Highly Selective Palladium-based Bimetallic Catalysts for the Direct Synthesis of Hydrogen Peroxide

Pengfei Tian¹, Xingyan Xu¹, Doudou Ding¹, Can Ao¹, Jing Xu¹*, and Yi-Fan Han¹,²*

¹ State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; ² Research Center of Heterogeneous Catalysis and Engineering Sciences, School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China

*Corresponding author: yifanhan@ecust.edu.cn; xujing@ecust.edu.cn

Highlights
- Direct H₂O₂ synthesis over Pd-M (M=Te, Sn, Bi) catalysts were thoroughly studied.
- Near-100% H₂O₂ selectivity was acquired over a Pd-Te catalyst.
- Te remarkably suppressed the dissociative activation of O₂ over Pd.
- Te promoted the dispersion of Pd particles on the support.

1. Introduction

Hydrogen peroxide (H₂O₂), an effective and environmentally benign oxidant, is used as an indispensable chemical in a wide range of applications within the textile, waste water treatment, pulp/paper bleaching, and pharmaceutical industries.¹ The organic autoxidation processes dominantly used in current industrial production of H₂O₂ generally generate remarkable amount of pollutants and requires high capital cost. The direct synthesis of H₂O₂ from H₂ and O₂ is a promising alternative to the industrial process. Pd-based catalysts have proved to be most effective for this reaction.²–⁶ However, the direct process has not been used in industrial production of H₂O₂ because of the low selectivity. In this work, density functional theory (DFT) calculation and experimental methods were combined to probe and design high-selectivity Pd-based bimetallic catalysts for direct H₂O₂ synthesis. The promotional effects of Te, Sn, and Bi and the structure-performance relationship of Pd-based catalysts were thoroughly studied (Fig. 1). Moreover, preparation methods and Pd concentrations in the bimetallic catalysts were finely tuned to achieve the optimized performance.

2. Methods

Figure 1. Models of Pd₈Te₁/Pd(111), Pd₈Sn₁/Pd(111) and Pd₈Bi₁/Pd(111) surfaces. Blue, brown, blackish green, and purple spheres are palladium, tellurium, tin, and tellurium atoms, respectively.

DFT calculations were performed using the Vienna ab-initio simulation package (VASP). The models used for calculations are shown in Figure 1. Catalysts were prepared by incipient wetness impregnation using an aqueous solution of H₂PdCl₄ and TeCl₄. A Pd loading of 3 wt % was used for each catalyst. All reactions were carried out in a modified micro triphase semi-batch reactor at 283 K and atmospheric pressure using 50 mg of catalyst; the reagent gases (15 vol% H₂; 60 vol% O₂; 25 vol% N₂; 60 mL/min) were introduced into
the reactor via a premixer and a fine glass frit in sequence; H₂ conversion and H₂O₂ selectivity were analyzed with a gas chromatograph and a UV–Vis spectrophotometer, respectively.

3. Results and discussion

Compared to Pd-Sn and Pd-Bi catalysts, Pd-Te catalysts showed the highest selectivity for H₂O₂ synthesis at the low coverage of reactants. Interestingly, a near-100% H₂ selectivity towards H₂O₂ was acquired by finely tuning the Pd/Te atomic ratio (Figure 2). Te is inert to the adsorption and activation of surface species containing O-O bonds, and it thus has a dilute effect on continuous Pd sites. Meanwhile, the addition of Te can also alter the electronic structure of active sites remarkably. DFT calculations indicates that Pd-Te sites and Pd-Pd sites adjacent to Te atoms have lower capacity for adsorption and dissociative activation of O₂, and they thus are highly selective active sites for direct H₂O₂ synthesis. The low-coordinated terrace and corner sites of Pd-Te clusters showed low selectivities. Therefore, the particle size should be deliberately controlled in application. Excessive amounts of Te would lead to the deactivation of catalysts, due to the low ability of Te in the adsorption and dissociative activation of H₂.

![Figure 2. Performance of Pd-Te catalysts with different Te concentrations.](image)

4. Conclusions

With the combination of experimental and theoretical methods, for the first time a Pd-Te catalyst with a near-100% selectivity toward H₂O₂ was rationally designed and obtained. The formation of Pd-Te bimetallic particles is the origin of active sites for the high-selectivity production of H₂O₂. By suppressing the dissociative activation of O₂ on Pd, Te plays a critical role in enhancing the catalytic performance. This work makes great advance on adding second nonprecious metal to Pd to acquire catalysts with high efficiency for H₂O₂ synthesis. Meanwhile, it would benefit the rational design of catalysts for both the H₂O₂ direct synthesis and other relations involving hydrogenation and oxidation, such as oxygen reduction reactions (ORR).

References


Keywords

hydrogen peroxide; direct synthesis; palladium; bimetallic catalysts