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To our knowledge, this is the first growth model of Clostridium beijerinckii NCIMB 8052 on glucose and xylose 
as representative lignocellulosic sugars, which considers the synergistic effects of sugars on the growth rate. 
We fitted models with different types of interactions between the substrates to the growth rate data obtained 
with varying sugar concentrations. Noncompetitive binary substrate growth model gave the best fit with the 
smallest mean standard errors (MSE), and sum of squares error (SSE), 0.0778 and 0.0071, respectively. 
Confidence intervals for the parameter estimates showed that the substrate affinity constant for xylose, KsX 
(g/l) had the largest uncertainty, while the maximum specific growth rate on xylose, μmaxX (h-1) had the 
smallest. The correlation matrix showed that the model parameters were highly correlated. Carbon catabolite 
repression (CCR) effect on the growth rate was of the noncompetitive type. Validation with other sugar 
concentration values is necessary to evaluate the prediction capability of the proposed model. A 
transcriptional study will be beneficial to understand global gene regulation mechanisms as guidance for 
improving the efficiency of lignocellulosic fermentation processes.  

1. Introduction 
Lignocellulosic biomass is a promising feedstock, since it is the most abundant renewable biomass resource 
on the planet. Its hydrolysis yields both hexoses and pentoses, and the composition of the biomass depends 
on the plant species, which also can vary depending on age and growth conditions. Jørgensen et al., (2007) 
reported a typical dry weight composition of lignocellulosic biomass shown in Table 1. 

Table 1: Typical dry weight of lignocellulosic biomass (Jørgensen et al., 2007). 

 
Fermentation performance of microorganisms depends on their capacity to co-utilize these sugars in the 
hydrolysate. However, the cells’ efficiency in utilizing different sugars in mixed form tends to decrease due to 
mechanisms of carbon catabolite repression (CCR). CCR reduces or prevents the utilization of pentose 
sugars in the presence of a preferred carbon source (Ren et al., 2010). There are ongoing efforts of metabolic 
engineering (Lee et al., 2016) of strains which can simultaneously utilize both hexose and pentose sugars. 
However, co-utilization of sugars does not guarantee that CCR is inactive (Zhang et al., 2016). Thus, limited 
knowledge about the effect and extent of CCR on growth is still a bottleneck. Our earlier study aimed to deal 
with this bottleneck, and showed that the interaction between sugars was significant and repressive for growth 
(Birgen et al., 2018a). However, the type of interaction remains unknown, and successful design of 
lignocellulosic fermentation processes requires the kinetic model for accurately predicting the cell mass 
growth. Therefore, our objective was to develop a growth model for Clostridium beijerinckii NCIMB 8052 on 
glucose and xylose as representative lignocellulosic sugars. 

 Glucose Xylose     Arabinose Mannose Lignin  
Dry weight (%) 32.2 - 46.4 4.9 - 24.9 1.1 - 2.9  0.3 - 12 11.9 - 29.4 



2. Materials and Methods 
2.1 Microorganism and medium 

Wild type Clostridium beijerinckii NCIMB 8052 was used in this study as it can utilize both glucose and xylose 
(Zhang et al., 2012). We employed a two-stage pre-culture strategy based on our previous work (Birgen et al., 
2018b), which enables the culture to co-utilize glucose and xylose. First, the cells stored at -80 oC (1 ml, 20% 
glycerol) were cultivated for 14 hours on reinforced Clostridial medium (CM0149, Oxoid). Then, inoculum from 
the first stage of the pre-growth was cultivated in the second fresh medium (5% v/v). The second growth 
medium contained 5 g/l xylose, 2.5 g/l Na-acetate, 5 g/l yeast extract, 2 g/l (NH4)2SO4, 0.01 g/L NaCI, 0.75 g/l 
KH2PO4, 1.5 g/l K2HPO4, 0.2 g/l MgSO4.7H2O, 0.01 g/l MnSO4.H2O, 0.01 g/l FeSO4.7H2O, 0.01 g/l p-
aminobenzoic acid, 0.01 g/l biotin and 0.1 g/l thiamine. After 6 hours of growth on the second medium, we 
started batch growth experiments by inoculating medium flasks with the culture grown on the second medium 
(4% v/v). Media for the batch growth experiments contained both glucose and xylose, and the rest of the 
components were the same as in the second growth medium.  

