omitting the coupling between foreground and 
background activities. Moreover, using fixed background data provides limited insights 
into how changes in the Technosphere, in which the foreground system is embedded 
and with which it displays strong links, will affect the outcome of the environmental 
analysis. 
In a seminal work, Kätelhön and coworkers introduced the Technology Choice Model 
(TCM) for optimizing technology choices in production systems (Kätelhön et al., 2016), 
which, so far, used aggregated unit processes in the underlying linear programming 
approach, omitting potential feedback effects between the choices made across the 
product supply chain. Inspired by this work, here we present a framework to carry out 
Technosphere-wide optimizations attaining full integration between optimization and 
LCA. This is achieved through the development of PULPO, a user-friendly open-source 
tool which instantiates and solves user defined LCO problems, integrating, opposed to 
the original TCM approach, complete Life Cycle Inventory (LCI) databases instead of 
aggregated unit processes.  

2. Methodology 
Here we introduce PULPO (Python-based User-defined Lifecycle Product 
Optimization). This innovative framework forges a direct link between mathematical 
optimization and LCA. PULPO seamlessly integrates full LCI databases in the 
optimization problem, enabling the concurrent optimization of both foreground and 
background systems. Figure 1 illustrates the implemented flow of information and 
connectivity to other packages. To define the optimization problem, the user is required 
to establish several key components. First, the functional unit that represents the 
production system’s primary output. Second, the objective function based on a selected 
method for evaluating environmental impacts. Third, the potential process choices, 
which could involve technological or geographical decisions across supply chains in the 
Technosphere. Lastly, additional constraints shall be imposed, like limits on production 
capacity or the availability of resources. 
Utilizing the data management features of the “brightway2” package (Mutel, 2017), 
users have the flexibility to include new processes into the LCI database. These LCIs 
are extensive and serve as the foundational framework for constructing the 
superstructure optimized in PULPO. Such a superstructure is tailored based on the 
user-defined options and limitations. The PULPO package encapsulates all this data into 
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a “pyomo” optimization model (Bynum et al., 2021), which can be solved with open-
source solvers, e.g., HiGHS, or through integration with proprietary software like 
GAMS.  

 
Figure 1. PULPO information and workflow. 

 
The underlying optimization framework, inspired on the TCM approach (Kätelhön et 
al., 2016), is summarized in (OP1). A noteworthy conceptual extension is the “𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠” 
vector, which enables the direct specification of final supply instead of final demand 
values, an issue which has been previously addressed via an auxiliar optimization 
problem (Meys et al., 2021). 

min
𝑠𝑠.𝑡𝑡.  𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑄𝑄 ⋅ 𝐵𝐵 ⋅ 𝑠𝑠  
 

(OP1) 𝐴𝐴 ⋅ 𝑠𝑠 = 𝑓𝑓 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    

𝑠𝑠𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑠𝑠𝑗𝑗 ≤ 𝑠𝑠𝑗𝑗
ℎ𝑖𝑖𝑖𝑖ℎ  ∀ 𝑗𝑗  

0 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖
ℎ𝑖𝑖𝑖𝑖ℎ  ∀ 𝑖𝑖  

 
Where the notation used is as follows: 𝐴𝐴 is the rectangular Technosphere matrix, 𝐵𝐵 is 
the Biosphere matrix, 𝑄𝑄 is the matrix containing the characterization factors of the 
lifecycle impact assessment method, 𝑠𝑠 is the scaling vector, 𝑓𝑓 is the final demand 
vector, 𝑠𝑠𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙   and 𝑠𝑠𝑗𝑗

ℎ𝑖𝑖𝑖𝑖ℎ  are the upper and lower limits on the production quantities 
(capacity limits) of processes 𝑗𝑗 respectively, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the newly introduced vector 
containing decision variables for the case of specifying final supply instead of final 
demand values. The 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑘𝑘𝑖𝑖

ℎ𝑖𝑖𝑖𝑖ℎ  vector is zero for all products 𝑖𝑖 which have a defined 
final demand and takes a big constant value for those products where the final supply is 
specified. This notation follows the computational structure of LCA elaborated by 
Heijungs and Suh (2002). 
PULPO is available on GitHub, Zenodo (Lechtenberg, 2023) and PyPI. In an example 
provided as a jupyter notebook in the open repository, a case study optimizing the 
German power mix is presented. Using the ecoinvent 3.8 cutoff system, the share of 
lignite, coal, wind and nuclear power is optimized. In the unconstrained case, the global 
warming potential is minimized when relying exclusively on nuclear power. Using the 
ReCiPe human health indicator as objective, PULPO identifies wind power as most 
suitable option. Here, capacity constraints alongside the supply chain are introduced. 
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We note that optimizing the mix following a standard LCO approach (i.e., the 
background data is not updated during the optimization) leads to an overestimation of 
the total impact by about 8% due to the omission of feedback loops between the 
foreground and background systems. 

3. Results and Discussion 
PULPO was utilized to explore the role of carbon capture and utilization (CCU) in 
sustainable methanol production, analyzing its interplay with the electricity market. The 
goal and scope of this LCO is to decide on the optimal portfolio of methanol pathways 
in a set of locations considering region- and scenario-specific performance metrics and 
constraints. For demonstration purpose, the minimization of the global warming 
potential (GWP) is used as the objective function. 
The functional unit is the production of 100 Mt of methanol, as well as regional final 
supply values for electricity as projected by an integrated assessment model (IAM). In 
order to enforce these final supply constraints, the previously mentioned slack variables 
were utilized. We select the 1.5 °C and 3.5 °C temperature increase scenarios of the 
REMIND IAM and use the corresponding background databases based on the 
ecoinvent 3.8 cutoff system model generated by “premise” v.1.8.1 (Sacchi et al., 2022) 
as backbone for the superstructure. 
These LCIs contain datasets for methanol production via direct-air capture (DAC) based 
methanol but do not implement them in the markets because this option is not 
considered in the IAM. Precisely, the IAM only considers steam methane reforming for 
methanol production, which we refer to as the business as usual (BAU). Additionally, 
we added inventories for point-source capture (PSC) based methanol, as well as the 
necessary inventories for retrofitting fossil thermal powerplants with carbon capture to 
supply the CO2. The choices that the optimizer must take involve the selection of the 
optimal technology (BAU, DAC, or PSC) in the 12 regions of the IAM. If PSC is 
selected, a lower-level choice on the retrofitting of the available fossil thermal 
powerplants (coal and natural gas) must be taken.  
The potential of CO2-based methanol production routes heavily relies on the availability 
of green hydrogen, which in turn hinges on the availability of low-carbon electricity. 
Thus, shifting from the BAU practices to these new technologies implies the need for 
expanding power production capacities. In order to assess only a marginal deviation 
from the IAM baseline, we introduce a constraint on the power capacity expansion in 
each region. 
With these configurations, the two scenarios have been optimized for a range of 
electricity capacity constraints. Figure 2 illustrates the results for a total GWP reduction 
of 50 Mt CO2e. Comparing the amount of additional power capacity needed to reach 
this target underlines the pressing need to decarbonize the power sector for the hard-to-
abate sectors to tag along in the quest for sustainability. The base case, aligning with a 
3.5 °C scenario, requires an additional 417 TWh of electricity annually, whereas the 
1.5 °C scenario reduces this need to 223 TWh. 
Additionally, the transformation in the chemical sector is less extensive. In the 3.5 °C 
scenario, 50.4 Mt of fossil methanol needs replacement with carbon-capture 
alternatives, compared to only 23.0 Mt in the 1.5 °C scenario. This result does not 
suggest the chemical sector should wait for the power sector's progress. Instead, it 
emphasizes the need to prepare for the transition by developing suitable infrastructure 
and technology to meet or surpass these targets. 
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(a) Base (3.5°C) 

 
(b) PkBudg500 (1.5°C) 

Figure 2. Optimized global methanol supply chains in 2040 for a (a) 3.5 °C temperature increase 
and a (b) 1.5 °C temperature increase scenario. Both systems reduce the total GWP by 50 Mt 

CO2e. Methanol production quantities are indicated in each region (boxes) and the share of the 
technology employed (color). DAC: direct-air capture; PSC: point-source capture, BAU: 

business as usual (fossil based). 
 
Our use of PULPO in this study provides detailed technological and regional insights, 
as depicted in Figure 2. In the 3.5 °C scenario, regions with more decarbonized grids 
face greater pressure to implement PSC for CCU, explained by the limited number of 
regions where PSC can outperform BAU. Consequently, electricity production 
capacities in these regions increase by 2.1 %. In the 1.5 °C scenario, this pressure 
decreases due to universally decarbonized grids, allowing better GWP performance 
from PSC and DAC compared to BAU. The maximum regional increase in electricity 
production capacity observed is 0.4 %. These geographically distributed results are 
strongly linked to the electricity constraint included in the optimization problem.  
Notably, compared to the 3.5 °C scenario, the 1.5 °C scenario employs DAC based 
methanol production. This can be explained by the fact that some regions like South 
America and Europe have grids with a very low fossil share. Consequently, they fail to 
provide sufficient CO2 for green methanol, making DAC necessary to cover the carbon 
source requirements.  
Leveraging the comprehensive data in the LCIs, this assessment was enabled by 
PULPO's ability to integrate the entire database as a superstructure. Furthermore, the 
impact of optimizing power mixes by retrofitting with carbon capture technologies 
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plays a crucial role in ensuring an accurate and coherent assessment. Although less 
pronounced, the assessment also implicitly considers additional feedback effects 
originating from changes in the chemical sector. 
 
4. Conclusions 
PULPO represents a significant leap forward in merging mathematical optimization 
with LCA. Its integrated approach enables more precise and insightful analysis of 
technological and regional options in production systems. By accommodating dynamic 
changes within the Technosphere, PULPO enhances the accuracy and relevance of 
environmental impact assessments, particularly in the context of large-scale, impactful 
socio-economic decisions. This framework opens new avenues to support sustainable 
decision-making in Process Systems Engineering, building bridges with the Industrial 
Ecology community currently working on LCA. 
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Abstract 
This article focuses on comparing qualitatively using a decision-aid method technological 
solutions to address climate change, such as Carbon Capture and Storage (CCS) 
technologies. The research explores technological-based CCS solutions and has revealed 
a wide range of available technologies for CCS, each with varying efficiency and global 
capacity. Factors influencing the selection of CCS technologies include price, energy 
efficiency, environmental impact, and societal acceptance. Given the lack of a global 
methodology for comparing different CCS technologies, this article develops a qualitative 
methodology, inspired by certification standards and regulatory frameworks. Following 
this methodology, a qualitative analysis of mineralization technologies is presented. 
Enhanced rock weathering (ERW) applications in agricultural lands, oceanic/coastal 
environments, and underground storage of CO2 via mineralization are explored. The 
criteria are applied to assess the state-of-the-art research. The results show that ERW on 
agricultural lands and underground storage of CO2 via mineralization are mature and 
qualitatively suitable under certain conditions, while ERW in oceanic and coastal 
environments requires further research. The study suggests improving the decision-aid 
method by incorporating new key performance indicators based on economic, life cycle 
assessment, and thermodynamic analyses of various CCS methods. 
Keywords: carbon dioxide, enhanced rock weathering, qualitative analysis. 

1. Introduction 
CCS technologies can be classified into two categories: the nature-based solutions, with 
methods of afforestation/reforestation, peatland, and the technological-based solutions, 
such as direct air capture (DAC) or point-source capture, combined with storage, 
enhanced rock weathering (ERW) on agricultural lands or coastal/oceanic areas, and 
biochar. Each of these technologies has its limits and needs to be carefully thought, with 
not only their feasibility but also their integration into their environment. Their efficiency 
and worldwide capacity differ, for example for the ERW on agricultural lands techniques 
and biochar the potential is estimated at 0.5 to 2GtCO2y-1, for soil organic carbon 
sequestration it varies from 0.5 to 5 GtCO2y-1 (Beerling et al., 2020). To decide which 
technology to choose amongst the different available, criteria such as price, energy 
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efficiency, environmental impact, and acceptance of the technology at different levels 
(global, local) have to be taken into account. The question now is how to compare the 
different technologies on such diverse criteria, considering that there is no global 
methodology existing to compare them. Trying to complete this methodological 
shortcoming, this work presents a qualitative decision-aid method, based on certification 
standards (Arcusa et al., 2022), on the emerging laws from the European Parliament 
(European Parliament, 2022), and on societal analysis (Selma et al., 2014). To illustrate 
the decision-aid method, that can be used on every CCS technology, it is applied in this 
work to mineralization. 

2. Definition of the decision-aid method  

The decision-aid method, illustrated in Figure 1, helps in tracking through four simple 
steps whether a proposed technology is qualitatively viable or not. The first step, “the 
technology avoids any social and environmental harm”, verifies that the project does not 
provoke any social or environmental harm. It ensures compliance with basic human rights 
and laws, avoids socially and environmentally sensitive areas, and prevents the generation 
of any social or environmental harm. The second step states that “it is possible to estimate 
the CO2 removals and prove the permanence of the storage. The categories of impact from 
the Life Cycle Assessment (LCA) are considered in the estimation”. This step applies to 
the development phase of the project (thinking phase), where estimation and previous 
analysis of potential impacts are made. It entails estimating CO2 removals using a robust 
and clear calculation methodology, undergoing peer review. The estimation process 
considers all impacts, aligning with the principles of LCA (such as global warming 
potential, ozone depletion, eutrophication, acidification, depletion of abiotic resources, 
water and land use, and ecotoxicity). It is also based on “permanence”, which requires 
demonstrating permanent reductions in GHG emissions and proving the absence or 
reversal of such emissions. The third step requires the validation of the following 
sentences: “It is possible to measure and monitor the quantity of carbon removed and 
stored during the duration of the project, by the authors and by a third-party auditor. No 
double counting is ensured”. This step is linked to the ongoing phase of the project: the 
measures done during the project, by the authors or by a third-party auditor. The concept 
of “measurability and monitoring” is used to emphasize the importance of transparent and 
demonstrated measurement practices and strong monitoring throughout the project's 
duration. These practices should be carried out by a trusted local player. “Verifiability” 
is another crucial indication, that necessitates professional verification of the project by 
tird-party auditor (preferably with specific accreditation). The verification process occurs 
from the starting date and is repeated, with publicly available audit results. Finally, the 
notion of “ownership and unicity” ensures that no double counting occurs, and the 
ownership of credits is enforceable. If the first three criteria are not validated, further 
research and improvement of the technology to validate the criteria must be carried out. 
The fourth step stipulates that “there is a strong societal acceptance of the technology 
proposed, based on the institutional link (confidence with local institutions) and 
governance robustness (transparency, public consultation) on a local scale and 
acceptability of the technology on a global scale”. If it appears to be incomplete, the 
project should be modified or further explanation towards citizens should be conducted. 
To maintain the “governance robustness”, the project should have strong overall program 
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governance, transparency regarding the project’s progress, and public consultation. A 
complaints appeal policy should be in place, and the project's methodologies and registry 
design should operate independently from commercial activities. Lastly, “institutional 

Figure 1: Decision-aid qualitative methods of CCS technologies. 
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link” highlights the importance of integrating the project into the local institutional 
ecosystem.  

