















Il Process Engineering Manual: uno strumento di sussidio pratico alle attività dell'ingegnere

Ing. Luigi Ciampitti – Coordinatore GdL PEM, AIDIC



## L'uso dei manuali nell'attività dell'ingegnere

Oltre a manuali classici dell'ingegnere, che sono noti ai futuri ingegneri sin dai tempi dell'università (il Colombo in Italia ed il Perry a livello internazionale), esistono diversi manuali che aiutano l'ingegnere nelle sue attività.

Tipicamente le grandi società di produzione (ExxonMobil, SHELL, Total, etc) e le grandi società di ingegneria (FW, Jacobs Engineering, Fluor, etc) hanno i loro manuali, che sono specifici per le diverse tipologie di figura professionale (il Project Engineer, il Process Engineer, il Project Manager, etc) e per il tipo di attività svolta (upstream, downstream, pharma, etc).

Questi documenti hanno la caratteristica di essere orientati agli aspetti pratici delle attività, che siano progettazione, processo o gestione progetti, e non agli aspetti teorici.



### L'AIDIC ed il PEM

AIDIC ha creato qualche anno fa un GdL per sviluppare, mantenere aggiornato e promuovere un manuale, chiamato Process Engineering Manual (PEM), che raccoglie una serie di documenti che, nell'opinione dei membri del GdL, sono di utilità per l'attività dell'ingegnere di processo.

I membri del GdL hanno una consolidata esperienza nel mondo dell'ingegneria chimica, prevalentemente nel settore della progettazione ed in particolare nel mondo ENI, in particolare in Snamprogetti ( ora Saipem), in ENI downstream e nell'Istituto di Ricerca Donegani. Alcuni dei documenti inclusi sono datati, ma ancora validi ed hanno un valore non solo storico.

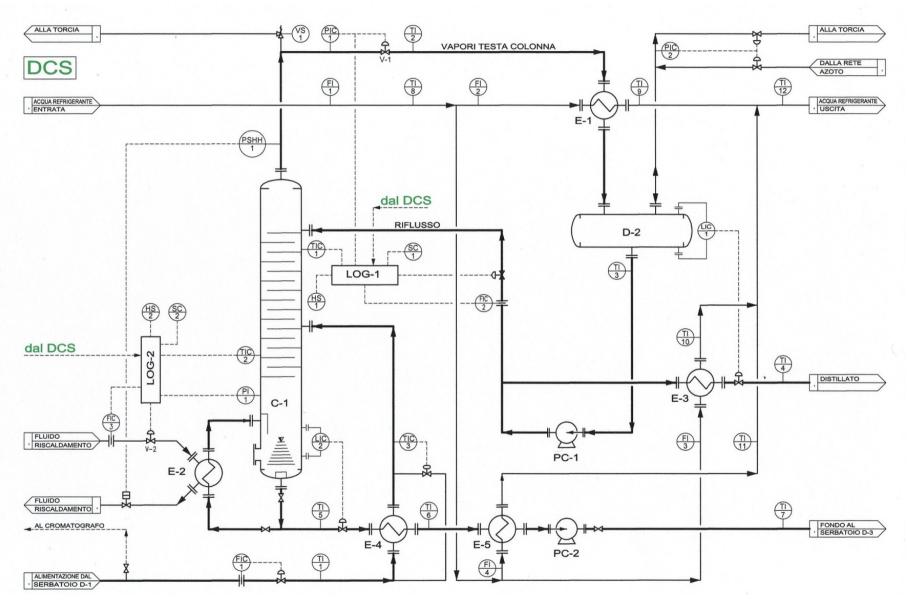
Il PEM è un documento vivo, in continuo aggiornamento per riflettere contributi disponibili da internet o da fornitori o di altri, soggetti a screening da parte del GdL.



La documentazione presente nel PEM affronta molti argomenti di quelli che costituiscono la normale attività di un Ingegnere Chimico di Processo.

## Il PEM comprende tre sezioni:

- Sez 1: Attività di Processo
- Sez 2: Supporto all'attività di progettazione, Manuali complementari
- Sez 3: Società e Fornitori


La Sezione 1 è quella più completa, mentre le Sezioni 2 e 3 sono in fase di sviluppo.



