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Sugarcane bagasse has great capacity for conversion into new products, resulting from a more noble 
application of the residue. Hydrogen peroxide delignification is an alternative to conventional processes that 
provide energy and environmental demands for a cleaner process in terms of product generation. In this 
study, the experiments, performed in duplicate, consist of batchings with combinations of temperature values 
(25, 35 and 45 ° C) and hydrogen peroxide concentration values (1,5, 3,0, 4,5 and 7 , 5% v / v). The 
performance of the delignification process was evaluated by the RAMAN analytical spectroscopy technique, 
by verifying the oxidized lignin content. It was possible to collect a large amount of information on the samples 
submitted to each established condition. Thus, it was advantageous to use the artificial neural networks (ANN) 
as a method of predicting information for the lignin / cellulose ratio, since the ANNs are fast implementation 
and high performance learning methodologies, presenting high recognition and association of patterns. 
Pretreatment models with hydrogen peroxide were proposed for the prediction of oxidized lignin content. An 
ANN topology was selected and the performance was evaluated by the correlation coefficient (R2) and error 
indexes (MSE and SSE). The model developed from the neural network was satisfactory, since the R² value 
was 0.92 and the error index values were 0.277 for SSE and 0.0046 for MSE.  

1. Introduction  
The lignocellulosic material is composed of three main fractions, represented by cellulose, lignin and 
hemicellulose. The fractions are fixed to each other. In order to make the lignocellulosic fractions raw material 
for other processes of transformation and generate products with greater applicability and economic value, 
such as cellulosic ethanol (Lopes et al., 2017), lactic acid (Grewal et al., 2018) and polymers, blends and 
lignin-based compounds (Naseem et al., 2016) require a fiber delignification step, which will make the 
fractions available for later steps in the synthesis. 
Delignification is a critical step in promoting the separation of lignin from lignocellulosic biomass. If executed 
successfully, it ensures the good performance of the later stages. The pre-treatment of biomass with hydrogen 
peroxide, as recently confirmed (Santos-Rocha et al., 2017), appears as an alternative to classical processes, 
which require reagents with great potential for pollution and generate a large amount of intermediate residues. 
Lopes et al. (2017) shows the use of sugarcane as a good source of biomass because several countries 
generate large volume of bagasse as a by-product of production. According to data from UNICA (2016), sugar 
cane is an agricultural crop of great importance for the Brazilian sugar and alcohol production industry. To 
evaluate the delignification performance of cane bagasse, analytical methods such as Raman spectroscopy 
(FT-Raman) and Fourier transform infrared spectroscopy (FTIR) can be applied to identify organic materials 
such as lignin and cellulose. 



Raman spectroscopy is a qualitative analysis technique that allows precise investigations and is therefore 
widely used for the characterization of carbonaceous materials by means of the identification of the existing 
types of chemical bond and by information on the degree of disorder of the crystalline lattice. The technique 
uses a monochromatic light source that reaches an object and is scattered, this dispersion is related to the 
electronic states and is characteristic of each material. It is this energy difference that is measured in the 
analysis and for this work it is possible to evaluate the efficiency of delignification with sugarcane bagasse with 
hydrogen peroxide. 
In addition to identifying a composite of the samples, Raman spectroscopy allows quantifying these results 
through mathematical manipulations. In this same context, Miyafuji et al. (2017) uses Raman spectroscopy to 
quantify the lignin contents of various wood species through the calibration curve from the standard sample. 
Agarwal et al. (2003) used Raman spectroscopy to determine lignin concentration in bleached and partially 
bleached pine pulps and thus to develop a new method for measuring Kappa number. 
Most of the engineering processes present strong non-linearities, making it difficult to obtain 
phenomenological models. The volume of data obtained and the long time required by the experimental and 
analytical methods point to the application of artificial neural networks (ANNs) as support for the development 
of engineering processes. 
ANN is a fast, high-performance implementation technique for learning arbitrary non-linear mappings with high 
pattern recognition and associative capability that enables complex problem solving and provides security 
resolution through predictive and behavioural data of the technological process. In this context, Di Domenico 
et al. (2017) use ANN to optimize the process of convective drying of foods and reduce energy consumption. 
However, for the success of modeling and process control through a generalized model it is necessary to 
know strongly the main variables of the process and a database of good quality for the desired domain, since 
the parameters of the network will be adapted by the data set. 

2. Materials and Methods 
2.1 Preparation of biomass 

Sugarcane bagasse obtained through free trade fairs in the city of Rio de Janeiro was washed with running 
water and subsequently dried at 45º C for 48 h at room temperature as confirmed (Rabelo et al., 2014). Then, 
the lignocellulosic biomass was particularized in an electric crusher and reserved in a place for later use. 