2.2 Batch growth experiments 

We performed batch growth experiments in 120 ml serum flasks with 50 ml working volume in an incubator 
with temperature controlled at 37oC under static and anaerobic conditions. We used an inoculum size of 4% 
v/v. No pH control was applied. We took 2 ml samples every 2 hours from the start of the experiment. 
Experiments were terminated after 6 hours when the exponential growth phase ended. 

2.3 Analytical methods 

Optical density (OD) was used as a measure for cell mass concentration, measured at 660 nm with a UV-vis 
spectrophotometer UV-1700 (Shimadzu) with water as the reference. We diluted the samples exceeding 0.4 
OD with water so that the Beer-Lambert Law applied. 

2.4 Estimation of growth rate 

We estimated the maximum specific growth rate, µmax (h-1) during the exponential growth phase where the 
nutrient concentration is large enough that the growth rate is independent of nutrient concentration. Therefore, 
µmax is equal to the growth rate, µ (h-1), which is shown in Eq(1). 
 
dX
dt

 = μX                                                                                                                                                             (1) 
 
where X is the cell mass concentration (g/l) and t is time (h). The growth rate was determined during the 
exponential growth phase by estimating the slope of the OD (660 nm) versus time (h) plot. 

2.5 Binary substrate growth models 

We chose the binary substrate growth models with the interaction term, since our previous findings showed 
that the synergistic effect between the sugars has a significant influence on the growth rate (Birgen et al., 
2018a). Moreover, we chose the growth models such that they can describe the key characteristics of the 
growth while avoiding its overparameterization. Thus, we employed noncompetitive, competitive, 
uncompetitive, interactive and noninteractive binary substrate growth models (Segel, 1975; Bell, 1980; Megee 
et al., 1972; Yoon et al., 1977). The models were based on the Monod equation, and the classification of the 
interactions for these models was based on the enzyme kinetics (Okpokwasili and Nweke, 2006). Table 2 
shows the models we used, where SG is glucose concentration, SX is xylose concentration, μmaxG is the 
maximum specific growth rate on glucose, μmaxX is the maximum specific growth rate on xylose, KsG is the 
substrate affinity constant for glucose and KsX is the substrate affinity constant for xylose. These are empirical 
coefficients, and due to their dependency on the species, substrate and environmental conditions, we call 
them parameters in this study. We fitted the models given in Table 2 by using the Matlab function nlinfit for 
nonlinear regression, which uses the Levenberg-Marquardt nonlinear least squares algorithm. The parameter 
estimates minimize the least squares equation, Eq(2), where f(xi,b) is the nonlinear function, xi are the 
predictors for ith observation, i = 1,...,N, and b are the parameters. 

� [yi - f(xi,b)]2
N

i=1

                                                                                                                                                 (2) 

We used nlparci to obtain 95% confidence intervals for the model parameters, and the CovB output argument 
of nlinfit to get the covariance matrix, which we then converted to a correlation matrix by using corrcov 
function. We used the R argument of the nlinfit function to get raw residuals data to visualize the difference 
between the simulated and observed values of the growth rate.  



3. Results 
3.1 Model fitting 

We used the growth rate data obtained in our previous work (Birgen et al., 2018a) for model fitting. The 
dataset of the observed values consisted of 16 data points, which was the result of a central composite design 
of experiments to understand the effect of glucose and xylose concentrations on the growth rate and the 
synergistic effects between them. Glucose and xylose concentrations, SG and SX are predictor variables and 
the growth rate, μ is the response variable. Table 2 shows fit results in terms of degrees of freedom of error 
(DFE), mean standard errors (MSE), and sum of squares error (SSE) for the chosen binary substrate growth 
models. 

Table 2:  Fit results for binary substrate growth models. 

 
Fit results showed that the noncompetitive binary substrate growth model delivered the smallest SSE and 
MSE values, 0.0778 and 0.0071, respectively. Eq(3) shows the resulting model with the estimated 
parameters. We found the quality of the fit satisfactory. 
 

μ(SG,SX)=
1.435*SG

(1.236+SG)* �1+ SX
4.601�

+
1.508*SX

(4.601+SX)* �1+ SG
1.236�

                                                                                             (3) 

                      
The model simulations together with the observed values, the resulting plot a) and its residuals plot b) are 
presented in Figure 1.    
                           

 

Figure 1: Simulation of the noncompetitive binary substrate growth model a) and residuals plot of glucose and 
xylose concentrations versus growth rate b).  