3. Mineralization technologies 
ERW is an inorganic carbon sequestration technique with the capacity to store CO2 for 
over 100,000 years (Beerling et al., 2020). It is used on agricultural lands and oceanic 
areas. ERW works according to the following steps: crushed silicate rock is spread in soil 
or on coastal environments/ocean and dissolves, liberating base cations (as Mg2+, Ca2+). 
These cations generate alkalinity that draws down CO2 from the atmosphere by forming 
principally carbonate ions. There is an increase in the seawater alkalinity resulting in 
additional CO2 uptake from the atmosphere, occurring also with ERW on agricultural 
lands, as some of the minerals are washed to the ocean via soil drainage waters.  
Storing underground via mineralization the CO2 already captured in large quantities 
consists of injecting underground (in reactive rocks, such as mafic and ultramafic rocks) 
CO2 dissolved in water, requiring twenty-five tons of water for one ton of CO2 injected 
(Delerce and Oelkers, 2022). The solution reacts with reservoir rocks to trap CO2 in the 
form of carbonate minerals. Solubility trapping occurs immediately, and most of the CO2 
injected reacts and reaches a stable form within two years (Snæbjörnsdóttir et al., 2020). 

4. Analysis of the mineralization technologies with the decision-aid method 
4.1. Analysis of ERW on agricultural lands   
The step one of the decision-aid method, “avoiding social and environmental harm”, faces 
a lack of knowledge in the actual state of the art that impeaches to fulfil it. The main risk 
is the contamination of lands, crops, and groundwaters with heavy metals and toxic 
substances, such as nickel and chromium, present in the rocks (Schuiling and Krijgsman, 
2006). Moreover, the project leaders should be careful that there is no trade-off between 
carbon sequestration and crop production, as ERW could decrease the organic carbon 
content in soils and threaten food security (Lehman and Possinger, 2020). Then, the local 
impact of mines to extract the rocks is also to be analysed via an LCA study, as it destroys 
locally the environment. Another provenance of rocks (via industrial alkaline waste) 
would reduce this impact (Castro-Amoedo et al., 2023). Therefore, the criteria “Avoiding 
Social and Environmental harm” require further investigation and mitigation to be sure 
that there is no risk at all. Concerning step two, the estimation of the storage permanence, 
the storage has been established with the state-of-the-art study, that attests that once 
mineralized the carbon is stable and trapped for geological time spans (Beerling et al., 
2020). The estimation of the carbon removal, and its validation will depend on the method 
proposed to assess the quantity of CO2 that will be captured. Concerning step three, e. g. 
the measurability and the monitoring of carbon removal during the project, it seems 
possible to extend and realize a proper estimation method, verifiable by a third party. 
Samples of rocks can be analysed before the spreading and after a few months to assess 
the quantity of carbon removed. Step four, or governance robustness and institutional link 
have not been established yet, due to a lack of regulation of this specific practice.  
4.2 Analysis of ERW on coastal environments and oceans 
The criteria one, avoidance of social and environmental harm, has not been fulfilled. It is 
due to a lack of knowledge over the possible addition of toxic substances in the ocean as 
nickel and its impact on marine ecosystems. The impact of the increase in rates of some 
metals as Mg2+, Si, Fe2+, and Ni2+ has to be assessed as well (Bach et al., 2019). The local 
impact of mines to extract the rocks is also to be analysed via an LCA study, as it destroys 
locally the environment. Concerning step two, e.g. estimation of the CO2 removal and the 
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permanence of the storage, it is impeached by the occurrence of secondary reactions, 
making olivine dissolution's effectiveness in CO2 sequestration under oceanic conditions 
uncertain (Montserrat et al., 2017). This aspect requires further investigation. To finish 
with, the LCA must be carefully conducted, as the small size of grains required to achieve 
effective mineralization requires a consequent energetic consumption (Hangx and Spiers, 
2009). Step three is not validated as well: at this stage, it is impossible to monitor (due to 
the absence of an indicator) or even estimate the quantity of atmospheric CO2 effectively 
captured. Furthermore, the possible co-reactions make it impossible to statute on the 
permanence of the storage (Montserrat et al., 2017). Concerning step four, the potential 
of toxicity of this technology and the knowledge gaps could impeach societal acceptance 
(Bach et al., 2019). No law concerning ERW in oceanic areas has been stated in Europe 
as far as we are aware. There is a high risk of social contestations if the beaches turn green 
due to the dispersion of olivine. To be qualitatively feasible, this technology thus requires 
further investigations on a scientific level, treating all the subjects mentioned before. 
4.3 Analysis of CO2 underground storage via mineralization 
This technology has been judged as avoiding any social or environmental harm, as there 
is no risk of CO2 leakage during storage (Delerce and Oelkers, 2022). Step one is therefore 
completed. The major blocking point is the decarbonized electricity required for the DAC 
and the need for a huge amount of fresh water. Due to these needs, this technology can 
be achieved in Iceland mostly, however, it is critical for other countries. Concerning step 
two, it is considered that a proper estimation of the quantity of carbon removed could be 
established before the project with models and calculations. The permanence of the 
project has been validated through the state-of-the-art study, attesting that carbon dioxide 
is mineralized and stable for geological time spans (Delerce and Oelkers, 2022). 
Furthermore, for step three, the measurability and monitoring can be achieved easily 
according to the CO2 captured and then injected underground. This step is verifiable by a 
third part. To finish, as underground carbon storage can be criticized and impeached by 
local protests (O’Neill et al., 2012), it has not been established whether the social 
acceptance criteria (step four) is fulfilled or not. This point might require further 
investigations concerning the implantation of the technology in new areas. The global 
conclusion is positive at the state-of-the-art level of research. 

5. Conclusions 
Different mineralization technologies for CCS have been examined and a qualitative 
methodology to compare them has been proposed. This methodology includes criteria 
such as social and environmental impacts, storage permanence, measurability, and 
monitoring, as well as social acceptance. For ERW on agricultural lands, several criteria 
have been met, but uncertainties remain regarding the potential risks of soil and crop 
contamination by metals present in the rocks. The question of the impact on food 
production should also be considered. Social acceptance and specific regulations are still 
in development. Coastal and marine ERW faces uncertainties related to secondary 
reactions and requires scientific research on this point. Aspects related to measuring the 
quantity of captured CO2 and the permanence of storage remain to be clarified. Moreover, 
potential toxicity and social risks related to the dispersion of rocks on beaches require 
further study. Underground CO2 storage via mineralization appears promising but faces 
challenges related to the availability of decarbonized electricity and fresh water in certain 
regions. It seems to address major concerns related to social and environmental impacts, 
including the avoidance of CO2 leakage. The decision on which technology to prioritize 
among various CCS options requires a thorough evaluation based on criteria such as cost, 
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energy efficiency, environmental impact, thermodynamic indicators, and social 
acceptance. The qualitative decision-aid method presented here provides a first step 
toward a more comprehensive assessment. Clear regulations and standards are imperative 
to guide the choice of CCS technologies and ensure responsible implementation. 
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Abstract 

This project aims to systematically compare options for flowsheet optimization. 

Surrogate modelling, genetic algorithms, Bayesian optimization, and combinations of 

them can be used to approach the black-box optimization task which arises from complex 

process simulation. There are trade-offs in computational effort, number of 

hyperparameters, reliability in reaching global optima, etc. The goal is to categorize 

existing methods, evaluate the performance of the algorithms, and synthesize guidelines 

on which algorithms to use depending on the flowsheet, objective, and dimensionality. 

Keywords: surrogate modelling, Bayesian optimization, genetic algorithms, flowsheet 

optimization, derivative-free optimization, gradient-free optimization 

1. Background 

Process modelling with flowsheet simulators is a powerful, established tool for process 

design. When the formulation of the simulation is equation-based, optimization of the 

flowsheet can be solved with deterministic, gradient-based optimization algorithms. In 

many cases, however, gradients are not available from these simulations, calling for 

derivative-free optimization (DFO). Further, they frequently exhibit high computational 

cost, resulting in the need to limit the number of function evaluations. One established 

method to approach this task is surrogate modelling. A data set is generated from the 

simulation, which is then used to train a surrogate model, such as an artificial neural 

network (ANN). As the structure of the surrogate model is known, deterministic 

optimization is used to optimize over the surrogate model. Alternatively, genetic 

algorithms (GA) can be applied to flowsheets. It is a heuristic technique which uses 

evolving generations of testing points to iterate closer to optimal solutions. Recently, 

Bayesian optimization (BO) has gathered attention, and has been applied to flowsheet 

optimization (Sanchez Medina et al., 2021a). BO utilizes a surrogate model, often a 
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Gaussian process (GP) model, and an acquisition function to estimate where sampling 

would reveal the most information. Many variations and even combinations of these 

methods exist (Sanchez Medina et al., 2021a, Sanchez Medina et al., 2021b). They vary 

in their accuracy, workflow complexity, computational effort, number of and sensitivity 

with respect to hyperparameters, ability to deal with constraints, and behavior at higher 

dimensions (degrees of freedom).  

It is not obvious which type of DFO is appropriate or optimal depending on the flowsheet. 

Among the options, surrogate modelling has been a major focus (McBride and 

Sundmacher, 2019). The data requirement of effective ANN training can be a restrictive 

factor. GA tends to be applied much less frequently, but can be favored for multi-

objective optimization (Shafiee et al., 2017). This can be helpful for chemical engineering 

applications, where there are often conflicting objectives such as efficiency, yield, cost, 

energy consumption, environmental impact. Its conception as heuristics-based may 

present a disadvantage. BO appears most helpful when function evaluations, i.e., 

simulation runs, are particularly expensive, but it comes at higher computational cost 

itself (van de Berg et al., 2022). 

2. Methodology 

We are evaluating the various options for flowsheet optimization, using ASPEN for 

flowsheet simulation. We plan to assemble a collection of DFO methods applicable to 

flowsheets as well as a set of different flowsheets, e.g., methanol synthesis from (green) 

H2 and CO2. Appropriate methods such as early stopping are utilized for training the 

surrogate models to ensure prediction accuracy and prevent overfitting. The set of 

flowsheets is designed deliberately diverse, with variation in types and number of unit 

operations as well as presence and number of recycles. Then the parameters 

characterizing the algorithms and the flowsheet optimization tasks can be varied and the 

performance of the algorithms can be estimated. 

3. Conclusions 

We expect trade-offs between the techniques in computational effort, number of 

hyperparameters, reliability in reaching global optima, etc. Further, the algorithms’ 

behavior at increasing number of degrees of freedom, and for varying objectives will be 

examined. Can some algorithms deliver adequate performance without the need to 

carefully adapt them to the flowsheet and tune the hyperparameters? What is the trade-

off between adaptability and complexity? The goal is to categorize existing methods, 

evaluate the performance of the algorithms, and synthesize guidelines on which 

algorithms to use depending on the flowsheet, objective, dimensionality, and other 

factors. 
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Abstract 

Biomass is a versatile resource and, thus, can support the net-zero energy transition in 

various sectors. However, the limited availability of biomass requires careful allocation 

and prioritization of its usage. Making good choices in energy system planning becomes 

challenging when considering future uncertainties. This study introduces a method that 

streamlines this decision process and identifies low-regret strategies for long-term 

energy system planning under uncertainty. We apply this approach to biomass usage in 

Switzerland’s energy system. Our analysis results in four potential biomass strategies. 

Evaluating the strategies in detail suggests that prioritizing biomass for fuel production 

reduces the expected regret while focusing on bio-methane production results in the 

lowest worst-case regret. 

Keywords: strategic decision-making, energy systems, biomass, uncertainty, low-regret 

1. Introduction 

Biomass plays a central role in transitioning to net-zero energy systems, capturing CO2 

during growth and achieving negative emissions when combined with carbon capture 

and storage. Recent sector-specific studies identify biomass as a cost-effective and 

versatile resource to decarbonize heating and electricity supply (Ozolina et al., 2022), 

aviation (Bergero et al., 2023), or the production of chemicals (Meys et al., 2021). 

However, the limited availability of sustainable biomass prohibits simultaneously 

satisfying the demands across all these sectors. 

Thus, deciding how to utilize the limited biomass resources in the energy system 

requires strategic prioritization. This decision must be made today to enable a rapid 

energy transition and mitigate the worst effects of climate change. This planning task 

relies on uncertain scenarios of future energy demands, fuel prices, and technology costs 

(Moret et al., 2017). As the optimal solution for one scenario may prove sub-optimal for 

another, the challenge lies in identifying strategies that yield minimal regret over the set 

of all possible realizations. 
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2. Method 

The goal of our method is to identify strategies with minimal regret. In the first step, 

outputs of interest from the energy systems model, e.g., the installed capacity of 

technologies, are selected. Next, applying latin hypercube sampling (McKay et al., 

1979) to the uncertain input parameters, we generate N different scenarios s ∈ Ω = {s1, 

…, sN}. Each scenario, corresponding to a different uncertain parameter sample, is then 

optimized in the energy system model. The potential solution space is obtained by 

computing the previously chosen outputs of interest. Using k-means clustering, this 

space is grouped into k clusters. Following the approach by Baader et al. (2023), a 

decision tree is trained on the outputs of interest to predict the corresponding cluster. 

The resulting leaves of the tree are denoted as strategies I = {1, …, k}. Ωi is the subset 

of Ω for which strategy i is optimal.  

Next, we calculate the regret for the scenarios where strategy i is not the optimal choice: 

Each scenario s ∈ Ω \ Ωi is reoptimized while enforcing strategy i, resulting in the cost 

𝐶𝑖,𝑠. Taking the difference between the cost 𝐶𝑖,𝑠 and the cost of the optimal strategy 

𝐶𝑠
𝑜𝑝𝑡

: 

𝑅𝑖,𝑠 ∶= 𝐶𝑖,𝑠 − 𝐶𝑠
𝑜𝑝𝑡

      ∀𝑖 ∈ I,  ∀𝑠 ∈ Ω \ Ωi    (1) 

the regret 𝑅𝑖,𝑠 of strategy i in scenario s is obtained. Note that, by construction, 𝑅𝑖,𝑠 is 

always non-negative. Repeating this computation for all scenarios s ∈ Ω \ Ωi results in a 

distribution of regrets for strategy i. Last, for each strategy, the mean and maximum of 

its regret distribution, together with the probability of regret 𝑃𝑟𝑒𝑔𝑟𝑒𝑡 , are computed. 

3. Case study 

We model the Swiss energy system using the open-source whole-energy system 

framework Energyscope (Limpens et al., 2019) and, for the first time, extend it to 

include all the possible biomass conversion pathways. Specifically, we consider four 

types of biomass resources: wood, animal manure, green waste, and fresh sewage 

sludge. On the demand side, we include the supply of residential and industrial heat, 

electricity, and mobility. In addition, we integrate the production, demand, and 

recycling of essential chemicals and plastics based on Meys et al. (2021).  

