
 CHEMICAL ENGINEERING TRANSACTIONS

VOL. 57, 2017

A publication of

The Italian Association
of Chemical Engineering
Online at www.aidic.it/cet

Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza, Serafim Bakalis
Copyright © 2017, AIDIC Servizi S.r.l.

ISBN 978-88-95608- 48-8; ISSN 2283-9216

A Bottom-up Approach for Parallelizing CAPE Software

Karim Alloulaa, Jean-Pierre Belauda,b, Loïc Sanromac, Jean-Marc Le Lanna,b
a
Université de Toulouse, INPT-ENSIACET, 4, allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France

b
CNRS, Laboratoire de Génie Chimique (UMR 5503), 4, allée Emile Monso, BP 44362, 31030 Toulouse Cedex 4, France

c
Toulouse School of Economics, CNRS, University of Toulouse,21, allée de Brienne, 31015 Toulouse, France

Karim.Alloula@ensiacet.fr

One way to parallelize a CAPE software is to simulate unit operations simultaneously. This parallelization at

the upper level -the flow sheet level- takes place usually in the context of distributed memory parallelism,

where distinct computation nodes execute different pieces of code and exchange data with each other by

means of a communication network. Taking advantage of today shared memory architectures, we suggest

parallelizing the simulation codes from the lowest level -mathematical expressions and control structures- up

to the upper level -the process-. Such an approach requires that the pieces of code to be parallelized should

be written in an OpenMP compliant language, and that the source codes may be slightly modified. Assuming

that these technical constraints are satisfied, from this systematic and progressive way to parallelize a CAPE

software one can obtain an interesting speedup.

1. Introduction

For quite a long time, the CAPE community is interested in increasing the performance of the process

simulators. This interest comes from the need for taking into account some new phenomena, while refining the

description of the phenomena already simulated. The overhead associated to such an enriched simulation has

to be counterbalanced by means of improved numerical methods, and more efficient hardware architectures.

Those methods and architectures reach their summit within the context of parallel computing. In part two, this

paper makes a very brief review of parallel computing which, in chemical engineering, is commonly applied at

the flow sheet level. Part three introduces a way to use a shared memory parallelism when evaluating any

instruction, set of instructions, or model within CAPE software. The simulation of a MTBE synthesis model

validates this bottom-up approach.

2. Parallel computing at the flow sheet level

To summarize, when dealing with chemical engineering problems, the techniques coming from high

performance computing (HPC) are mainly applied at the flow sheet level.

For a sequential modular simulation, several unit operations are simulated at the same time on a unique

computer, or on distinct computers. In such a case, there is a need for a master task in charge of scheduling

the elemental simulations, and forwarding the results of some unit operation to another, or to some others

(Laganier et al., 1993).

For an equation-oriented simulation, a numerical solver running in a parallel environment handles the

aggregated equations, either static or dynamic. A master task drives several other elemental tasks, each one

being in charge of solving a sub problem on a computing node. The task definition, scheduling, and

communication depend mainly on numerical considerations. This is the case with multi-frontal methods for

solving linear systems, or with domain decomposition methods for solving partial differential equations.

For today’s multi-physics simulations, several codes, each one devoted to a physical modeling, collaborate for

simulating systems. Preisig and Lobo (2013) introduced the coupler technology providing « the infrastructure

to bring such pieces to talk together and form a computation environment assembled for a specific purpose ».

They detailed the case of nanotechnology where specialized simulation softwares are required from « very

many different fields including quantum chemistry, molecular dynamics, micro-fluids, meso-scale population-

based behaviour simulations all the way to macroscopic flows and capacity behaviour, plant and control

design ». Like sequential modular simulation, multi-physics simulation takes advantage of parallel computing

at the “flow-sheet” level. However, in a multi-physics simulation the word “flow-sheet” has a quite different

meaning than in a sequential modular simulation: the specialized simulation software replaces the unit

operations, and the sets of information required and produced by the standalone pieces of software replace

the pipes.