Gli argomenti trattati nella Sezione 1 vanno dalla formulazione degli schemi di impianto (PFD – Process Flow Diagrams – e P&ID – Piping & Instrument Diagrams –), semplici oppure complessi, alla stesura del Bilancio di Materia ed Energia, alla compilazione delle Specifiche di Processo per Apparecchiature, Macchine e Strumenti, fornendo nei vari capitoli una documentazione tipica di esempio sui documenti principali da preparare in una fase di progettazione di un impianto.

Un capitolo riporta anche un esempio di estratto di manuale operativo, che normalmente viene preparato dall'ingegnere di processo ad uso del cliente finale che opererà l'impianto.

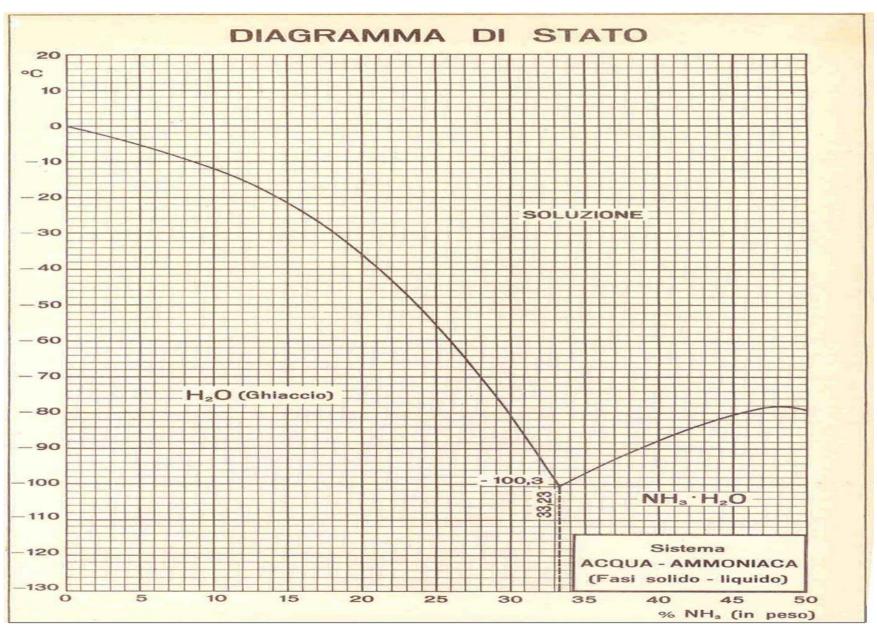
# **ESEMPIO DI P&ID - COLONNA DISTILLAZIONE**



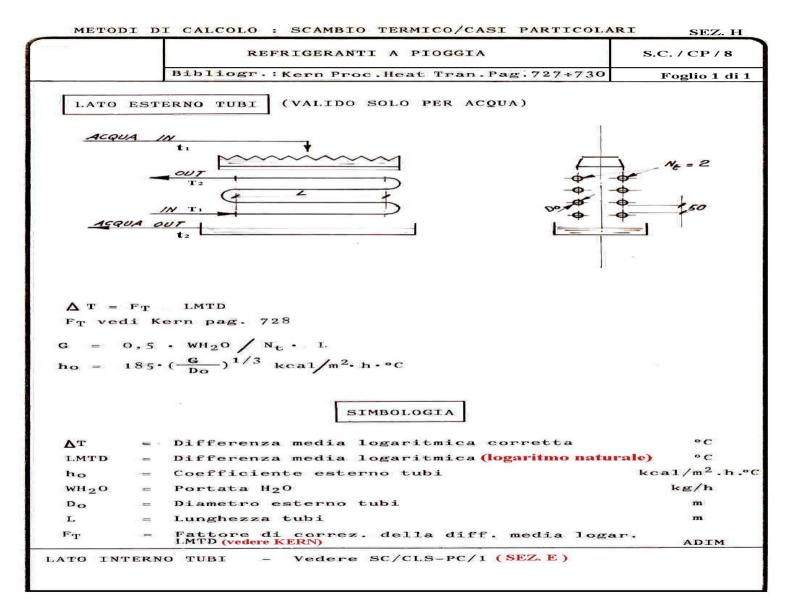
FolderCia\1) PFD-DistillazioneContinua\DistillazioneContinua.pdf