The 27 technologies that use biomass as a resource are grouped by their products into 

eight categories: Low-temperature heat; high-temperature heat; combined heat and 

power; fuels; hydrogen; natural gas; charcoal; and chemical products.  

The eight outputs of interest of our case study are defined as the amount of energy from 

biomass that flows into each one of the above categories.  

To apply our method, we simulate N = 1000 different scenarios. We identify the 

required number of clusters k by applying the “elbow method” (Ketchen et al., 1996) 
concluding on using k = 4 clusters. This choice is in agreement with psychological 

studies suggesting that for maintaining interpretability and effective communication no 

more than three to five alternatives should be presented to decision-makers (Cowan, 

2001).  

4. Results 

In all scenarios, we do not observe significant use of biomass (<1 GWh) for production 

of chemicals or low-temperature heat. Thus, both outputs of interest are discarded from 

further analysis. Based on the remaining six outputs of interest (energy flow of biomass 
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into high-temperature heat; combined heat and power; fuels; hydrogen; natural gas; and 

charcoal), the decision tree is trained (Fig. 1) following the method by Baader et al. 

(2023). At each node of the tree, a radar plot indicates the level of flexibility with 

respect to each output of interest. Starting from the entire solution space at the top, 

including all N = 1000 scenarios and hence showing full flexibility across each output 

of interest, every decision on a given output of interest influences the potential of the 

remaining ones, thus constraining the solution space. For example, choosing a high use 

of biomass for fuel production significantly lowers the availability of biomass for all 

other usages except cogeneration of heat and power.  

At the bottom of the tree, we end up with four leaves, which are cost-optimal strategies 

for biomass usage for different regions of the input space: Strategy 1 focuses on using 

the available biomass to produce bio-methane, Strategy 2 primarily produces hydrogen 

and high-temperature heat, Strategy 3 centers around generating biochar, and Strategy 4 

focuses on using biomass to produce liquid fuels. 

 

 

Figure 1: Decision tree on six of the outputs of interest: high-temperature heat (HTH), combined 

heat and power (CHP), diesel/kerosene (FUEL), hydrogen (H2), bio-methane (NG), and charcoal 

(BIOCHAR), identifying four potential strategies for the use of biomass in the Swiss energy 

system. 

Only the use of biomass for combined heat and power is present in all strategies 

independently of the decisions. The reason is that, in all scenarios, the only energy flow 

into this category is given by all available manure being used in biogas motors.  
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Thus, the energy flow into combined heat and power in our model solely depends on the 

amount of available manure.   

In the next step, we enforce the strategies for the scenarios where they are not optimal 

and reoptimize the model. Using Eq. (1), the regret distributions for the four strategies 

are computed, and the results are summarized (Tab.1).  

The regrets among the individual strategies differ considerably: The minimal expected 

regret 𝑃𝑟𝑒𝑔𝑟𝑒𝑡 x 𝑅𝑚𝑒𝑎𝑛 results from producing fuels (Strategy 4), followed by bio-

methane (Strategy 1), hydrogen (Strategy 2), and biochar (Strategy 3). While Strategy 4 

clearly stands out with respect to most metrics in Table 1, if the objective is to minimize 

the worst-case regret 𝑅𝑚𝑎𝑥, bio-methane and hydrogen are preferred over fuel 

production from biomass. Thus, there is not the one biomass strategy that performs best 

in all measures. Depending on whether the objective of the decision-maker is 

minimizing the expected or the worst-case regret, the preferred strategy differs. 

Furthermore, the sensitivity of the regret of a strategy with respect to the inputs, 

especially those controllable by the decision-maker, could give valuable insights for the 

decision process. By ensuring these inputs remain within certain limits potential worst-

case scenarios could be avoided. 

Table 1: Results from the regret analysis of the biomass strategies in units 106 €. The lowest 

values of regret are highlighted in bold. 

Regret 
Strategy 1 

Methane 

Strategy 2 

Hydrogen 

Strategy 3 

Biochar 

Strategy 4 

Fuel 

𝑅𝑖
𝑚𝑒𝑎𝑛 ∶= mean

𝑠
(𝑅𝑖,𝑠)  256 425 580 174 

𝑅𝑖
𝑚𝑎𝑥 ∶= max

𝑠
(𝑅𝑖,𝑠) 781 877 1,517 962 

𝑃𝑖
𝑟𝑒𝑔𝑟𝑒𝑡

∶=
#(Ω \ Ωi)

#Ω
  in [%] 90.5 91.1 85.5 32.9 

𝑃𝑖
𝑟𝑒𝑔𝑟𝑒𝑡

 x 𝑅𝑖
𝑚𝑒𝑎𝑛 232 387 496 57 

5. Conclusions 

Guiding the energy transition under uncertainty requires the synthesis of multiple 

plausible scenarios, which is challenging due to the volume and complexity of options 

resulting from uncertainty studies. Our replicable method streamlines the solution space 

of an optimization under uncertainty problem, highlighting the key strategies with their 

potential regret. 

We identify four potential strategies for the usage of biomass in Switzerland that are 

optimal for different regions of the input space. Our analysis reveals that the strategy 

focusing on using biomass to produce fuels results in the lowest expected regret, while 

having a high production of bio-methane has the lowest worst-case regret. 

Our approach of identifying potential strategies and quantifying their regrets can easily 

be generalized to other fields of energy system planning. It enhances the accessibility of 

uncertainty-related results for policymakers, thus encouraging informed decision-

making. 
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Abstract 

Advancing sustainability requires knowledge on the environmental impacts of chemicals. 

For this purpose, life cycle assessment is the preferred method, but usually carried out by 

manually extracting data from process simulation software and transferring data to life 

cycle assessment software. This process is very labor-intensive and error-prone. 

Here, we bridge the gap between process simulation and life cycle assessment by 

automated data extraction from process simulators to life cycle assessment software. Our 

tool currently links the process simulators Aspen Plus, Aspen HYSYS, and AVEVA 

Process Simulation to the open-source tools Brightway/Activity Browser for life cycle 

assessment.  The tool is exemplified using openly available case studies and simulation 

files for bio-based and CO2-based processes. Simulation studies can be combined to, e.g., 

integrated CO2 capture and utilization chains within life cycle assessment software.  

Our tool directly integrates process simulations results into life cycle inventory databases 

with easy workflows and could thereby enable the generation of more life cycle 

assessments of chemical processes.  

 

Keywords: chemical process simulation, life cycle assessment, automated data 

extraction, life cycle inventory 

1. Introduction 

Life cycle assessment (LCA) of chemical processes is a crucial part of process 

development (Hungerbühler et al., 2021). Often, LCA is performed subsequent to process 

development and simulation (Köck et al., 2023). Today, the LCA computation relies on 

manual data handling for transferring simulation results to life cycle assessment software 

and requires deep process knowledge (Köck et al., 2023). This approach is labor-intense 

and error-prone (Azzaro-Pantel et al., 2022) and might neglect flows that seem irrelevant 

but substantially contribute to environmental impacts (Rosental et al., 2020).  
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However, the workflow of LCA for chemical processes offers the potential for 

standardization, as many chemical processes follow a logic of converting feedstocks to 

products, byproducts, and waste with the help of utilities and solvents (Hungerbühler et 

al., 2021). Therefore, streamlining the workflow can significantly ease and accelerate the 

LCAs of chemical processes.  

In this work, we establish a bridge between process simulation and LCA by introducing 

an automated data extraction tool that connects the process simulation software Aspen 

Plus (Aspen Technology Inc., 2019a), Aspen HYSYS (Aspen Technology Inc., 2019b), 

and AVEVA Process Simulation (AVEVA Group plc, 2023) with the LCA software 

Brightway (Mutel, 2017). Our tool simplifies the integration of standard software and 

methodologies in process systems engineering with the tools essential for LCA. 

Automating data processing accelerates the LCA process, facilitating the integration into 

larger systems and limiting the possibility of data transfer errors. 

2. Methods 

Our tool streamlines the connection of process simulation to LCA. For this purpose, we 

connect common process simulators with the open-source Python-based software 

package Brightway (Mutel, 2017), a well-established and widely adopted tool within the 

academic LCA community. Furthermore, integration into Brighway allows the use of the 

open-source LCA tool Activity Browser, which offers an intuitive graphical interface for 

conducting additional calculations and managing databases and results (Steubing et al., 

2020). By using Python as a shared programming language across both process 

simulation and LCA domains, we ensure a unified and cohesive approach to our 

implementation. A graphical user interface guides the user through the workflow, from 

flowsheet extraction to life cycle inventories (LCIs) and life cycle impact assessment 

(LCIA). 

In its current implementation, our tool supports the process simulation software Aspen 

Plus (Aspen Technology Inc., 2019a), Aspen HYSYS (Aspen Technology Inc., 2019b), 

and AVEVA Process Simulation (AVEVA Group plc, 2023), which are common 

software in chemical process simulation both in academia and industry (de Beer and 

Depew, 2021). The only input to the extraction tool is a simulation file of a chemical 

process, which is evaluated and from which all mass and energy streams are extracted.  

After extracting process simulation results, the next step involves linking the process 

streams with the corresponding activities in life cycle assessment databases to calculate 

environmental impacts. Typically, life cycle inventory databases such as ecoinvent 

(Wernet et al., 2016) or GaBi (Sphera Solutions Inc., 2023) are used. The process streams 

are either linked to direct emissions to the environment or linked to activities further down 

the supply chain, which causes underlying environmental impact. The stream-linking step 

requires manual user input and is hard to automate since specifications are needed for the 

exact locations, energy mixes, or modeling assumptions, e.g., options for waste treatment. 

However, the user is assisted by a graphical interface providing process streams and life 

cycle inventory activities next to each other in one combined interface for easy linking. 

Furthermore, the user is provided with stream information and can further modify the 

process data. Finally, all process streams are linked to inventory activities as the final step 

of the life cycle inventory analysis (LCI).  
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Starting from the LCI, the life cycle impact assessment (LCIA) is calculated automatically 

to determine the potential environmental impacts of the investigated process. 

Furthermore, the contribution of the streams to the overall impacts in various impact 

categories is evaluated. The contribution analysis allows for identifying hotspots that 

might require further process development. Finally, LCI and LCIA results can be 

exported and used further in other simulations. As the results are stored within Brightway, 

newly developed processes can be integrated and evaluated in larger supply chains.  

3. Case Study 

The robustness of our automated data extraction and LCA tool is tested by assessing 

literature case studies. These studies encompass a spectrum of processes, including bio-

based conversion, CO2 capture, and CO2 utilization, for which simulation files are readily 

available online together with the corresponding publication or provided as example files 

for the process simulation software. Moreover, these studies provide access to life cycle 

inventories, LCA results, and/or techno-economic analysis (TEA) findings, offering a 

data source for validation. The simulation files were taken from the literature with no 

further modification. In particular, the simulations used different unit sets or stream 

definitions. 

We demonstrate the possibilities arising from the full integration capabilities of our tool 

by combining multiple simulation files from three different software tools into one larger 

LCA study. The combination shows the potential for data handling without manual data 

transfer or manipulation. We combine the amine-based CO2 flue gas capture by Adams 

et al. (Adams et al., 2014, Adams, 2017) implemented in Aspen Plus with water 

electrolysis provided as AVEVA Process Simulation example (AVEVA Group plc, 2023) 

as feedstocks for the CO2 hydrogenation to methanol implemented in Aspen HYSYS 

(Vázquez and Guillén-Gosálbez, 2021) (see Figure 1).  

 

Our demonstration is executed using the ecoinvent 3.9.1 database (cutoff system model) 

(Wernet et al., 2016) and the environmental footprint methodology 3.1 (Andreasi Bassi 

et al., 2023) as life cycle inventory database and life cycle impact assessment method, 

espectively. For the simplicity of demonstration, only the available ecoinvent processes 

for the US are used, and no further modeling of feedstock or utility systems is performed. 

  

Figure 1: Simulation files automatically combined to generate the life cycle inventory for the 

CO2 hydrogenation to methanol including CO2 capture and water electrolysis. 
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4. Results 

The case study demonstrates the automated integration of multiple case studies into one 

larger supply chain for which LCA results are automatically computed. The tool 

determines the total climate change impacts of methanol production to  

22.7 kgCO2eq/kgMeOH. The relative contributions to climate change impacts for methanol 

production are shown in Figure 2.  

The tool allows for the identification of hotspots further down the supply chain and across 

the integrated flowsheets. Here, the major hotspot is the electricity demand for hydrogen 

production. In this case study, electricity is assumed to be taken from the US-average 

electricity grid. This assumption leads to the high climate change impacts of methanol.  

Integrating our tool with standard software facilitates the transfer of results and the 

incorporation of individual processes into supply chains within the Brightway framework. 

Therefore, the impact of flowsheet changes on the LCA results of whole value chains can 

be evaluated automatically.    

5. Conclusions 

This work presents an automated data extraction tool for connecting process simulation 

software and life cycle assessment software. The tool showcases its capabilities by 

automatically integrating case studies from the literature into a comprehensive supply 

chain. Data handling and the calculation of environmental impacts are automated, and 

hotspots in the process can be identified easily.  

Our methodological approach allows for the direct integration of LCI results into 

databases, promoting user-friendly workflows. This approach holds the potential to 

mitigate data gaps within life cycle inventories of chemical supply chains, facilitating 

more comprehensive LCAs of chemical processes. Furthermore, our tool aids the 

integrated development and environmental assessment of chemical processes. 
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Figure 2: Relative contribution to climate change impacts for the CCU pathway to 

methanol by integrating the flowsheets in Figure 1.  
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Abstract 
In MILP energy system modeling, chaotic behaviors frequently emerge because of the 
integer and linear nature of the problem, complicating the interpretability and utility of 
the model outputs. Such volatility has already been observed in equivalent solutions in 
previous works due to the symmetry of the problem definition 1–3. Still, it can notably be 
observed in nonsymmetrical global energy system models while applying parametrization 
of penetration of various technologies, for example, high-altitude photovoltaic (PV) 
systems in the Swiss energy landscape, where equivalent solutions from the point of view 
of the objective function exist but are distinguished in the activated constraints and thus 
by the energy system configuration. The present study introduces an innovative 
methodology to stabilize the parametrization of technology penetration scenarios to 
address this. The technique is engineered to enable a more "smooth" and predictable 
energy system evolution when subjected to various penetration configurations, all within 
a mixed-integer linear programming (MILP) framework, thus opening the door to 
identifying equivalent solutions to an optimization problem. 
 
Utilizing the MILP energy system modeling framework EnergyScope 4–6, the research 
presents a novel, simple, and linear contribution by introducing an additional stabilization 
term into the model's objective function. This stabilization term is constructed to capture 
the absolute variation in the size of installed technologies between consecutive model 
runs, thus adding a term minimizing the configuration changes to the objective function. 
The challenge of weighting this contribution without penalizing the primary objective 
function value is assessed by assessing the impact of the latter scaling on the generated, 
thereby enriching the analysis and robustness of the model's output.  
 