2.2 Process of sugarcane bagasse delignification with Hydrogen Peroxide 

Aliquots of 1g the treated lignocellulosic biomass were added to the 250 mL Erlenmeyer  followed by 25 mL of 
30% hydrogen peroxide solution in alkaline medium at different concentrations. The reactors were placed in 
Shaker with constant stirring for 1 hour at a set temperature. 
For the delignification reaction of the lignocellulosic biomass, the conditioning temperature and the 
concentration of hydrogen peroxide (v/v) are important variables that influence the process, so, in order to 
facilitate the process, these variables were evaluated by means of experiments. The experiments aimed at 
combining values of temperature and concentration of hydrogen peroxide to condition the biomass 
delignification reactor. The different concentrations of hydrogen peroxide used in the experiments were: 1.5% 
(v/v), 3.0% (v/v), 4.5% (v/v), and 7.5% (v/v). Each batch of tests was performed with three conditioning 
temperatures: 25ºC, 35ºC and 45 ºC. Rabelo et al., (2014) has reported that the best pH adjustment for the 
tests is 11.5, carried out with 5M potassium hydroxide. 

2.3 Analysis in Raman spectroscopy 

The lignin samples obtained through the different process conditions of lignocellulosic biomass delignification 
were submitted to qualitative analysis with Raman spectroscopy system. However, prior preparation of these 
lignin samples fixed under a silicon foil and with the addition of a thin top layer of polyethylene glycol (PEG) 
was required. This is due to the high characteristic fluorescence of the compound investigated, attributed to 
the presence of aromatic rings in its chain. Raman spectra were obtained through a Witec® alpha300 SR 
Confocal Raman Microscope. The laser used as excitation source was Nd: YAG with wavelength 532nm and 
maximum power of 100 mW. The instrument was operated with 50x lenses. The spectrometer was operated 
with a diffraction grating of 600 slots / mm. The spectra between 1300 cm-1 and 1700 cm-1 were corrected for 
the background contribution and intensities of the bands at 1600 cm-1 and 1378 cm-1 were calculated with the 
baseline method. Peak-height and band-area were calculated for each band by Guassian peak functions. All 
samples were analyzed at least twice so that data with mean values could be used for ANN construction. 



2.4 Artificial neural network architecture 

In this study, MATLAB R2016b was used to predict was used to perform an ANN topology selected to predict 
the conditions of the delignification process through the intensity values provided by Raman spectroscopy. 
The activation functions for the hidden layer neurons tested were tansig and logsig and the training algorithms 
were trainbr and trainlm. 
To evaluate the performance of the ANN, the error indexes SSE (Sum of Squared Errors) and MSE (Mean 
Squared Error) were observed. In addition, other aspects such as value of Coefficient of Determination (R²) 
and number of network parameters were evaluated. 

3. Results and Discussion 
3.1 Raman analyses 

With the treated Raman spectra, safe measures of lignin content can be realized. Agarwal et al., (2003) has 
reported the main lignin feature is seen at 1600 cm-1 region. Most other bands are attributable to cellulose 
confirmed (Ji et al., 2013).  The 1378 cm-1 region was chosen to be attributed to cellulose because it was 
expressive in the generated Raman spectra. Region`s intensity was calculated by peak-heigh and band-area. 
To measure the efficiency of each of the pretreatment conditions tested, a ratio was calculated between the 
intensity referring to 1600 cm-1 and the intensity referring to 1378 cm-1 as shown in Table 1.  

Table 1:  Raman intensity data and oxidized lignin ratio for test conditions in lignin (1600 cm-1) and cellulose 
(1378 cm-1) regions. 

T (ºC) 
Concentration H2O2 

% (v/v) 

intensity 
1600cm-1 

(lignin) 

intensity 
1378 cm-1 
(cellulose) 

1600 cm-1 intensity 
------------------------- 
1378 cm-1 intensity 

 

25 

1.5 0.5889 0.6009 0.9801 

3.0 0.7988 0.8224 0.9714 

4.5 0.7831 0.7698 1.0173 

7.5 0.6946 0.6982 0.9950 

35 

1.5 0.1281 0.1245 1.0282 

3.0 0.2705 0.2604 1.0385 

4.5 0.4623 0.4440 1.0414 

7.5 0.2075 0.1987 1.0442 

45 

1.5 0.6654 0.2851 2.3337 

3.0 0.0107 0.0095 1.1308 

4.5 0.6134 0.5853 1.0480 

7.5 0.7650 0.7701 0.9934 

 

 
The lignin/cellulose ratio expressed the content of oxidized lignin and allows comparing the performance 
between the tests equivalently. Among the values of the lignin / cellulose ratio, 2.3337 is relevant for the 
condition of 45ºC for temperature and 1.5% (v/v) for hydrogen peroxide concentration, indicating that this is 
the most suitable condition for the process. 
Figure 1 shows the Raman spectra of sugarcane bagasse after pretreatment for the test conditions at 35 ° C 
and 45 ° C for all tested hydrogen peroxide concentrations (1.5, 3.0, 4.5, 7.5% v / v). These are the process 
conditions tested that presented the best values for the lignin / cellulose ratio, which expresses the oxidized 
lignin content. 
 