# SPECIFICHE di PROCESSO – POMPA CENTRIFUGA

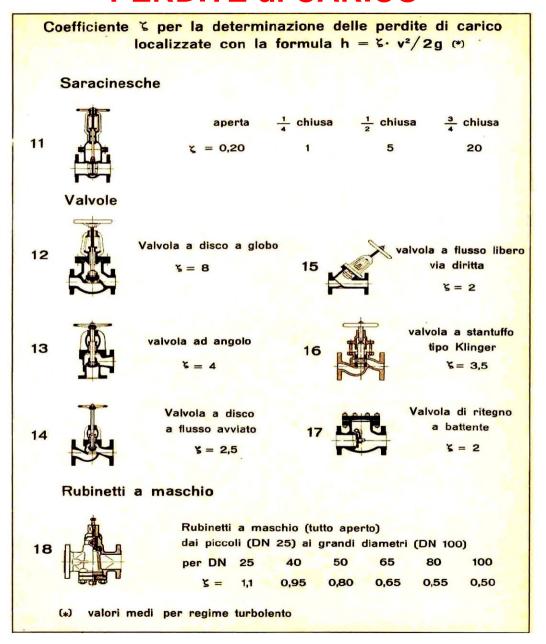
|    |                                                                            |                     | CLIENTE        |                  |                |              |                                             |           | JOB        |     |          |      |      |              |      |     |      |
|----|----------------------------------------------------------------------------|---------------------|----------------|------------------|----------------|--------------|---------------------------------------------|-----------|------------|-----|----------|------|------|--------------|------|-----|------|
|    |                                                                            |                     | Stabilimento   |                  |                |              |                                             | S         |            |     |          |      |      |              |      |     |      |
|    |                                                                            |                     | IMPIANTO       | :                |                |              |                                             |           | 1          | Re  | /Isi     | one  |      | F            | g. 2 | 2 0 | di 3 |
|    | Tipo di Pom                                                                | ра                  | Pompa Centrifu |                  |                | uqa          | a Or                                        | ʻizzon    | tale       |     | *,       | SIGL | À    |              |      |     | _    |
| 1  |                                                                            |                     |                |                  | ESSO           |              |                                             |           |            |     |          |      | 1000 |              |      |     |      |
| 2  | ITEM                                                                       |                     |                |                  |                |              | No. OF MAIN / STAND-BY UNITS 2 / 1          |           |            |     |          |      |      |              |      |     |      |
| 3  | SERVICE                                                                    | OIL PUMPS           |                |                  |                | TYPE         |                                             |           |            |     | VERTICAL |      |      |              |      |     |      |
| 4  | OPERATION: (continuo                                                       | us - disconti       | nuous - other) | ontinuo          | us             | INST         | TALLATION: indoor - outdoor - other OUTDOOR |           |            |     |          |      |      |              |      |     |      |
| 5  | TYPE OF DRIVER                                                             | EL                  | . MOTOR        | FOR UNITS        | OR UNITS MAIN  |              | DATA                                        | A SHEET I | No.        | 1.  |          |      |      |              |      |     |      |
| 6  | TYPE OF DRIVER                                                             | PE OF DRIVER EL     |                | FOR UNITS        | OR UNITS STAND |              | DATA                                        | A SHEET I | No.        |     |          |      |      |              |      |     |      |
| 7  | ELECTRICAL SUPPLY:                                                         | LECTRICAL SUPPLY:   |                | VOLTAGE          |                | 400          |                                             | REQUEN    | REQUENCY   |     |          | 50   | PHA  | PHASES No. 3 |      |     |      |
| 8  |                                                                            |                     |                | CHARA            | CTERISTI       | cs o         | F HAN                                       | IDLED LIC | SOID       |     |          |      |      |              |      |     |      |
| 9  | YPE OF HANDLED LIQUID                                                      |                     |                |                  |                |              |                                             |           |            |     |          |      |      |              |      |     |      |
| 10 | PUMPING TEMPERATU                                                          | UMPING TEMPERATURE: |                | MIN / NORM / MAX |                |              | °C                                          |           | ,00        | 1   | 100      |      |      | 1            | Ţ.   |     |      |
| 11 | DENSITY AT TEMPERATURE                                                     |                     | MIN / NORM /   |                  | kg/            |              |                                             |           | 1          |     |          |      | I.   |              |      |     |      |
| 12 | VISCOSITY AT TEMPEI                                                        | MIN / NORM / MAX    |                |                  |                | cР           |                                             |           | 1          |     |          |      | 1    | i            |      |     |      |
| 13 | VAPOUR PRESSURE A                                                          | PING TEMPERATURE    |                |                  |                | bar          |                                             |           |            |     | 200      |      |      |              |      |     |      |
| 14 | FREEZING POINT / POI                                                       |                     |                |                  |                | °C           |                                             |           |            |     | 1        |      |      |              |      |     |      |
| 15 | DISSOLVED GAS                                                              |                     |                |                  |                | /es-no       | }                                           |           |            | 257 |          |      |      |              |      |     |      |
| 16 | CORROSIVE / EROSIVI                                                        | OUS AGENTS          |                | 0                | /es-no         | }            |                                             | 1         |            |     |          | 1    |      |              |      |     |      |
| 17 | SUSPENDED SOLIDS: TYPE / DIMENSIONS / VOLUME %                             |                     |                |                  |                |              |                                             |           |            |     |          | 1    |      |              | I    |     |      |
| 18 |                                                                            |                     | NGC            | ONDI             | поиз           |              |                                             |           |            |     |          |      |      |              |      |     |      |
| 19 | SUCTION PRESSURE: MIN / NORM / MAX                                         |                     |                |                  |                |              | bar(g)                                      |           | 1,6        | 1   |          |      |      | 1            | 1    | •   | (1)  |
| 20 | DISCHARGE PRESSURE AT RATED CAPACITY                                       |                     |                |                  |                |              |                                             |           |            |     |          |      |      |              |      |     |      |