From a results standpoint, the study delineates the specific conditions that lead to optimal 
stabilization, culminating in a smooth transition of energy system configurations from 
one scenario to another. The implemented methodology significantly enhances the 
identification of vertices in the solution space, allowing for a more nuanced understanding 
of critical configurations within that space.  
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Moreover, the study extends its applicability by employing the stabilization methodology 
to the Swiss energy system's trajectory toward 2050, a system envisioned to be both 
energy-independent and carbon-neutral. In this context, the methodology displayed its 
utility in providing nuanced insights into the penetration scenarios of high-altitude PV. 
These insights are crucial for policymakers and stakeholders, offering actionable steps to 
meet energy transition indicators effectively. The methodology stabilizes the 
parametrization. It provides a sophisticated tool for evaluating energy transition 
indicators, catalyzing more robust and reliable energy system modeling. 
 
Keywords: Mixed-Integer Linear Programming, Parametrization Stabilization, 
Equivalent solutions, Energy System model, Energy Transition 

1. Introduction 
1.1. Context 

Modeling energy systems through mixed-integer linear programming (MILP) is pivotal 
in shaping our understanding and approach to the evolving energy landscape. In the quest 
for sustainable and efficient energy solutions, MILP models are instrumental in 
evaluating and strategizing energy system transitions. However, these models often 
encounter a significant hurdle: chaotic behaviors arising from their integer and linear 
problem structures. This complexity is not only a characteristic of symmetrical problems 
1–3, but also manifests in non-symmetrical global energy system models. A notable 
example is the parametrization of technology penetration, such as high-altitude 
photovoltaic (PV) systems in the Swiss energy landscape. Here, equivalent solutions, in 
terms of objective function outputs, diverge in their activated constraints, leading to 
varying energy system configurations.  
1.2. Literature Review 

The inherent volatility in MILP energy system modeling, particularly regarding 
technology penetration, has been a focal point of previous research. While the literature 
addresses the equivalent solutions arising from symmetrical problems, a gap exists in 
understanding and managing the chaotic behavior in non-symmetrical models. The 
EnergyScope framework  4–6 has been instrumental in this domain, offering a basis for 
developing more robust and nuanced models. However, the challenge of stabilizing 
parametrization in such models, especially in varied technology penetrations, has not 
been comprehensively addressed. This gap points to the need for a methodology that 
stabilizes the model outputs and enhances the interpretability and utility of these models 
in planning and decision-making processes. 
1.3. Problem Statement 

The primary challenge in MILP energy system modeling is the stabilization of 
parametrization under different technology penetration scenarios. The unpredictability 
and complexity inherent in these models hinder their effectiveness in guiding the 
transition to sustainable energy systems. This research aims to introduce an innovative 
methodology to address this challenge. The proposed technique is designed to add a 
stabilization term to the objective function of the MILP model, aiming to minimize 
configuration changes between model runs.  
This approach facilitates a smoother, more predictable transition in energy system 
configurations, enhancing the model's reliability and applicability. The methodology's 
effectiveness will be demonstrated through its application to the Swiss energy system, 
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aiming for energy independence and carbon neutrality by 2050. By providing a more 
stabilized approach to modeling, the research offers a path toward more effective planning 
and implementation of energy transition strategies, catering to the needs of policymakers 
and stakeholders in the energy sector. 

2. Methods 
This research employs a mixed-integer linear programming (MILP) approach to stabilize 
the parametrization of technology penetrations in energy system modeling. The proposed 
methodology introduces a novel objective function that includes a stabilization term, 
aiming to reduce the variance in technology configuration between model iterations 𝑛𝑛 and 
𝑛𝑛 − 1.  
 
Adapting the modeling framework EnergyScope6, the optimization problem is enhanced 
by adding a stabilization term, such as the objective function (Eq. 1), which seeks to 
minimize the total cost 𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕, subject to a stabilization factor 𝜖𝜖 that influences the change 
in technology size 𝚫𝚫𝑭𝑭𝒏𝒏 between successive iterations.  
The total cost (Eq. 2) is the sum of the investment cost of the technologies-specific 
investments 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖  multiplied by the technology annualization factor (𝜏𝜏), and maintenance 
costs 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  for each technology 𝑖𝑖, in addition to the operational costs 𝑐𝑐𝑜𝑜𝑜𝑜 for each 
resource 𝑗𝑗 in each time period 𝑡𝑡. 
The end uses 𝑬𝑬𝑬𝑬 for each layer 𝑙𝑙 and time period 𝑡𝑡 is defined by the technology utilization 
𝑭𝑭𝒕𝒕 adjusted by the technology efficiency 𝜂𝜂  including the storage technology flows 𝑭𝑭𝒕𝒕+and 
𝑭𝑭𝒕𝒕− (Eq. 3). 
The technology size 𝑭𝑭 is determined by the reference size 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟 and the number of units 𝑵𝑵 
installed, which is an integer value (Eq. 4).  
Technology sizes are constrained by their minimum and maximum feasible sizes 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 (Eq. 5). 
Technology Ξ, in this case study, PV EHV is integrated via the penetration parameter 𝜉𝜉𝑛𝑛, 
which increases monotonically, thus varying the technology installed between 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(Ξ) 
and 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(Ξ) (Eq. 6). 
The change in technology size 𝚫𝚫𝑭𝑭𝒏𝒏 is the absolute difference between the sizes in 
consecutive runs (Eq. 8), ensuring non-negativity (Eq. 9). 
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min
𝐅𝐅,𝐅𝐅𝐭𝐭,𝜉𝜉𝑛𝑛

𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕 + 𝜖𝜖 ⋅ 𝚫𝚫𝑭𝑭𝒏𝒏  

s.t. 
 

(1) 

 𝑪𝑪𝒕𝒕𝒕𝒕𝒕𝒕 = � �𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖) ⋅ 𝜏𝜏(𝑖𝑖) + 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖)� ⋅ 𝑭𝑭(𝑖𝑖)
𝑖𝑖

+ � � 𝑐𝑐𝑜𝑜𝑜𝑜(𝑗𝑗, 𝑡𝑡) ⋅ 𝑡𝑡𝑜𝑜𝑜𝑜(𝑡𝑡) ⋅ 𝑭𝑭𝒕𝒕(𝑗𝑗, 𝑡𝑡)
𝑡𝑡𝑗𝑗

,

∀ 𝑖𝑖 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇, 𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅, 𝑡𝑡 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 

(2) 

 
𝑬𝑬𝑬𝑬(𝑙𝑙, 𝑡𝑡) = � 𝑭𝑭𝒕𝒕(𝑖𝑖, 𝑡𝑡) ⋅ 𝜂𝜂(𝑖𝑖, 𝑙𝑙) + �𝑭𝑭𝒕𝒕(𝑙𝑙, 𝑡𝑡)

𝑙𝑙𝑖𝑖

+  � �𝑭𝑭𝒕𝒕+(𝑠𝑠, 𝑙𝑙, 𝑡𝑡) − 𝑭𝑭𝒕𝒕−(𝑠𝑠, 𝑙𝑙, 𝑡𝑡)�
𝑠𝑠

,

∀ 𝑙𝑙 ∈ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, 𝑡𝑡 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑖𝑖 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,
𝑗𝑗 ∈ 𝑅𝑅𝑅𝑅𝑅𝑅, 𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

(3) 

 𝑭𝑭(𝑖𝑖) = 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟(𝑖𝑖) ⋅ 𝑵𝑵(𝑖𝑖), ∀ 𝑖𝑖 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑁𝑁(𝑖𝑖) integer (4) 

 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖) ≤ 𝑭𝑭(𝑖𝑖) ≤ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖), ∀ 𝑖𝑖 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 (5) 

 
𝑭𝑭(Ξ) = 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(Ξ) + 𝜉𝜉𝑛𝑛 ⋅ �𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(Ξ) − 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚(Ξ)�,

∀ ξn > 𝜉𝜉𝑛𝑛−1, 𝜉𝜉0 = 0 
(6) 

 
𝚫𝚫𝑭𝑭𝒏𝒏(𝑖𝑖) ≥� �𝚫𝚫𝑭𝑭𝒏𝒏+(𝑖𝑖) + 𝚫𝚫𝑭𝑭𝒏𝒏−(𝑖𝑖)� ≥ 0

𝑖𝑖
,

∀ 𝑛𝑛 > 0, 𝑖𝑖 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

(7) 

 𝚫𝚫𝑭𝑭𝒏𝒏+(𝑖𝑖) − 𝚫𝚫𝑭𝑭𝒏𝒏−(𝑖𝑖) = 𝑭𝑭𝒏𝒏(𝑖𝑖) − 𝑓𝑓𝑛𝑛−1(𝑖𝑖),
∀ 𝚫𝚫𝑭𝑭± ≥ 0,𝑛𝑛 > 0, 𝑓𝑓0 = 0, 𝑖𝑖 ∈ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

(8) 

3. Results 
Upon applying the stabilization methodology to the EnergyScope MILP framework, 
distinct operational configurations were observed under consistent high-altitude 
photovoltaic (PV) penetration levels. The analysis was conducted by parametrizing the 
PV penetration within the Swiss energy system model from 0 to 20 GW. The model was 
also run in reverse to ensure the identification of distinct solutions, from 20 GW down to 
0. Notably, despite the different starting points and directions of parametrization, the total 
cost (primal objective function value) remained constant for equivalent levels of PV 
penetration. 
 
Figure 1 highlights two technology configurations, wind, and PV, exhibiting this 
phenomenon. The solid lines represent the initial scenario of increasing PV penetration, 
while the dashed lines depict the reverse parametrization. It is observed that, at any given 
level of PV penetration, the total cost remains the same between scenarios, indicating the 
presence of equivalent solutions within the optimization problem. 
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Adding the stabilization term allows for the identification of these equivalent solutions, 
offering a strategy to avoid abrupt changes in suggested technology configurations—
commonly referred to as "technology jumps"—that may arise from the inherently chaotic 
nature of the model. By stabilizing the parametrization process, the model can adhere to 
a particular set of solutions, lending consistency and predictability to planning the 
evolution of the energy system. 
 

 

4. Conclusion 
The study's findings indicate that the proposed stabilization methodology effectively 
identifies equivalent solutions within the MILP framework for energy system modeling. 
This outcome is pivotal for energy system planners and policymakers, providing a more 
stable and reliable foundation for making technological investments and system 
configuration decisions. 
 
Stabilizing the parametrization process and adhering to consistent solutions amidst 
equivalent options is particularly beneficial for managing the dynamic and complex 
interactions within energy systems. This approach enhances the robustness of the model 
and simplifies the interpretation of results, thereby contributing to more informed and 
strategic energy planning. 
 
In conclusion, the stabilization methodology introduced in this research offers a 
significant step forward in energy system modeling. Mitigating chaotic behaviors and 
revealing equivalent solution spaces allows for a more deliberate and systematic approach 
to the transition toward sustainable and resilient energy systems. 
 
The exploration of the stabilization methodology in MILP energy system modeling has 
opened avenues for future research, particularly in addressing the challenges associated 
with the stabilization term and identifying equivalent solutions.  

Figure 1: Comparison of relative variation of installed PV and Wind technologies under PV EHV 
parametrization. 
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The first challenge lies in thoroughly assessing the influence of the stabilization term, 
denoted as epsilon 𝜖𝜖, which in our study was set equal to the solver's mipgap. Future 
investigations need to determine the optimal calibration of 𝜖𝜖 to balance between 
stabilization and the primary objective of minimizing costs. This could involve sensitivity 
analyses or the development of heuristic methods to guide the selection of 𝜖𝜖 based on 
model dynamics and the specific characteristics of the energy system under study. 
 
The second challenge is devising a systematic approach to identify and enumerate the 
different equivalent solutions that the model yields at the same cost level. Using integer 
cuts presents a promising method to differentiate between these solutions. Adding integer 
cuts after each solution is found allows the model to explore alternative configurations, 
thereby mapping the landscape of equivalent solutions more comprehensively. This 
method could unveil hidden patterns and dependencies within the model structure, 
enriching our understanding of the solution space and aiding in strategic decision-making. 
Both challenges underscore the need for ongoing refinement of the stabilization 
methodology to enhance its applicability and effectiveness in energy system modeling. 

References 
(1) Ashouri, A.; Fux, S. S.; Benz, M. J.; Guzzella, L. Optimal Design and Operation of Building 

Services Using Mixed-Integer Linear Programming Techniques. Energy 2013, 59, 365–376. 
https://doi.org/10.1016/j.energy.2013.06.053. 

(2) Maravelias, C. T.; Grossmann, I. E. A Hybrid MILP/CP Decomposition Approach for the 
Continuous Time Scheduling of Multipurpose Batch Plants. Comput. Chem. Eng. 2004, 28 
(10), 1921–1949. https://doi.org/10.1016/j.compchemeng.2004.03.016. 

(3) Westerlund, J.; Papageorgiou, L. G.; Westerlund, T. A MILP Model for N-Dimensional 
Allocation. Comput. Chem. Eng. 2007, 31 (12), 1702–1714. 
https://doi.org/10.1016/j.compchemeng.2007.02.006. 

(4) Li, X.; Damartzis, T.; Stadler, Z.; Moret, S.; Meier, B.; Friedl, M.; Maréchal, F. 
Decarbonization in Complex Energy Systems: A Study on the Feasibility of Carbon 
Neutrality for Switzerland in 2050. Front. Energy Res. 2020, 8, 549615. 
https://doi.org/10/gjgz7v. 

(5) Moret, S.; Codina Girones, V.; Bierlaire, M.; Maréchal, F. Characterization of Input 
Uncertainties in Strategic Energy Planning Models. Appl. Energy 2017, 202, 597–617. 
https://doi.org/10.1016/j.apenergy.2017.05.106. 

(6) Schnidrig, J.; Cherkaoui, R.; Calisesi, Y.; Margni, M.; Maréchal, F. On the Role of Energy 
Infrastructure in the Energy Transition. Case Study of an Energy Independent and CO2 
Neutral Energy System for Switzerland. Front. Energy Res. 2023, 11. 
https://doi.org/10.3389/fenrg.2023.1164813. 

 

454



Flavio Manenti, Gintaras V. Reklaitis (Eds.), Book of Abstract of the 34th European 
Symposium on Computer Aided Process Engineering / 15th International Symposium on 
Process Systems Engineering (ESCAPE34/PSE24), June 2-6, 2024, Florence, Italy. 