Model Model type DFE SSE MSE Reference  

μ=
μmaxG*SG

(KsG+SG)*�1+ SX
KsX

�
+

μmaxX*SX

(KsX+SX)*�1+ SG
KsG

�
 

 

Noncompetitive 
 

 11 0.0778 0.0071 Segel,  
1975 

μ=
μmaxG*SG

KsG+SG* �1+ SX
KsX

�
+

μmaxX*SX

KsX+SX* �1+ SG
KsG

�
 

 

Uncompetitive  12 0.1516 0.0126 Segel,  
1975 

μ=
μmax*SG*SX

(KsG+SG)*(KsX+SX)
 

 

Interactive 13 0.1867 0.0144 Megee 
et al., 
1972 

μ=
μmaxG*SG

KsG+SG
+

μmaxX*SX

KsX+SX
 

Noninteractive 12 0.1847               0.0154 Bell, 
1980 

      

μ=
μmaxG*SG

KsG+SG+SX*�KsG
KsX

�
+

μmaxX*SX

KsX+SX+SG*�KsX
KsG

�
 

Competitive 12 0.1928 0.0161 Yoon 
et al., 
1977 



Figure 1 a) shows that a minimum response, the growth rate, appeared when both glucose and xylose 
concentrations were zero, since cells cannot grow without any carbon source. When glucose was the sole 
sugar, the growth rate increased as its concentration increased, and a maximum growth rate value was 
obtained at its highest concentration. Even though the growth rate was lower for xylose than for glucose, the 
growth rate was still proportional with the xylose concentration. The projection of the simulation surface plot a) 
shows that increasing or decreasing both sugar concentrations at the same time results in a decreasing 
growth rate. However, increasing either of the sugars when decreasing the other one results in an increasing 
growth rate. The residuals plot b) shows the raw residual values, which are the difference between the 
simulated and observed values of the growth rate.  

3.2 Effects of model parameters 

We chose initial values for parameter estimation as 0.001 for all the parameters, and did not specify the 
parameter bounds. Table 3 shows the parameter estimates and their 95% confidence intervals for the 
noncompetitive binary substrate growth model. The maximum specific growth rate on glucose, μmaxG (h-1) was 
greater than the maximum specific growth rate on xylose, μmaxX (h-1). On the other hand, the substrate affinity 
constant for xylose, KsX (g/l) was larger than the substrate affinity constant for glucose, KsG (g/l). 

Table 3:  Parameters of the noncompetitive binary substrate growth model. 
 
 

 
 
 
 

 

μmaxX had the smallest confidence interval, thus the uncertainty associated with this parameter was the 
smallest among others, while KsX had the largest confidence interval. 95% confidence intervals of the 
parameters in ascending order were μmaxX, μmaxG, KsG and KsX.  
We computed the correlation matrix for the noncompetitive binary substrate growth model. Table 4 shows the 
resulting matrix. 

Table 4: Correlation matrix of noncompetitive binary substrate growth model. 

 
The correlation coefficient ranges from −1 to +1. The greater the absolute value of the correlation coefficient, 
the stronger the relationship between those parameters. Furthermore, the sign of the correlation coefficient 
indicates the direction of the relationship. If both parameters tend to increase or decrease simultaneously, the 
coefficient is positive. Therefore, the highest correlation was found between μmaxG and KsX, -0.9954, and one 
parameter decreased as the other one increased. We observed the weakest correlation between μmaxX and 
KsG, -0.9455. The relationships between maximum specific growth rates, μmaxG and μmaxX, and substrate 
affinity constants, KsG and KsX, were negative. On the other hand, the relationship between model parameters 
for single sugars, μmaxG and KsG, and μmaxX and KsX, were positive. 
We did model simulations to illustrate the effect of the model parameters on the growth rate. We varied the 
parameters over their respective confidence intervals, and plotted them against the resulting growth rate 
values. We kept the sugar concentrations constant at their centre value over the experimental concentration 
space, SG and SX = 2.5 g/l. Figure 2 shows the resulting plots for all 4 model parameters. 