| 21 | DIFFERENTIAL PRESSURE AT RATED CAPACITY                                    |                     |                |                  |                |              | bar                                         |           |            |     |          |      |      |              |      |     |      |
| 22 | CAPACITY:                                                                  | MIN / NORM / RATED  |                |                  |                | m³/h         |                                             | 150       | 1          |     |          |      | 1.   |              | 325  | Ĺ   |      |
| 23 | HEAD AT RATED CAPACITY                                                     |                     |                |                  |                |              | m                                           |           |            |     |          |      |      |              |      | 59  | 8    |
| 24 | NPSH AVAILABLE                                                             |                     |                |                  |                |              |                                             |           |            |     |          |      |      |              |      |     |      |
| 25 | MAX ALLOWABLE PRESSURE AT SHUT-OFF                                         |                     |                |                  |                |              |                                             |           |            |     |          |      |      |              |      |     |      |
| 26 | ESTIMATED ABSORBED POWER AT PUMP SHAFT                                     |                     |                |                  |                |              | k₩                                          |           |            |     |          |      |      |              |      |     |      |
| 27 | FLOW CONTROLLED BY : (pressure controller-lever controller-flow controller |                     |                |                  |                |              |                                             |           |            |     |          | yes  |      |              |      |     |      |
| 28 | REACCELERATION / A                                                         |                     |                |                  |                | es-no        | }                                           | no        |            |     | 1        |      |      | yes          |      |     |      |
| 29 | START-UP WITH DELIV                                                        | (open-c             |                |                  |                | ed)          |                                             |           |            |     |          |      |      |              |      |     |      |
| 30 |                                                                            |                     |                |                  |                |              |                                             |           |            |     |          |      |      |              |      |     |      |
| 31 |                                                                            |                     |                |                  |                |              |                                             |           |            |     |          |      |      |              |      |     |      |
| 32 |                                                                            |                     |                |                  |                |              |                                             | 10)       |            |     |          |      |      |              |      |     |      |
| 33 | dest even                                                                  | ICAL                | DATA           | (2)              |                |              | =                                           |           | ~          |     |          |      |      |              |      |     |      |
| 34 | SEAL TYPE  CONTAMINATION OF HANDLED LIQUID ALLOWED                         |                     |                |                  |                |              | /es-no                                      | ,         | MECHANICAL |     |          |      |      |              |      |     |      |
| 35 |                                                                            | QUID ALLOWE         | JID ALLOWED    |                  |                |              |                                             | no        |            |     |          |      |      |              |      |     |      |
| 36 | AIR ENTRAINMENT ALLOWED LEAKS ALLOWED                                      |                     |                |                  |                |              | /es-no                                      |           |            |     |          | no   |      |              |      |     |      |
| 37 | ANTIFREEZING PROTECTION                                                    |                     |                |                  |                |              | /es-no                                      | 100       |            |     |          | no   |      |              |      |     |      |
| 38 | RELIEF VALVE SETTIN                                                        |                     | + +            |                  |                |              | /es-no<br>bar(g)                            | 7         | no         |     |          |      |      |              |      |     |      |
| 40 | ELLI TALVE SETTING                                                         |                     |                |                  |                |              | Jai (y)                                     |           |            |     |          |      |      |              |      |     |      |
| 41 |                                                                            |                     |                |                  |                |              |                                             |           |            |     |          |      |      |              |      |     |      |
| 42 |                                                                            |                     |                |                  | N I            | <del>\</del> | TE                                          |           |            |     |          |      |      |              |      |     |      |
| 43 |                                                                            |                     |                |                  | - 17           | <u>U</u>     |                                             |           |            |     |          |      |      |              |      |     |      |
| 44 |                                                                            |                     |                |                  |                |              |                                             |           |            |     |          |      |      |              |      |     |      |
| 45 |                                                                            |                     |                |                  | 8              | 4            |                                             |           |            |     |          |      |      |              |      |     |      |
|    |                                                                            |                     |                |                  |                |              |                                             |           |            |     |          |      |      |              |      |     |      |