Assessing the Contributions of Process Integration 
Towards the United Nations Sustainable 
Development Goals 
Safeer Hafeez, Elizabeth J. Abraham, Dhabia M. Al-Mohannadi*  
aDepartment of Chemical Engineering, Texas A&M University at Qatar, Education 
City, PO Box 23874, Doha, Qatar   

dhabia.al-mohannadi@qatar.tamu.edu  

Abstract 
The latest UN Sustainable Development Goals (SDGs) progress report states that we are 
currently on track to achieve only 12% of the targets. One of the many reasons for this 
situation is the disconnect between the policy space where the SDGs are and the technical 
space where some promising solutions to achieve the SDGs exist. One such solution is 
process integration (PI) which is an essential tool for creating a circular economy where 
the utilization of energy and resources, and the environmental impact of industrial 
processes are minimized while boosting economic growth. However, PI research 
currently lacks the inclusion of social aspects, an important third pillar of sustainability, 
in optimization problems which is mostly due to a lack of social indicators. Therefore, 
this work aims to bridge the gap between the policy and technical spheres by evaluating 
the contributions of PI towards the UN SDGs via a bibliometric analysis of PI literature 
and reviewing social and sustainability indicators that can be utilized in future research. 
The analysis revealed that PI contributes to 70% of the SDGs, including all the goals in 
the economic and environmental pillars of sustainability, and 38% of the goals in the 
social pillar.  
Keywords: process integration, sustainable development goals, circular economy, 
industrial symbiosis, sustainability indicators  

1. Introduction 
The 2030 Agenda for Sustainable Development, established in 2015 by all nations, 
outlines a global commitment to achieving peace and prosperity for both people and the 
planet (UN, 2015). Comprising 17 Sustainable Development Goals (SDGs), it addresses 
a spectrum of issues with set targets for accomplishment by 2030 (UN, 2015). Despite 
progress, a recent SDG progress report reveals a sobering reality: only about 12% of goals 
are on track, approximately 50% are off track, and around 30% have stagnated or 
regressed from the 2015 baseline (UN, 2023). The multifaceted nature of SDGs demands 
collaboration among governmental bodies, NGOs, the private sector, communities, and 
research centres. However, a significant hurdle lies in the disconnect between policy and 
technical spheres, hindering the realization of technical solutions' full potential. Process 
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integration (PI), a key solution for fostering a circular economy, exemplifies this 
challenge. 
Circular economy (CE) involves minimizing primary energy and virgin resource 
consumption by maximizing energy and material recycle and recovery at the macro-level 
(Geissdoerfer et al., 2017). Several studies have explored CE's potential contributions to 
SDGs across various industries, including construction, and food (Hassoun et al., 2022; 
Ogunmakinde et al., 2022; Schroeder et al., 2019). Zooming into the micro-level, 
industrial symbiosis (IS) emerges as a critical component of CE, facilitating the exchange 
of resources between industries to minimize overall wastage while maximizing profits 
(Lawal et al., 2021). PI, a well-established IS-enabling tool, optimizes resource use 
through resource integration. Several tools for PI have been developed for various 
applications. The original graphical pinch analysis technique for heat exchanger network 
design (Townsend & Linnhoff, 1983), has been extended to wastewater minimization 
(Wang & Smith, 1994), integration of renewable energies (Alizadeh Zolbin et al., 2022), 
and financial planning for energy conservation projects (Roychaudhuri et al., 2017). 
Mathematical programming models have also advanced to solve increasingly complex 
optimization problems, like multi-objective resource integration for industrial clusters 
(Ahmed et al., 2021), multi-period optimization for CO2 emissions reduction planning 
(Al-Mohannadi et al., 2016), and integrated design of waste management systems using 
P-graph (Fan et al., 2020). PI has even been expanded to the macro-scale with a 
framework combining elements of PI, IS and CE to increase circular flows in processes, 
industries and economies (Walmsley et al., 2019).    
PI is essential in addressing contemporary global challenges such as energy transition, 
climate change and sustainable development, which asserts the critical role of PI in 
achieving the SDGs. As such, there is a need to bridge the gap between the policy and 
technical spheres to enable greater adoption of PI by assessing the capacity of PI tools 
and applications to tackle the SDGs and proposing social and holistic sustainability 
metrics to be used in future research.           

2. Methodology 
A bibliometric analysis was conducted to map the contributions of PI research to the 
SDGs. Bibliometric analysis is a quantitative literature review methodology used to 
explore and map the scientific knowledge of a select domain in existing literature by 
utilizing large volumes of unstructured data. The scope of this study is to analyze the 
literature on PI that explicitly identifies the sustainability contributions of their work. As 
such, the Web of Science database was used to search for publications that contained 
“process integration” and “sustainable” or “sustainability” in their title, abstract, or 
keywords. The query retrieved 484 publications, which was narrowed down to 325 most 
relevant papers after careful review.  
A keyword matching exercise was carried out to assign to each paper the SDGs that it 
contributed towards. This was done by first selecting the relevant keywords for each SDG 
in the context of PI using the exhaustive search queries developed by Aurora Universities 
Network as a guide (Vanderfeesten et al.). The presence of these SDG keywords was then 
checked in the keywords and abstracts of the 325 selected papers. The SDGs 4 
(education), 5 (gender equality), 10 (reduced inequalities), 16 (peace and justice) and 17 
(partnership for the goals) are not included in this analysis because the keyword search 
for them gave no matches. Keyword mapping allowed us to determine: 1) how many 
papers contributed towards each SDG, and 2) how often each pair of SDGs were 
addressed in the same paper.   
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3. Results and Discussion 
The network map generated from the keyword matching exercise is shown in Figure 1. 
The map visualizes the relative contributions of the papers towards the SDGs and the 
relationship between the SDGs in the context of PI research. The keywords pertaining to 
SDG 12 (responsible consumption and production) were the most common in our set of 
papers, followed in order by SDG 8 (decent work and economic growth), SDG 13 
(climate action) and SDG 7 (affordable and clean energy). These SDGs are also the most 
interlinked, with an average of 75 papers contributing towards each pair of these four 
SDGs. However, the interrelation between the SDGs is high in general, with all SDGs 
commonly addressed alongside the others in most papers. For example, despite being 
mentioned in only 21 papers, SDG 11 (sustainable cities and communities) is still 
addressed alongside ten of the total eleven other SDGs in this study. This shows that the 
SDGs are interlinked and complement each other with respect to PI applications. Overall, 
Figure 1 exhibits the broad-spectrum impact of PI on the SDGs identified within our small 
collection of PI publications.      

 
Figure 1: Network map of the SDGs addressed in the set of papers used in this study. Relative 
size of each node represents the number of papers that contained the keywords of the SDGs in 

their abstract or author keywords. Relative thickness of lines represents the number of papers that 
contained keywords of both SDGs connected by the line. 

The contributions of the PI publications can also be visualized by the three pillars of 
sustainable development, namely social, economic and environmental. The pillars are 
interconnected, and so are the SDGs, which is why some of the SDGs can be categorized 
within multiple pillars. However, we simplify and categorize the SDGs within the pillars 
as shown in Figure 2 (Costanza et al., 2016). The greatest contribution is towards the 
economic pillar because the SDGs and subsequent targets within this pillar have many 
direct implications for industry. This is a promising outcome for governments as it proves 
PI can contribute towards economic growth and sustainable development simultaneously. 
Within the environmental pillar, SDGs 13 (climate action) and SDG 6 (clean water and 
sanitation) prove to be significant within PI research, with several applications in 
emissions minimization, development of biorefineries, and water networks optimization, 
among others. However, there is a need to incorporate the impacts on life below water 
(SDG 14) and life above land (SDG 15) in PI research. 
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Figure 2: Categorization of the contributions of PI research towards the SDGs by the three pillars 

of sustainability and the number of papers addressing the respective SDGs. 

The contributions identified in PI literature towards the social pillar are relatively lacking, 
despite the many indirect impacts of PI on these SDGs due to the contributions to 
economic and environmental pillars. This can mainly be attributed to the fact that social 
indicators are not widely used in PI research, and that PI doesn’t directly impact some of 
the social issues that the SDGs address like education (SDG 4), gender inequality (SDG 
5), and peace and justice (SDG 16). Nevertheless, there are opportunities to contribute to 
SDG 1 (end poverty) via efficient and equitable allocation of resources and economic 
development, SDG 2 (end hunger) by optimizing food production, processing and 
distribution systems, SDG 3 (Good health and wellbeing) by minimizing pollution, SDG 
10 (reduced inequalities) and SDG 17 (partnership for the goals) via multi-stakeholder 
partnerships and technology transfer. However, to capture the contributions of PI to these 
SDGs and to optimize processes for sustainability, there is a need to utilize social 
indicators and holistic sustainability metrics. 
The most notable work in this regard was by El-Halwagi with the development of the 
Sustainability Weighted Return on Investment Metric, or SWROIM (El-Halwagi, 2017). 
This metric allowed the integration of conventional profitability calculations with an 
aggregate of multiple sustainability indicators, which can include social indicators. 
SWROIM was extended to incorporate safety indicators like hazard parameters (Guillen-
Cuevas et al., 2018). While safety is a very important social aspect, it fails to represent 
the broader societal impacts that the SDGs aim to improve. To that end, the SDG 
framework itself provides a set of indicators for each goal which can be used to evaluate 
and benchmark the sustainability performance of an optimization problem. Also, the 
approach developed by Rafiaani et al. can be used to identify the most relevant social 
indicators for sustainability assessment (Rafiaani et al., 2020). They used a multi-criteria 
decision-making tool empirically determine relevant indicators to assess social impacts 
of a CCU operation. Furthermore, a comprehensive review by Messmann et al. covers a 
wide range of social indicators, including social objective functions and constraints in 
supply chain optimization which can also be utilized in PI (Messmann et al., 2020). 
Therefore, the need to assess the social impacts in future PI research can be met by 
utilizing the available social indicators and aggregate sustainability metrics. 
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4. Conclusions 
PI tools like pinch analysis, multi-objective optimization and p-graph have found a broad 
range of applications in industry and infrastructure, providing a basis for the holistic 
design and operations of process systems. From our analysis, it is evident that utilizing PI 
tools can contribute towards achieving 70% of the UN SDGs. However, several barriers 
exist that hinder greater implementation of PI in industry stemming from the following 
three main factors: 

1) Resistance to change due to risk averse mindset. 
2) Confidentiality and reliability concerns. 
3) Increased complexity.  

These barriers can mostly be overcome by greater cooperation between industries, 
government and researchers. Firstly, there needs to be more follow up studies and 
publications on successful PI implementation projects to increase awareness about the 
environmental, economic and social benefits of PI. Also, future research should include 
broader sustainability indicators including social and other SDG indicators to provide a 
holistic picture of the sustainability contributions of the work. To overcome 
confidentiality and reliability issues, industrial partnerships to establish central operations 
for integrated plants could be a solution. Additionally, an independent government 
platform could be developed for planners and policymakers to have access to the data for 
industrial planning and identification of PI opportunities. Targeted policies can also 
incentivize industries to become more resource efficient. Enforcing a carbon or GHG 
emissions tax and stricter wastewater regulations will incentivize industries to reduce 
their emissions via carbon and water integration. Economic incentives like tax breaks or 
subsidies for sustainable integrated industries or industrial parks could be provided based 
on sustainability ratings like LEED or GSAS developed for the construction industry by 
the US Green Building Council and Gulf Organization for Research & development, 
respectively. Indicators based on water and raw material recycling, energy recovery, 
abated emissions, jobs creation, employee and community satisfaction, and incident rate 
can be used to assess the environmental and social impacts of industries for the rating.    
In order to realize the potential of PI in establishing a circular economy and contributing 
towards the UN SDGs, there needs to be greater cooperation between the enablers in the 
policy and technical spheres. With this paper, we bridge that gap by highlighting the 
contributions of PI towards the SDGs for policymakers and identifying the need to 
broaden the scope of PI for researchers by assessing the sustainability and SDG 
implications of future work.   
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Abstract 

The COVID-19 pandemic has demonstrated that a systematic understanding of the 

dynamics of infectious diseases is crucial to reduce their impact on a population. To this 

end, the use of epidemiological models has proved effective for both parameter estimation 

and epidemic control problems. In this work, we formulate a compartmental epidemic 

model on a US national scale with county-level granularity and fit relevant spatio-

temporal parameters to data collected during the early stages of the COVID-19 pandemic. 

Conventional, serial solvers struggle to solve large-scale, nonlinear optimization 

problems such as this within reasonable time limits. Instead, we exploit the problem’s 

structure to apply a Schur complement decomposition. This allows for the 

computationally most expensive operation in an interior point method, the computation 

of the step direction, to be parallelized. We demonstrate promising scaling properties of 

this method when applied to large-scale epidemic inference problems on a moderately-

sized parallel computer. 

Keywords: large-scale nonlinear optimization, parallel computing, decomposition, 

epidemic modeling 

1. Introduction 

The outbreak of the COVID-19 pandemic had an unprecedented impact across the world. 

Significant excess deaths, stress on medical infrastructures and sustained economic 

fallout were amongst the most acute direct consequences. Toward the goal of guiding 

public health responses, epidemiological models are an important tool to understand the 

dynamics of infectious diseases and plan mitigation strategies accordingly. In this work, 

we present efficient computational approaches to solve large-scale parameter estimation 

problems arising from epidemic models. 
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2. Methodology 

 

Figure 1: SEIR model for a single population. Rectangles depict the compartments, solid arrows, 

the movements of individuals between them. The dashed arrow visualizes contact between 

compartments, leading to transmission of the disease. 

Compartmental models have proved effective in describing the spread of various 

infectious diseases (Rock et al., 2014). The population is divided into compartments, 

which represent different stages of a disease, i.e., susceptible (S), exposed (E), infectious 

(I) or recovered (R). The dynamics of individuals between compartments over time are 

determined by the contact, incubation, and recovery rates (β, σ and γ, respectively), which 

may vary across time and space. For a visualization of this dynamic model for a single 

population see Fig. 1. 

 

In this work, we applied a large-scale, model-based approach to estimate epidemic model 

parameters based on policy-related descriptors. To reflect the spatial heterogeneity in the 

US, separate epidemiological compartments are defined on a county level. Interaction 

between counties is modeled using information on mobility patterns, in this work we use 

census data on commuting flows (US Census Bureau, 2020). The contact rate parameters 

for each county are defined as piecewise-constant functions, depending on the 

implementation of public health responses, such as mask mandates, over time in each 

county. Additional terms accounting for demographic or seasonal factors are possible. 

This defines a large-scale, nonlinear system of ordinary differential equations with ~104 

differential state variables (epidemiological compartments for ~3000 counties in the US), 

discretized over a time horizon of several months. The parameters of this model are fitted 

to case data collected during the beginning of the COVID-19 pandemic. 

 

Optimization problems such as this are usually solved using interior point algorithms. 

Serial implementations struggle to solve problems of this scale within reasonable time 

limits. Instead, we exploit the problem’s structure to apply a Schur complement 

decomposition (Kang et al., 2014). This allows for the computationally most expensive 

operation in an interior point method, the computation of the step direction, to be 

parallelized. The epidemic model at hand is amenable to this decomposition, as there are 

only a few shared variables between counties, i.e., the factors associated with the effect 

of different non-pharmaceutical interventions (NPIs) on the local contact rates. Below, 

the promising scaling properties of this method are demonstrated. 
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3.  Results 

    (a)               (b) 

Figure 2: (a) Map of counties considered for national scale model. Shading is based on the spatial 

decomposition of counties for parallelization. (b) Strong scaling of parallel Schur complement 

method. Speedup computed relative to two core execution. Solution time using Ipopt solver is 

shown for serial case. 