Parameter Estimate    95% Confidence interval 

μmaxG 1.4354  -2.2643 – 5.1351 

KsG 1.2360 -7.1363 – 9.6082 

KsX 4.5996 -23.9499 – 33.1491 

μmaxX 1.5078 -1.8106 – 4.8262 

 μmaxG KsG      KsX μmaxX 

μmaxG 1.0000 0.9918 -0.9945  -0.9728 
KsG 0.9918 1.0000 -0.9860  -0.9455 
KsX -0.9945 -0.9860 1.0000  0.9542 
μmaxX -0.9728 -0.9455 0.9542  1.0000 



 

Figure 2: Effects of parameters of the noncompetitive binary substrate growth model on the growth rate (h-1). 

The maximum specific growth rate on glucose, μmaxG, increased the growth rate, μ more than maximum 
specific growth rate on xylose, μmaxX, since the slope of μmaxG vs. μ plot  was greater, 0.41, than slope of μmaxX 
vs. μ plot,, 0.23, shown in Figure 2 a) and d), respectively. We constructed the substrate affinity constant vs. 
growth rate plots together with their magnified plots for their values of KsX and KsG > 0. Figure 2 b) shows the 
KsG vs. μ plot in the shape of an exponential decay curve, therefore μ increased exponentially with decreasing 
KsG. On the other hand, the KsX vs. μ plot was in the shape of an exponential growth curve as shown in Figure 
2 c), thus μ increased exponentially, while KsG was increasing. 

4. Discussion 
In this study, we developed a kinetic model of C.beijerinckii NCIMB 8052 growth on xylose and glucose. We 
fitted different growth models to the growth rate data obtained for various concentrations of glucose and 
xylose. We chose binary substrate growth models, which include the synergistic effects between sugars. 
Evaluation of model performance by using error values is a commonly applied practice (Cecilia et al., 2013). 
Among other models, noncompetitive binary substrate growth model gave the best fit with the smallest SSE 
and MSE values, 0.0778 and 0.0071, respectively. In addition, we checked the distribution of the residuals as 
a measure of the model quality, and the probability of the residuals fell on a straight line (data not shown) 
indicating that the normality assumption was satisfied.  
Parameter estimation showed that μmaxX was greater than μmaxG. Therefore, the rate of growth during the 
exponential growth phase was higher on xylose than on glucose. The reason might be our two-stage pre-
culture development strategy, where the culture was grown on a medium containing only xylose as the only 
sugar to activate the xylose utilization pathway. On the other hand, KsX was larger than KsG, meaning that the 
cells were more attracted to glucose, which is the preferred carbon source over xylose due to CCR (Ren et al., 
2010). Therefore, our observation is in line with previous findings. The confidence interval for a parameter is 
an indicator of its uncertainty. Therefore, the larger the confidence interval the larger the uncertainty 
associated with that parameter. Our results showed that KsX had the largest, and μmaxX had the smallest 
uncertainty. We computed the correlation matrix, and it showed that the model parameters were highly 
correlated. The correlation coefficients between μmaxG and μmaxX, KsG and KsX, μmaxG and KsX and, μmaxX and 



KsG were negative. Thus, increasing KsX would result in a higher growth rate on xylose, and a lower growth 
rate on glucose due to the CCR effect of xylose on glucose, and vice a versa. Therefore, our results suggest 
that repression effects apply to both sugars. We did model simulations to examine the effects of model 
parameters on the growth rate. Even though μmaxG was smaller than μmaxX, it had a greater influence on the 
growth rate. There is a relation between the sugar concentration and the substrate affinity constant (Shuler et 
al., 2017). When SX < KsX, the term for repression effect of xylose on glucose utilization (1+SX/KsX) decreases 
with increasing KsX, and vice a versa. Therefore, a change in KsG and KsX resulted in different effects on the 
growth rate, Figure 2 b) and c), since SG=2.5 g/l > KsG=1.2360 g/l, and SX=2.5 g/l < KsX=4.5996 g/l. 

5. Conclusions 
To our knowledge, this is the first attempt to model the growth of C.beijerinckii NCIMB 8052 on glucose and 
xylose, which considers the synergistic effects of sugars. We fitted growth models with different types of 
interactions to the growth rate data obtained with varying sugar concentrations. A noncompetitive binary 
substrate growth model gave the best fit. Both sugars had CCR effects on the growth rate, and interaction was 
of the noncompetitive type. Validation with other sugar concentration values will be necessary to evaluate the 
prediction capability of the proposed model. A transcriptional study will be beneficial to understand global gene 
regulation mechanisms as guidance for improving the efficiency of lignocellulosic fermentation processes. 
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