### **METODI DI CALCOLO**

Sono presenti Metodi di Calcolo manuali di:


- Grandezze Fisiche
- Scambiatori a Fascio Tubiero e ad Aria
- Agitatori
- Separatori Gas Liquido e Liquido Liquido
- Colonne a Piatti e Riempimento
- Cicloni
- Valvole di Sicurezza.
- Compressione e Pompaggio
- Coibentazioni
- Perdite di Carico ed altro.

I calcoli manuali comportano la necessità di riflettere e tenere sotto controllo l'ordine di grandezza degli oggetti che si studiano; i softwares hanno un utilizzo molto più semplice e rapido, ma in caso di errore di qualche input possono dare dei risultati inadeguati.


# **GRANDEZZE FISICHE**

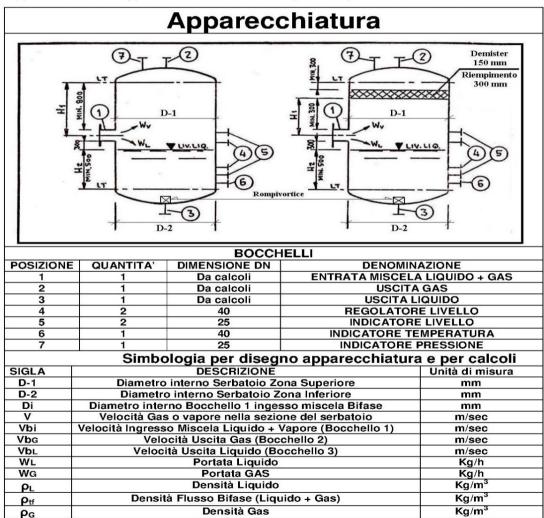


# **ESEMPIO DI METODO DI CALCOLO - SCAMBIATORI**



# **PERDITE di CARICO**

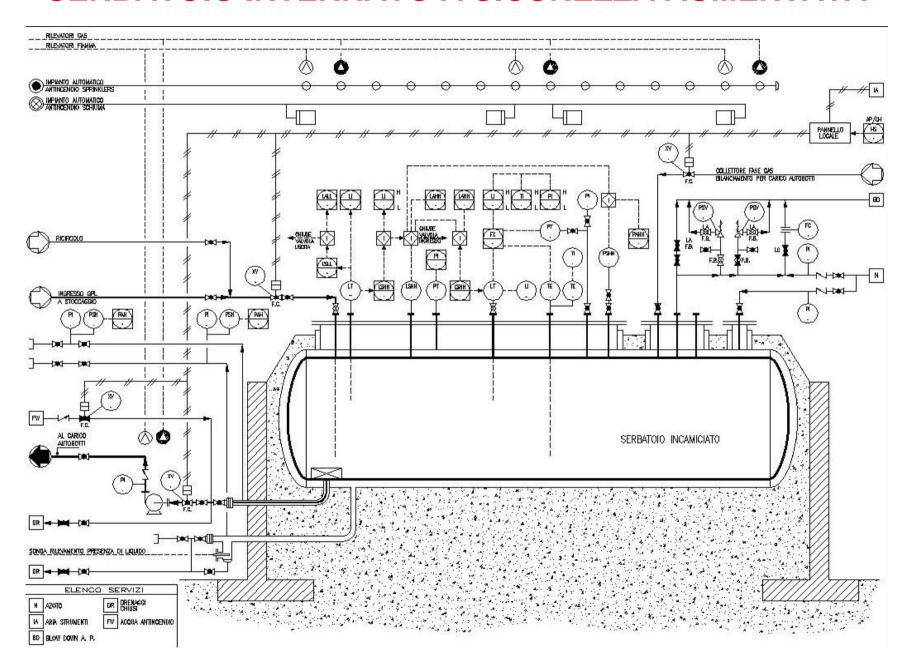



## **SEPARATORI**

#### **SEPARATORI GAS LIQUIDO**

In molti impianti si presenta l'esigenza di separare una fase Liquida presente in una corrente di Gas.

I casi più frequenti sono i serbatoi di flash e i serbatoi di protezione dei compressori in cui insieme al gas da comprimere sono presenti tracce di liquido.


Di seguito è riportato un metodo di calcolo e di dimensionamento Short Cut di queste apparecchiature. E' opportuno contattare fornitori qualificati per verifica e costruzione.



## **SICUREZZA**

- E' presente una sezione sulla Sicurezza negli Impianti Chimici.
- Si tratta dell'HAZOP, degli ambienti esplosivi, e di altri temi relativi alla sicurezza in relazione anche alla preparazione della documentazione necessaria.

## SERBATOIO INTERRATO A SICUREZZA AUMENTATA



## **CONSIGLI PRATICI**

- E' presente una sezione dedicata ai Consigli Pratici per la progettazione, relativamente alla distillazione, allo scambio termico, alle apparecchiature, alle pompe, etc.
- Sono inoltre riportati dei links a siti relativi ad argomenti utili allo svolgimento della attività dell'Ingegnere Chimico di processo, come valvole di sicurezza, pompe, etc.