The parameter estimation problem was solved simultaneously for 1900 counties in the 

US (see Fig. 2a) over the first 170 days of the pandemic. The full 3142 counties of the 

US were not considered because those with fewer total cases than 0.1% of the county 

population during this period were discarded. All parameters other than β were fixed to 

common values from literature (Yang et al., 2021). Three NPIs were included in the 

model: mask mandates, school closings and stay-at-home orders, with state-level 

implementation dates taken from the sources listed in Yang et al. (2021). All tests were 

performed using an x86 machine with 32 cores, each with a clock rate of 3.3 GHz. The 

parallel Schur complement method was applied to this problem using the parapint 

package (Rodriguez et al., 2023). The scaling of the solution time with an increasing 

number of parallel processors was observed, with results shown in Fig. 2b. In our model, 

each of the NPIs considered in this work reduced the contact rate by 11-15% when 

implemented in the respective counties. These values are reasonably close to statistical 

estimates listed in other works (Yang et al., 2021), but come with yet unquantified 

confidence intervals stemming from both model and measurement uncertainty.  

4. Conclusion 

We use a dynamic compartmental model for COVID-19 with county-level granularity, 

which considers inter-county infections through commuters and quantifies the effect of 

non-pharmaceutical interventions (NPIs) on the contact rate between individuals. The 

parallel Schur complement method was applied to solve this large-scale nonlinear 

programming problem on a US national scale, with significant speedup when using 32 

cores, compared to the serial state-of-the-art solver Ipopt (Wächter and Biegler, 2006). 

The qualitative results suggest that the implementation of NPIs had an adverse effect on 

the spread of COVID-19. Uncertainty quantification for these results remains as future 

work. 
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Abstract 

To tackle the urgent global challenge of climate change and the unequal distribution of 

renewable resources, a transition plan toward sustainable, low-carbon energy systems is 

imperative. This study introduces an international renewable energy supply chain 

leveraging dimethyl ether (DME) as an energy carrier. In pursuit of the 2050 net-zero 

carbon emissions target, this supply chain establishes a connection between two nations: 

one abundant in renewable energy resources as an energy-exporting country and the other 

lacking such resources as an energy-importing country. In the exporting country, 

renewable energy is harnessed for electrolysis to produce hydrogen (H2). Due to the high 

costs associated with H2 in terms of transportation and storage, using DME as an energy 

carrier for H2 enhance the feasibility of implementing this supply chain. Consequently, 

DME is synthesized from H2 and captured CO2 and transported to the importing country 

via shipping. Upon reaching the importing country, two viable methods for DME 

utilization emerge. The first option involves converting DME back into H2 via steam 

reforming process, which can then be employed in fuel cells for electricity generation. 

The second option entails introducing DME as fuel into oxy-combustion CO2 power 

plants, generating electricity. Simultaneously, the resultant CO2 is captured and 

transported to the exporting country for DME synthesis. This research assesses the 

feasibility of both application approaches, considering engineering, economic and 

environmental aspects. Furthermore, simulations and analyses of the chemical processes 

are carried out, along with the economic evaluations of these processes, electrolysis, fuel 

cells and transportation. Lastly, the costs of DME, H2 and green electricity in the 

importing country are evaluated to analyse the feasibility of this supply chain. The current 

result show that the cost of imported electricity is USD 135.42/MWhe with an electricity 

conversion rate between both regions is 30.8% (=4.358/14.145), and the carbon emission 

of this supply chain using solar and wind power are 0.190 and 0.069 t/MWhe respectively. 

 

Keywords: Dimethyl ether, Energy carrier, Hydrogen fuel cells, Oxy-combustion, 

International renewable energy supply chain 
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1. Introduction 

To address the urgent global challenge posed by climate change and the uneven 

distribution of renewable resources, it is crucial to implement a transition plan towards 

sustainable, low-carbon energy systems. Countries such as Australia and Saudi Arabia 

(Wang et al., 2023), which possess abundant natural resources, have the capacity to 

generate significant amounts of renewable energy. This surplus energy can be efficiently 

transformed into green hydrogen (H2) through electrolysis and stored for future use. 

However, the transportation of H2 is costly (Brändle et al., 2021). Therefore, to provide a 

cost-effective alternative, the international renewable energy supply chain relies on 

chemical energy carriers, which include H2, methanol (MeOH) (Dalena et al., 2018), 

ammonia (NH3) (Hasan et al., 2021), dimethyl ether (DME) (Catizzone et al., 2021) and 

methylcyclohexane (MCH) (Matsuoka et al., 2017). These carriers can be transported to 

energy-importing nations like Japan and Germany (Wijayanta et al., 2019), as depicted in 

Figure 1. Subsequently, these carriers can be used directly or converted into H2, 

facilitating the transfer of renewable energy between countries. 

 

 
Figure 1 International renewable energy supply chains. 

 

When considering MeOH, DME and MCH as energy carriers, it's crucial to address the 

by-products of MeOH or DME reforming (CO2) and MCH dehydrogenation (toluene). 

These by-products should be efficiently transported back to the exporting country for 

MeOH or DME synthesis or toluene hydrogenation, creating a closed-loop circulation 

system that minimizes waste. On the other hand, transporting the by-product of NH3 

decomposition, nitrogen, is not cost-effective. Instead, utilizing an air separation unit 

(ASU) to produce nitrogen proves to be a more economically viable solution, eliminating 

the need for nitrogen transportation.  
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In comparison to gas-phase H2 (Moradi and Groth, 2019) and NH3 (Klerke et al., 2008), 

MeOH stands out due to its ability to be stored in a liquid state at room temperature and 

atmospheric pressure. This characteristic results in lower storage costs and improved 

safety. While DME requires liquefaction at -33oC for transportation, it boasts a 

significantly higher gravimetric and volumetric energy density when compared to MeOH, 

MCH, and NH3 (Table 1). Despite the need for careful handling due to its narrow 

explosive limit in air, the safety perspective suggests that DME is a suitable candidate as 

an energy carrier. While extensive research focuses on MeOH, MCH, and NH3 as energy 

carriers, there is a noticeable scarcity of comprehensive analyses on DME, particularly in 

the context of an international renewable energy supply chain. Therefore, an in-depth 

exploration of the DME-based international renewable energy supply chain is a 

worthwhile avenue for further study. 

 

Table 1. Properties of chemical energy carriers. 

Properties H2 MeOH DME MCH NH3 

Boiling point (oC) -253 64.7 -25 101 -33 

Gravimetric energy density  

(MJ/kg) 

120 15 28 7.4 21.2 

Volumetric energy density  

(MJ/L) 

8.5 11.9 19 5.7 14.4 

Explosive limit in air (vol%) 4-75 6.7-36 3.2-18.6 1.2-6.7 15-28 

 

To aligns with the ambitious 2050 net-zero carbon emissions goal, this study presents a 

feasibility analysis of the international renewable electricity supply chain that utilizes 

DME as energy carrier which fosters a vital connection between two countries. One rich 

in renewable energy resources, serving as an energy-exporting country, and the other 

deficient in these resources, acting as an energy-importing country. In the exporting 

country, renewable energy is employed for electrolysis, generating H2 and DME is 

produced through the synthesis process of H2 and captured carbon dioxide (CO2) (Wu 

and Chien, 2022), then transported to the importing country via shipping. 

 

Upon arrival in the importing country, two practical methods for utilizing DME come to 

the forefront. As illustrated in Figure 2(a), the first approach involves the conversion of 

DME back into H2 through a steam reforming process. This H2 can then be utilized in fuel 

cells to generate electricity. The second option, depicted in Figure 2(b), involves using 

DME as a fuel source in oxy-combustion CO2 power plants, known as the Allam cycle, 

for electricity generation. Simultaneously, the resulting CO2 is captured and transported 

back to the exporting country for DME synthesis. This research is therefore comparing 

the feasibility of the supply chain using both power generation approaches, considering 

engineering, economic and environmental aspects. Furthermore, simulations and analyses 

of the chemical processes are carried out, along with the economic evaluations of these 

processes, electrolysis, fuel cells and transportation. Lastly, the costs of DME, H2 and 

green electricity in the importing country are evaluated to analyze the feasibility of this 

supply chain. 
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(a) 

 
(b) 

Figure 2 Conceptual design of DME-based international renewable electricity supply 

chain generating electricity with (a) fuel cells (b) oxy-combustion power plant. 

 

Based on the simulation using Aspen Plus, the capital and operating costs of various 

chemical processes, including DME synthesis, H2 production through DME reforming, 

CO2 liquefaction and oxy-combustion CO2 power plant can be calculated. Additionally, 

economic assessments are also conducted for water electrolysis (Hodges et al., 2022), fuel 

cells (Jamil et al., 2022), and transportation (Placek, 2023). To account for advancing 

technology and ensure sustainability, the efficiency of electrolysis in sustainable future is 

assumed at 98%, based on the higher heating value (HHV) of H2 (39.39 MWhe/t). The 

cost of water electrolysis is estimated at 200 USD/kW. Solid oxide fuel cells (SOFC) are 

assumed to have an efficiency of 30% for thermal heat (LHV) and 55% for electricity 

(LHV), with a cost of 1,000 USD/kW.  

 

The cost of green H2 production is significantly influenced by renewable energy 

electricity prices. The levelized cost of electricity (LCOE) for utility-scale solar 

photovoltaics (PV) is assumed to be USD 45/MWhe, with a projected decrease to USD 

15/MWhe by 2050. Therefore, cost of renewable energy is assumed to be USD 30/MWhe 

in this study. Additionally, the carbon emissions associated with this process are 

estimated at 11 kg/MWhe from a life cycle perspective (Bruckner et al., 2014). On the 

other hand, the transportation of DME and CO2 between exporting and importing 

countries predominantly relies on shipping. Assume that a ship has a capacity of 312,500 

cubic meters and travels at a speed of 12 knots. For the shipping route from Australia to 

Japan, which spans approximately 10,000 km, the ship is assumed to operate for 350 days 

each year, with a turnover time of one day. The capital cost associated with the DME/CO2 
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shipping vessel is estimated at 150.2 million USD (Al-Breiki and Bicer, 2020). In general, 

very low sulfur fuel oil (VLSFO) is chosen as the fuel source, and its approximate cost is 

550 USD/t. It's worth noting that for every metric tonne of this fuel consumed, it generates 

3.15t of CO2 emissions. The sensitivity analysis of each important variables will be 

carried for optimization. 

 

 
Figure 3 Techno-economic and carbon emission analyses result of DME-based 

international renewable electricity supply chain generating electricity with oxy-

combustion power plant. 

 

The process simulations of the chemical processes using Aspen Plus and techno-

economic analysis of both DME-based international renewable electricity supply chains 

are carried out in this study. The techno-economic and carbon emission analyses result of 

DME-based international renewable electricity supply chain generating electricity with 

oxy-combustion power plant are depicted in Figure 3. The cost of imported electricity is 

USD 135.42/MWhe with an electricity conversion rate between both regions is 30.8% 

(=4.358/14.145), and the carbon emission of this supply chain using solar and wind power 

are 0.190 and 0.069 t/MWhe respectively. To compare the performance, the electricity 

conversion rate between the imported electricity and renewable electricity and the cost of 

imported electricity of the other pathway will be discussed in future. 

2. Conclusions 

In conclusion, the utilization of dimethyl ether (DME) as an energy carrier in an 

international renewable electricity supply chain is seen as a promising solution to address 

the global issues of climate change and the uneven distribution of renewable resources. 

The supply chain design offers two power generation options: hydrogen (H2) fuel cells 

and oxy-combustion power plants. To determine a more economical, environmentally 

friendly and efficient choice, the chemical processes simulations and techno-economic 

analysis of both supply chains are carried out. 
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Abstract 
Global warming and the energy crisis have become some of the most significant 

challenges facing the world today. With the finite nature of fossil fuels and ever-
increasing carbon emissions, there is an urgent need to transition to renewable energy 
sources to mitigate the irreversible impact on our planet. This study aims to design a 
process flowsheet for ethanol synthesis by carbon dioxide hydrogenation using Aspen 
Plus. Ethanol serves a dual purpose as a renewable energy carrier and a fuel, aligning with 
Carbon Capture and Utilization (CCU) and contributing to carbon reduction efforts. 

Keywords: Global warming, CO2 hydrogenation, Ethanol synthesis, Process design, 
Aspen Plus. 

1. Introduction 
Nowadays we are facing the challenges of global warming and energy shortages. 

Conventional energy production methods, such as fossil fuels, are major contributors to 
increased CO2 emissions, a primary greenhouse gas. In response to these issues, this 
study focuses on hydronation of CO2 to synthesize ethanol, which satisfies the concept 
of Carbon Capture and Utilization (CCU). Ethanol serves two primary purposes. Firstly, 
ethanol’s liquid state under normal conditions and its limited flammability in the air make 
it a potential candidate for energy carrier within the renewable energy supply chain. 
However, a comprehensive evaluation is needed when compared to other energy carriers 
like methanol and ammonia. Secondly, ethanol can also function as a fuel, combusting 
with oxygen. Moreover, CO2 hydrogenation to synthesize ethanol doesn't compete with 
food supplies, a key distinction from conventional starch fermentation. Thus, the 
investigation into ethanol synthesis through CO2 hydrogenation is a promising studying. 

The overall framework is shown in Figure 1,including both export and import sides, 
and illustrates the entire ethanol supply chain. The process uses two reactants - hydrogen 
and carbon dioxide. Hydrogen comes from renewable energy sources through water 
electrolysis and carbon dioxide comes from carbon capture. Once ethanol has been 
synthesized, the intermittent nature of most renewables means that the storage and 
transport part is essential. When ethanol as an energy carrier arrives on the import side, it 
can be used in two ways as described above. This study will focus on the synthesis part 
of ethanol. 
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Figure 1. The overall framework of the synthesis and use of ethanol 

2. Process Design for Hydrogenating Carbon Dioxide to Produce Ethanol 
2.1. Thermodynamic Models & Chemical Reactions 

The process of hydrogenating carbon dioxide is simulated by Aspen Plus using two 
thermodynamic models: the Peng-Robinson equation of state in the reaction section and 
the UNIQUAC model with Henry’s constant in the separation section.  

A total of three reactions are considered in this study: the reverse Water Gas Shift 
reaction (rWGS), the ethanol (EtOH) synthesis, and the Methane Steam Reforming 
(MSR). All have been verified, and further details are given below. The rWGS reaction 
is provided in the work of Zhang et al.[ 4 ] and Vendas and Maria[ 5 ].  

 
     𝐶𝐶𝐶𝐶2 + 𝐻𝐻2  ⇌ 𝐶𝐶𝐶𝐶 +  𝐻𝐻2𝑂𝑂 (1) 

The EtOH synthesis reaction includes five reactions provided by Portillo et al.[ 6 ]. 
All of them are assumed to be irreversible except the rWGS reaction (6).  