 

Figure 1:  FT-Raman spectra of sugarcane bagasse after pretreatment with hydrogen peroxide in the condition 
of 35 ºC for the four concentrations evaluated (a) and 45ºC for the four concentrations evaluated (b). 

3.2 Artificial neural network 

The Raman spectroscopy analysis performed on the samples generated a database with 80 arrays, where 
75% were used for ANN training and 25% for testing. 
The variables used as neurons in the input layer were the temperature and the concentration of hydrogen 
peroxide defined in each experimental condition. The variable used as neuron in the output layer was the 
oxidized lignin content. To avoid overfitting in the ANN, the maximum number that could be used in the hidden 
layer was 14 neurons. 
Table 2 shows some ANN topologies developed in this work. 

Table 2:  Some ANN topologies used in the model proposed in the process of delignification of sugarcane 
bagasse with hydrogen peroxide, besides the activation function, training algorithm and the adjustment values 
obtained for each case. 

Number of 
neurons in 
the hidden 

layer 

Activation 
Function 

 

Training 
Algorithm 

R² SSE MSE 

6 
4 
6 
6 
4 
6 
8 

Tansig 
tansig 
logsig 
logsig 
logsig 
tansig 
logsig 

trainlm 
trainlm 
trainlm 
trainbr 
trainlm 
trainbr 
trainlm 

0.930 
0.888 
0.920 
0.896 
0.879 
0.905 
0.932 

0.650 
1.230 
0.277 
1.540 
0.314 
1.650 
0.667 

0.0108 
0.0205 
0.0046 
0.0257 
0.0052 
0.0275 
0.0111 

      

 
The selected ANN has only 6 neurons in the hidden layer, presenting 25 effective parameters. ANN topologies 
with lower number of neurons in the hidden layer tended to present higher values for error indices or lower 
correlation coefficient. Topologies with higher number of neurons in the intermediate layer did not show 
significant improvement in the value of the correlation coefficient and error indexes, and its use it is not 
recommended, given the increase in the number of effective parameters.  
Similar applications of artificial neural networks (ANN) can be found in Santos et al., (2017), Valim et al., 
(2017), Villarrubia et al., (2018) and Pappu et al., (2016). 
Figure 2 shows the R² values of 0.920 for the testing stage obtained for the applied ANN topology. This ANN 
presented an SSE performance value of 0.277 and MSE of 0.0046. 



 

Figure 2: Regression diagram and representation of the behavior of the predicted data in relation to the 
observed data of each sample, for the ANN test stage used to predict the percentage of oxidized lignin of the 
sugarcane bagasse after the pre-treatment with hydrogen peroxide.  

4. Conclusions 
In order to evaluate two important variables involved in the process of delignification, effect of process 
temperature and concentration of hydrogen peroxide in the reaction medium, a qualitative identification 
technique was combined with a computational tool. Thus, an intelligent mathematical model was developed, 
which made it possible to indicate the optimum conditions of the lignocellulosic biomass delignification 
process. The FT-Raman approach can be used to obtain stable measurements of oxidized lignin by 
pretreatment with hydrogen peroxide. Through this method, the process condition that stands out most is 
temperature of 45ºC and concentration of hydrogen peroxide the value of 1.5% (v/v). The difficulty of the 
method is the high characteristic fluorescence of the lignocellulosic fraction, heterogeneity of the samples and 
the necessity of a high volume of experimental data. In this way the mathematical model developed through 
the ANN applications is an important alternative tool to experimental tests. It allows detecting the values of the 
lignin/cellulose ratio for different experimental conditions. Data extracted from the analyses were essential for 
the ANN training and testing. Regarding the predictions, the proposed ANN topology is considered adequate, 
since it presented satisfactory performance, confirmed by SSE, MSE and R² values. The use of the combined 
technology was motivated by the volume of data provided by the FT-Raman qualitative analysis, which 
developed a mathematical modeling that identified two of the most indicated process conditions in terms of 
performance. This work pioneered the use of combined techniques and supports later stages of qualitative 
analysis for the development of an optimal process that can be applied on an industrial scale.  
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