# ESEMPIO DI CONSIGLI PRATICI – COLONNA DI DISTILLAZIONE 1/2

- Per un buon funzionamento di una colonna è necessario mantenere costante la temperatura di alimentazione della colonna ed evitare i disperdimenti termici.
- La variazione della temperatura di alimentazione ed i disperdimenti termici possono provocare pendolazioni del funzionamento della colonna, con difficoltà, ed addirittura impossibilità, di mantenimento delle specifiche del distillato e del residuo che si vogliono ottenere.
- I disperdimenti termici provocano inoltre un aumento dei consumi di calore nel ribollitore, che possono superare il costo della coibentazione della colonna.

# ESEMPIO DI CONSIGLI PRATICI – COLONNA DI DISTILLAZIONE 2/2

- E' opportuno sempre esaminare la convenienza di preriscaldare, se possibile sino alla temperatura di ebollizione, l'alimentazione con il prodotto di fondo o altro fluido.
- E' opportuno esaminare, specie per distillazioni con basse differenze di temperature tra il vapori del distillato in uscita dalla testa della colonna ed il prodotto di fondo che va al ribollitore, la termocompressione dei vapori in uscita dalla testa per condensare il distillato nel ribollitore di fondo. Un esempio realizzato industrialmente si ha nella distillazione a pressione atmosferica di separazioni Metanolo Acqua a pressione atmosferica per ottenere Metanolo distillato a purezza superiore a 99,5 % peso.

## **FORNITORI**

• E' inclusa una sezione Società e Fornitori di apparecchiature e macchine, che dà un vendor list indicativa per vari gruppi merceologici (vessels, pompe, società di ingegneria, etc).

## **AGGIORNAMENTI**

- Il PEM è aggiornato regolarmente, tentativamente ogni sei mesi, ed è reso disponibile agli iscritti all'AIDIC.
- Gli iscritti sono invitati ad inviare proposte di inserimento di nuovi argomenti, che verranno poi esaminate dal GdL che cura il PEM.



## **GRAZIE DELL'ATTENZIONE**

Per comunicazioni: luigi.ciampitti@fastwebnet.it

Per ulteriori informazioni, vedete:

www.AIDIC.it

**Gruppo AIDIC su Linkedin** 

**AIDIC** su Facebook