 
     𝐶𝐶𝐶𝐶 +  2𝐻𝐻2 → 𝐶𝐶𝐻𝐻3𝑂𝑂𝑂𝑂 (2) 

     𝐶𝐶𝐶𝐶 +  2𝐻𝐻2 + 𝐶𝐶𝐻𝐻3𝑂𝑂𝑂𝑂 → 𝐶𝐶2𝐻𝐻5𝑂𝑂𝑂𝑂 + 𝐻𝐻2𝑂𝑂 (3) 

     𝐶𝐶𝐶𝐶 +  2𝐻𝐻2 + 𝐶𝐶2𝐻𝐻5𝑂𝑂𝑂𝑂 → 𝐶𝐶3𝐻𝐻7𝑂𝑂𝑂𝑂 + 𝐻𝐻2𝑂𝑂 (4) 

     𝐻𝐻2 + 𝐶𝐶𝐻𝐻3𝑂𝑂𝑂𝑂 → 𝐶𝐶𝐶𝐶4 + 𝐻𝐻2𝑂𝑂 (5) 

     𝐶𝐶𝐶𝐶 +  𝐻𝐻2𝑂𝑂 ⇌ 𝐶𝐶𝐶𝐶2 + 𝐻𝐻2 (6) 

The MSR reaction includes two reactions, which utilize the power-law model (Eq. 7 
- Eq. 8) provided by Chen et al.[ 7 ].  

 
     𝐶𝐶𝐶𝐶4 +    𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝐶𝐶 + 3𝐻𝐻2 (7) 

     𝐶𝐶𝐶𝐶4 + 2𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝐶𝐶2 + 4𝐻𝐻2 (8) 
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2.2. Process Statements 
This study includes two distinct designs, each detailed in the process block flow 

diagrams shown in Figure 2 and Figure 3. 
In Design 1, shown in Figure 2, CO2 is hydronated to syngas in the rWGS reactor 

using a Pt-based catalyst. Subsequently, syngas is converted to ethanol in the EtOH 
synthesis reactor using an alkali-Co doped MoS2 catalyst. The low conversion of CO and 
selectivity of ethanol results in the need to recycle the stream exiting the EtOH synthesis 
reactor for sending back to the EtOH synthesis reactor. However, the development of 
Design 1 reveals the presence of significant methane, necessitating a purge process. The 
purged gas includes methane and reactants (CO2, CO, H2), leading to the wastage of 
valuable reactants and contributing to process inefficiency. Consequently, this finding has 
promoted the development of Design 2.  

In Design 2, shown in Figure 3, in addition to the reactions mentioned in Design 1, 
we introduce the MSR reaction to solve excessive methane, turning methane into CO2, 
CO, and H2. This reaction occurs in the MSR reactor, positioned after the EtOH synthesis 
reactor, and the exiting stream of the MSR reactor is recycled to the rWGS reactor. The 
methane is completely consumed after the MSR reactor, eliminating the need for a 
purging process. Moreover, the consumption of reactants is decreased, and the amount of 
ethanol is increased. Thus, we can use fewer reactants to produce more ethanol. Figure 4 
depicts the details of Design 2. 
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Figure 4. Process flow sheet of Design 2 
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3. Conclusion 
This study simulates the process of CO2 hydrogenation to ethanol, offering a 

promising solution to the challenges posed by global warming, carbon emissions, and the 
need for renewable energy sources. The reactant, CO, undergoes an initial conversion to 
syngas through the reverse water-gas shift (rWGS) reaction, as CO hydrogenation to 
ethanol is thermodynamically more favorable. Both the thermodynamic model and 
kinetic parameters used in the process have been thoroughly verified. 

Through exploration of various reaction pathways and designs, the study evolves from 
an initial process (Design 1) to an enhanced version (Design 2). Design 2, incorporating 
the Methane Steam Reforming (MSR) reaction, effectively mitigates excessive methane 
production, reduces the need for a purge stream, and minimizes reactant wastage. This 
modification results in decreased reactant consumption, increased ethanol production, 
and improved purity. The simulation results, presented in Table 1, indicate a 21% 
reduction in H2 consumption, a 52% reduction in CO2 consumption, and a 43% increase 
in ethanol production compared to Design 1, and the final purity of ethanol is 99.5% 
(mol%) These findings underscore the potential of CO2 conversion into ethanol as a 
sustainable and efficient pathway for renewable energy and carbon reduction. 

For future work, there is a need for in-depth research on optimizing the CO2-to-
ethanol process. This involves refining and fine-tuning the various stages of the process 
to enhance efficiency and overall performance. Additionally, efforts should be directed 
towards seamless integration of CO2-to-ethanol processes into the renewable energy 
supply chain. This integration calls for the development of advanced methods for the 
storage, transportation, and reforming of ethanol. Efficient and sustainable solutions in 
these areas are crucial for the successful incorporation of ethanol as a renewable fuel 
within the broader energy infrastructure. Furthermore, exploring the multifaceted role of 
ethanol as an energy carrier and investigating its diverse applications within the supply 
chain will be paramount. By placing a strong emphasis on process optimization and 
integration, future research endeavours can significantly contribute to the creation of a 
more sustainable, resilient, and environmentally friendly energy ecosystem. 

 
Table 1. simulation results 

Process Design 1 Design 2 

mole flow 
rate 

(kmol/h) 

H2 170 134.5 

CO2 105 50 

ETOH 12.25 17.48 

purity ETOH 0.98 0.995 
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Abstract 

The COVID-19 pandemic has demonstrated that a systematic understanding of the 

dynamics of infectious diseases is crucial to reduce their impact on a population. To this 

end, the use of epidemiological models has proved effective for both parameter estimation 

and epidemic control problems. In this work, we formulate a compartmental epidemic 

model on a US national scale with county-level granularity and fit relevant spatio-

temporal parameters to data collected during the early stages of the COVID-19 pandemic. 

Conventional, serial solvers struggle to solve large-scale, nonlinear optimization 

problems such as this within reasonable time limits. Instead, we exploit the problem’s 

structure to apply a Schur complement decomposition. This allows for the 

computationally most expensive operation in an interior point method, the computation 

of the step direction, to be parallelized. We demonstrate promising scaling properties of 

this method when applied to large-scale epidemic inference problems on a moderately-

sized parallel computer. 

Keywords: large-scale nonlinear optimization, parallel computing, decomposition, 

epidemic modeling 

1. Introduction 

The outbreak of the COVID-19 pandemic had an unprecedented impact across the world. 

Significant excess deaths, stress on medical infrastructures and sustained economic 

fallout were amongst the most acute direct consequences. Toward the goal of guiding 

public health responses, epidemiological models are an important tool to understand the 

dynamics of infectious diseases and plan mitigation strategies accordingly. In this work, 

we present efficient computational approaches to solve large-scale parameter estimation 

problems arising from epidemic models. 
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2. Methodology 

 

Figure 1: SEIR model for a single population. Rectangles depict the compartments, solid arrows, 

the movements of individuals between them. The dashed arrow visualizes contact between 

compartments, leading to transmission of the disease. 

Compartmental models have proved effective in describing the spread of various 

infectious diseases (Rock et al., 2014). The population is divided into compartments, 

which represent different stages of a disease, i.e., susceptible (S), exposed (E), infectious 

(I) or recovered (R). The dynamics of individuals between compartments over time are 

determined by the contact, incubation, and recovery rates (β, σ and γ, respectively), which 

may vary across time and space. For a visualization of this dynamic model for a single 

population see Fig. 1. 

 

In this work, we applied a large-scale, model-based approach to estimate epidemic model 

parameters based on policy-related descriptors. To reflect the spatial heterogeneity in the 

US, separate epidemiological compartments are defined on a county level. Interaction 

between counties is modeled using information on mobility patterns, in this work we use 

census data on commuting flows (US Census Bureau, 2020). The contact rate parameters 

for each county are defined as piecewise-constant functions, depending on the 

implementation of public health responses, such as mask mandates, over time in each 

county. Additional terms accounting for demographic or seasonal factors are possible. 

This defines a large-scale, nonlinear system of ordinary differential equations with ~104 

differential state variables (epidemiological compartments for ~3000 counties in the US), 

discretized over a time horizon of several months. The parameters of this model are fitted 

to case data collected during the beginning of the COVID-19 pandemic. 

 

Optimization problems such as this are usually solved using interior point algorithms. 

Serial implementations struggle to solve problems of this scale within reasonable time 

limits. Instead, we exploit the problem’s structure to apply a Schur complement 

decomposition (Kang et al., 2014). This allows for the computationally most expensive 

operation in an interior point method, the computation of the step direction, to be 

parallelized. The epidemic model at hand is amenable to this decomposition, as there are 

only a few shared variables between counties, i.e., the factors associated with the effect 

of different non-pharmaceutical interventions (NPIs) on the local contact rates. Below, 

the promising scaling properties of this method are demonstrated. 
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3.  Results 

    (a)               (b) 

Figure 2: (a) Map of counties considered for national scale model. Shading is based on the spatial 

decomposition of counties for parallelization. (b) Strong scaling of parallel Schur complement 

method. Speedup computed relative to two core execution. Solution time using Ipopt solver is 

shown for serial case. 

The parameter estimation problem was solved simultaneously for 1900 counties in the 

US (see Fig. 2a) over the first 170 days of the pandemic. The full 3142 counties of the 

US were not considered because those with fewer total cases than 0.1% of the county 

population during this period were discarded. All parameters other than β were fixed to 

common values from literature (Yang et al., 2021). Three NPIs were included in the 

model: mask mandates, school closings and stay-at-home orders, with state-level 

implementation dates taken from the sources listed in Yang et al. (2021). All tests were 

performed using an x86 machine with 32 cores, each with a clock rate of 3.3 GHz. The 

parallel Schur complement method was applied to this problem using the parapint 

package (Rodriguez et al., 2023). The scaling of the solution time with an increasing 

number of parallel processors was observed, with results shown in Fig. 2b. In our model, 

each of the NPIs considered in this work reduced the contact rate by 11-15% when 

implemented in the respective counties. These values are reasonably close to statistical 

estimates listed in other works (Yang et al., 2021), but come with yet unquantified 

confidence intervals stemming from both model and measurement uncertainty.  

4. Conclusion 

We use a dynamic compartmental model for COVID-19 with county-level granularity, 

which considers inter-county infections through commuters and quantifies the effect of 

non-pharmaceutical interventions (NPIs) on the contact rate between individuals. The 

parallel Schur complement method was applied to solve this large-scale nonlinear 

programming problem on a US national scale, with significant speedup when using 32 

cores, compared to the serial state-of-the-art solver Ipopt (Wächter and Biegler, 2006). 

The qualitative results suggest that the implementation of NPIs had an adverse effect on 

the spread of COVID-19. Uncertainty quantification for these results remains as future 

work. 
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Abstract 

To tackle the urgent global challenge of climate change and the unequal distribution of 

renewable resources, a transition plan toward sustainable, low-carbon energy systems is 

imperative. This study introduces an international renewable energy supply chain 

leveraging dimethyl ether (DME) as an energy carrier. In pursuit of the 2050 net-zero 

carbon emissions target, this supply chain establishes a connection between two nations: 

one abundant in renewable energy resources as an energy-exporting country and the other 

lacking such resources as an energy-importing country. In the exporting country, 

renewable energy is harnessed for electrolysis to produce hydrogen (H2). Due to the high 

costs associated with H2 in terms of transportation and storage, using DME as an energy 

carrier for H2 enhance the feasibility of implementing this supply chain. Consequently, 

DME is synthesized from H2 and captured CO2 and transported to the importing country 

via shipping. Upon reaching the importing country, two viable methods for DME 

utilization emerge. The first option involves converting DME back into H2 via steam 

reforming process, which can then be employed in fuel cells for electricity generation. 

The second option entails introducing DME as fuel into oxy-combustion CO2 power 

plants, generating electricity. Simultaneously, the resultant CO2 is captured and 

transported to the exporting country for DME synthesis. This research assesses the 

feasibility of both application approaches, considering engineering, economic and 

environmental aspects. Furthermore, simulations and analyses of the chemical processes 

are carried out, along with the economic evaluations of these processes, electrolysis, fuel 

cells and transportation. Lastly, the costs of DME, H2 and green electricity in the 

importing country are evaluated to analyse the feasibility of this supply chain. The current 

result show that the cost of imported electricity is USD 135.42/MWhe with an electricity 

conversion rate between both regions is 30.8% (=4.358/14.145), and the carbon emission 

of this supply chain using solar and wind power are 0.190 and 0.069 t/MWhe respectively. 

 

Keywords: Dimethyl ether, Energy carrier, Hydrogen fuel cells, Oxy-combustion, 

International renewable energy supply chain 
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1. Introduction 

To address the urgent global challenge posed by climate change and the uneven 

distribution of renewable resources, it is crucial to implement a transition plan towards 

sustainable, low-carbon energy systems. Countries such as Australia and Saudi Arabia 

(Wang et al., 2023), which possess abundant natural resources, have the capacity to 

generate significant amounts of renewable energy. This surplus energy can be efficiently 

transformed into green hydrogen (H2) through electrolysis and stored for future use. 

However, the transportation of H2 is costly (Brändle et al., 2021). Therefore, to provide a 

cost-effective alternative, the international renewable energy supply chain relies on 

chemical energy carriers, which include H2, methanol (MeOH) (Dalena et al., 2018), 

ammonia (NH3) (Hasan et al., 2021), dimethyl ether (DME) (Catizzone et al., 2021) and 

methylcyclohexane (MCH) (Matsuoka et al., 2017). These carriers can be transported to 

energy-importing nations like Japan and Germany (Wijayanta et al., 2019), as depicted in 

Figure 1. Subsequently, these carriers can be used directly or converted into H2, 

facilitating the transfer of renewable energy between countries. 

 

 
Figure 1 International renewable energy supply chains. 

 

When considering MeOH, DME and MCH as energy carriers, it's crucial to address the 

by-products of MeOH or DME reforming (CO2) and MCH dehydrogenation (toluene). 

These by-products should be efficiently transported back to the exporting country for 

MeOH or DME synthesis or toluene hydrogenation, creating a closed-loop circulation 

system that minimizes waste. On the other hand, transporting the by-product of NH3 

decomposition, nitrogen, is not cost-effective. Instead, utilizing an air separation unit 

(ASU) to produce nitrogen proves to be a more economically viable solution, eliminating 

the need for nitrogen transportation.  
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In comparison to gas-phase H2 (Moradi and Groth, 2019) and NH3 (Klerke et al., 2008), 

MeOH stands out due to its ability to be stored in a liquid state at room temperature and 

atmospheric pressure. This characteristic results in lower storage costs and improved 

safety. While DME requires liquefaction at -33oC for transportation, it boasts a 

significantly higher gravimetric and volumetric energy density when compared to MeOH, 

MCH, and NH3 (Table 1). Despite the need for careful handling due to its narrow 

explosive limit in air, the safety perspective suggests that DME is a suitable candidate as 

an energy carrier. While extensive research focuses on MeOH, MCH, and NH3 as energy 

carriers, there is a noticeable scarcity of comprehensive analyses on DME, particularly in 

the context of an international renewable energy supply chain. Therefore, an in-depth 

exploration of the DME-based international renewable energy supply chain is a 

worthwhile avenue for further study. 

 

Table 1. Properties of chemical energy carriers. 

Properties H2 MeOH DME MCH NH3 

Boiling point (oC) -253 64.7 -25 101 -33 

Gravimetric energy density  

(MJ/kg) 

120 15 28 7.4 21.2 

Volumetric energy density  

(MJ/L) 

8.5 11.9 19 5.7 14.4 

Explosive limit in air (vol%) 4-75 6.7-36 3.2-18.6 1.2-6.7 15-28 

 

To aligns with the ambitious 2050 net-zero carbon emissions goal, this study presents a 

feasibility analysis of the international renewable electricity supply chain that utilizes 

DME as energy carrier which fosters a vital connection between two countries. One rich 

in renewable energy resources, serving as an energy-exporting country, and the other 

deficient in these resources, acting as an energy-importing country. In the exporting 

country, renewable energy is employed for electrolysis, generating H2 and DME is 

produced through the synthesis process of H2 and captured carbon dioxide (CO2) (Wu 

and Chien, 2022), then transported to the importing country via shipping. 

 

Upon arrival in the importing country, two practical methods for utilizing DME come to 

the forefront. As illustrated in Figure 2(a), the first approach involves the conversion of 

DME back into H2 through a steam reforming process. This H2 can then be utilized in fuel 

cells to generate electricity. The second option, depicted in Figure 2(b), involves using 

DME as a fuel source in oxy-combustion CO2 power plants, known as the Allam cycle, 

for electricity generation. Simultaneously, the resulting CO2 is captured and transported 

back to the exporting country for DME synthesis. This research is therefore comparing 

the feasibility of the supply chain using both power generation approaches, considering 

engineering, economic and environmental aspects. Furthermore, simulations and analyses 

of the chemical processes are carried out, along with the economic evaluations of these 

processes, electrolysis, fuel cells and transportation. Lastly, the costs of DME, H2 and 

green electricity in the importing country are evaluated to analyze the feasibility of this 

supply chain. 
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(a) 

 
(b) 

Figure 2 Conceptual design of DME-based international renewable electricity supply 

chain generating electricity with (a) fuel cells (b) oxy-combustion power plant. 

 

Based on the simulation using Aspen Plus, the capital and operating costs of various 

chemical processes, including DME synthesis, H2 production through DME reforming, 

CO2 liquefaction and oxy-combustion CO2 power plant can be calculated. Additionally, 

economic assessments are also conducted for water electrolysis (Hodges et al., 2022), fuel 

cells (Jamil et al., 2022), and transportation (Placek, 2023). To account for advancing 

technology and ensure sustainability, the efficiency of electrolysis in sustainable future is 

assumed at 98%, based on the higher heating value (HHV) of H2 (39.39 MWhe/t). The 

cost of water electrolysis is estimated at 200 USD/kW. Solid oxide fuel cells (SOFC) are 

assumed to have an efficiency of 30% for thermal heat (LHV) and 55% for electricity 

(LHV), with a cost of 1,000 USD/kW.  

 

The cost of green H2 production is significantly influenced by renewable energy 

electricity prices. The levelized cost of electricity (LCOE) for utility-scale solar 

photovoltaics (PV) is assumed to be USD 45/MWhe, with a projected decrease to USD 

15/MWhe by 2050. Therefore, cost of renewable energy is assumed to be USD 30/MWhe 

in this study. Additionally, the carbon emissions associated with this process are 

estimated at 11 kg/MWhe from a life cycle perspective (Bruckner et al., 2014). On the 

other hand, the transportation of DME and CO2 between exporting and importing 

countries predominantly relies on shipping. Assume that a ship has a capacity of 312,500 

cubic meters and travels at a speed of 12 knots. For the shipping route from Australia to 

Japan, which spans approximately 10,000 km, the ship is assumed to operate for 350 days 

each year, with a turnover time of one day. The capital cost associated with the DME/CO2 
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shipping vessel is estimated at 150.2 million USD (Al-Breiki and Bicer, 2020). In general, 

very low sulfur fuel oil (VLSFO) is chosen as the fuel source, and its approximate cost is 

550 USD/t. It's worth noting that for every metric tonne of this fuel consumed, it generates 

3.15t of CO2 emissions. The sensitivity analysis of each important variables will be 

carried for optimization. 

 

 
Figure 3 Techno-economic and carbon emission analyses result of DME-based 

international renewable electricity supply chain generating electricity with oxy-

combustion power plant. 

 

The process simulations of the chemical processes using Aspen Plus and techno-

economic analysis of both DME-based international renewable electricity supply chains 

are carried out in this study. The techno-economic and carbon emission analyses result of 

DME-based international renewable electricity supply chain generating electricity with 

oxy-combustion power plant are depicted in Figure 3. The cost of imported electricity is 

USD 135.42/MWhe with an electricity conversion rate between both regions is 30.8% 

(=4.358/14.145), and the carbon emission of this supply chain using solar and wind power 

are 0.190 and 0.069 t/MWhe respectively. To compare the performance, the electricity 

conversion rate between the imported electricity and renewable electricity and the cost of 

imported electricity of the other pathway will be discussed in future. 

2. Conclusions 

In conclusion, the utilization of dimethyl ether (DME) as an energy carrier in an 

international renewable electricity supply chain is seen as a promising solution to address 

the global issues of climate change and the uneven distribution of renewable resources. 

The supply chain design offers two power generation options: hydrogen (H2) fuel cells 

and oxy-combustion power plants. To determine a more economical, environmentally 

friendly and efficient choice, the chemical processes simulations and techno-economic 

analysis of both supply chains are carried out. 
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Abstract 
Global warming and the energy crisis have become some of the most significant 

challenges facing the world today. With the finite nature of fossil fuels and ever-
increasing carbon emissions, there is an urgent need to transition to renewable energy 
sources to mitigate the irreversible impact on our planet. This study aims to design a 
process flowsheet for ethanol synthesis by carbon dioxide hydrogenation using Aspen 
Plus. Ethanol serves a dual purpose as a renewable energy carrier and a fuel, aligning with 
Carbon Capture and Utilization (CCU) and contributing to carbon reduction efforts. 

Keywords: Global warming, CO2 hydrogenation, Ethanol synthesis, Process design, 
Aspen Plus. 

1. Introduction 
Nowadays we are facing the challenges of global warming and energy shortages. 

Conventional energy production methods, such as fossil fuels, are major contributors to 
increased CO2 emissions, a primary greenhouse gas. In response to these issues, this 
study focuses on hydronation of CO2 to synthesize ethanol, which satisfies the concept 
of Carbon Capture and Utilization (CCU). Ethanol serves two primary purposes. Firstly, 
ethanol’s liquid state under normal conditions and its limited flammability in the air make 
it a potential candidate for energy carrier within the renewable energy supply chain. 
However, a comprehensive evaluation is needed when compared to other energy carriers 
like methanol and ammonia. Secondly, ethanol can also function as a fuel, combusting 
with oxygen. Moreover, CO2 hydrogenation to synthesize ethanol doesn't compete with 
food supplies, a key distinction from conventional starch fermentation. Thus, the 
investigation into ethanol synthesis through CO2 hydrogenation is a promising studying. 

The overall framework is shown in Figure 1,including both export and import sides, 
and illustrates the entire ethanol supply chain. The process uses two reactants - hydrogen 
and carbon dioxide. Hydrogen comes from renewable energy sources through water 
electrolysis and carbon dioxide comes from carbon capture. Once ethanol has been 
synthesized, the intermittent nature of most renewables means that the storage and 
transport part is essential. When ethanol as an energy carrier arrives on the import side, it 
can be used in two ways as described above. This study will focus on the synthesis part 
of ethanol. 
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Figure 1. The overall framework of the synthesis and use of ethanol 

2. Process Design for Hydrogenating Carbon Dioxide to Produce Ethanol 
2.1. Thermodynamic Models & Chemical Reactions 

The process of hydrogenating carbon dioxide is simulated by Aspen Plus using two 
thermodynamic models: the Peng-Robinson equation of state in the reaction section and 
the UNIQUAC model with Henry’s constant in the separation section.  

A total of three reactions are considered in this study: the reverse Water Gas Shift 
reaction (rWGS), the ethanol (EtOH) synthesis, and the Methane Steam Reforming 
(MSR). All have been verified, and further details are given below. The rWGS reaction 
is provided in the work of Zhang et al.[ 4 ] and Vendas and Maria[ 5 ].  

 
     𝐶𝐶𝐶𝐶2 + 𝐻𝐻2  ⇌ 𝐶𝐶𝐶𝐶 +  𝐻𝐻2𝑂𝑂 (1) 

The EtOH synthesis reaction includes five reactions provided by Portillo et al.[ 6 ]. 
All of them are assumed to be irreversible except the rWGS reaction (6).  

 
     𝐶𝐶𝐶𝐶 +  2𝐻𝐻2 → 𝐶𝐶𝐻𝐻3𝑂𝑂𝑂𝑂 (2) 

     𝐶𝐶𝐶𝐶 +  2𝐻𝐻2 + 𝐶𝐶𝐻𝐻3𝑂𝑂𝑂𝑂 → 𝐶𝐶2𝐻𝐻5𝑂𝑂𝑂𝑂 + 𝐻𝐻2𝑂𝑂 (3) 

     𝐶𝐶𝐶𝐶 +  2𝐻𝐻2 + 𝐶𝐶2𝐻𝐻5𝑂𝑂𝑂𝑂 → 𝐶𝐶3𝐻𝐻7𝑂𝑂𝑂𝑂 + 𝐻𝐻2𝑂𝑂 (4) 

     𝐻𝐻2 + 𝐶𝐶𝐻𝐻3𝑂𝑂𝑂𝑂 → 𝐶𝐶𝐶𝐶4 + 𝐻𝐻2𝑂𝑂 (5) 

     𝐶𝐶𝐶𝐶 +  𝐻𝐻2𝑂𝑂 ⇌ 𝐶𝐶𝐶𝐶2 + 𝐻𝐻2 (6) 

The MSR reaction includes two reactions, which utilize the power-law model (Eq. 7 
- Eq. 8) provided by Chen et al.[ 7 ].  

 
     𝐶𝐶𝐶𝐶4 +    𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝐶𝐶 + 3𝐻𝐻2 (7) 

     𝐶𝐶𝐶𝐶4 + 2𝐻𝐻2𝑂𝑂 → 𝐶𝐶𝐶𝐶2 + 4𝐻𝐻2 (8) 

  

EtOH 
Synthesis

(A) EtOH synthesis from CO2 hydrogenation
       in countries exporting green energy

Electrolysis 
of H2O

EtOH
Transport

&
Storage

CO2(l)

Transport

 

1.368 CO2(l)

(B) H2 production from EtOH reforming
       in countries importing green energy

EtOH(l)

CO2(l)

H2(g)

H2/CO2

Separation
&

Purification

CO2(g)

Liquefaction

Fuel Cell

CO2(l)

EtOH
Reforming
Reaction

H2(g) / CO2(g) H2(g)

EtOH-fired
Oxy-combustion

Power Plaint

EtOH(l) H 2
O

(g
)

H 2
O

(l)

CO
2(

g)

 O
2(g)

Renewable Energy
Exporting Countries

Renewable Energy
Importing Countries

488



 

2.2. Process Statements 
This study includes two distinct designs, each detailed in the process block flow 

diagrams shown in Figure 2 and Figure 3. 
In Design 1, shown in Figure 2, CO2 is hydronated to syngas in the rWGS reactor 

using a Pt-based catalyst. Subsequently, syngas is converted to ethanol in the EtOH 
synthesis reactor using an alkali-Co doped MoS2 catalyst. The low conversion of CO and 
selectivity of ethanol results in the need to recycle the stream exiting the EtOH synthesis 
reactor for sending back to the EtOH synthesis reactor. However, the development of 
Design 1 reveals the presence of significant methane, necessitating a purge process. The 
purged gas includes methane and reactants (CO2, CO, H2), leading to the wastage of 
valuable reactants and contributing to process inefficiency. Consequently, this finding has 
promoted the development of Design 2.  

In Design 2, shown in Figure 3, in addition to the reactions mentioned in Design 1, 
we introduce the MSR reaction to solve excessive methane, turning methane into CO2, 
CO, and H2. This reaction occurs in the MSR reactor, positioned after the EtOH synthesis 
reactor, and the exiting stream of the MSR reactor is recycled to the rWGS reactor. The 
methane is completely consumed after the MSR reactor, eliminating the need for a 
purging process. Moreover, the consumption of reactants is decreased, and the amount of 
ethanol is increased. Thus, we can use fewer reactants to produce more ethanol. Figure 4 
depicts the details of Design 2. 
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Figure 4. Process flow sheet of Design 2 
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3. Conclusion 
This study simulates the process of CO2 hydrogenation to ethanol, offering a 

promising solution to the challenges posed by global warming, carbon emissions, and the 
need for renewable energy sources. The reactant, CO, undergoes an initial conversion to 
syngas through the reverse water-gas shift (rWGS) reaction, as CO hydrogenation to 
ethanol is thermodynamically more favorable. Both the thermodynamic model and 
kinetic parameters used in the process have been thoroughly verified. 

Through exploration of various reaction pathways and designs, the study evolves from 
an initial process (Design 1) to an enhanced version (Design 2). Design 2, incorporating 
the Methane Steam Reforming (MSR) reaction, effectively mitigates excessive methane 
production, reduces the need for a purge stream, and minimizes reactant wastage. This 
modification results in decreased reactant consumption, increased ethanol production, 
and improved purity. The simulation results, presented in Table 1, indicate a 21% 
reduction in H2 consumption, a 52% reduction in CO2 consumption, and a 43% increase 
in ethanol production compared to Design 1, and the final purity of ethanol is 99.5% 
(mol%) These findings underscore the potential of CO2 conversion into ethanol as a 
sustainable and efficient pathway for renewable energy and carbon reduction. 

For future work, there is a need for in-depth research on optimizing the CO2-to-
ethanol process. This involves refining and fine-tuning the various stages of the process 
to enhance efficiency and overall performance. Additionally, efforts should be directed 
towards seamless integration of CO2-to-ethanol processes into the renewable energy 
supply chain. This integration calls for the development of advanced methods for the 
storage, transportation, and reforming of ethanol. Efficient and sustainable solutions in 
these areas are crucial for the successful incorporation of ethanol as a renewable fuel 
within the broader energy infrastructure. Furthermore, exploring the multifaceted role of 
ethanol as an energy carrier and investigating its diverse applications within the supply 
chain will be paramount. By placing a strong emphasis on process optimization and 
integration, future research endeavours can significantly contribute to the creation of a 
more sustainable, resilient, and environmentally friendly energy ecosystem. 

 
Table 1. simulation results 

Process Design 1 Design 2 

mole flow 
rate 

(kmol/h) 

H2 170 134.5 

CO2 105 50 

ETOH 12.25 17.48 

purity ETOH 0.98 0.995 
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