In all the cases, the parallel environment is made of computing nodes, a communication network for inter-node

communication, and some additional software -the middleware- in charge of interfacing the process simulation

code with the computing hardware. Today, the Message Passing Interface (MPI) is the main de facto standard

for developing new parallel applications spread over several computing nodes. This middleware, devoted to

coarse-grained parallelism, has been successfully applied to chemical engineering applications, as reported

by Chen Z. et al. (2013).

Other parallelization models, such as grid computing (Papadopoulos and Linke, 2009), are not commonly

used in the CAPE community. However, Gautier and Hamidi (2007) reports an attempt to exploit parallelism

on services, provided by CAPE-OPEN compliant components.

3. Parallel computing at the expression level

3.1 Main principles

The previous part summarized the use of some parallelization models in an inter-node context. The last few

years were characterized by a renewed interest in intra-node parallelism, where several tasks are executed

simultaneously in a graphical process unit or by one computing node, either on one, two, up to eight multi-core

processors. This paper suggests a new way to take advantage of one of the most common type of intra-node

parallelism: shared memory parallelism. Instead of dealing with an inter-node parallelism at the process level,

we investigate the benefits of parallelizing on each computing node the lowest level task: expression

evaluation.

Any piece of code, either an arithmetic expression, an assignment, a control structure, a routine, or the whole

program, can be viewed as a tree which leaves are the lexical tokens of the programming language -numbers,

variables, operators or key words- and where nodes are subexpressions. Consequently, the sequential

execution of any straight-line piece of code (without loops, tests, gotos, …) is a depth-first traversal process of

this parsing tree. More generally, the sequential execution of any piece of code (with loops, tests, gotos, …) is

a depth-first traversal process of some tree, built dynamically from the parsing tree. In order to take advantage

of a shared memory parallelism during code execution, an obvious way seems to evaluate simultaneously all

the nodes at the same level during the tree traversal process. Unfortunately, such an approach has to deal

with at least two extra issues coming with parallel computing: data dependence and load balancing (we omit

talking about synchronization and race conditions). The data dependence is the fact that, even in a parallel

computing context, some variable values have to be computed first by some instructions before being used by

some others. This paper does not address this obstacle for parallelization.

We focus on the load-balancing problem, coming from the fact that the evaluation costs associated to each

node in the parsing tree may be very different due to subexpression differences in length, depth and/or

semantics. Instead of distributing the subexpression evaluations to a thread pool, each thread evaluating

immediately a fixed number of subexpressions, we create tasks for the deferred evaluation of some

subexpressions, queue these tasks, and dispatch them to threads for execution as soon as they become

inactive. Introducing a queuing mechanism between the producers -the evaluation tasks to be executed- and

the consumers -the threads in charge of executing these tasks-, we hope that the load-balancing problem will

be treated efficiently.

This task mechanism may solve the load-balancing problem, but it requires working with the tricky task and

thread features. In order to hide this additional complexity to the CAPE software developers, the suggested

approach is not applied directly to the original code, but to a corresponding parsing tree structure built

automatically from the original code. The programming language keywords and operators are overloaded to

create the nodes and leaves of this tree and to change the evaluation semantics. The overloading mechanism

allows us to make tasks evaluate subexpressions in parallel. It also extends the semantics domain of the

original code. From the original mathematical expressions, operator and function overloading build functional

expressions to which formal transforms can be applied (Alloula et al., 2009). We no longer work with a

numerical calculation system but with a computer algebra system. The most important formal transform this

calculation system comes with is derivation, which allows obtaining very accurate Jacobian or Hessian

matrices improving the numerical solving procedures.

3.2 Expected benefits

Our intent is to offer the CAPE software developer a means to reduce the computation time of some

simulation code by spreading expression evaluations over the several cores available in a computing node, a

computing node being a personal computer or a shared memory element in a HPC cluster. The main benefit

of the presented approach is to hide from the developer the entire burden related to shared memory

parallelization. The CAPE software engineer should not have to know how to parallelize certain pieces of

code. He, or she, subcontracts this work to a dedicated software library.

The instructions in the original code are not modified. Thanks to the overloading mechanisms provided by the

CAPE software programming language, the sequential instructions seamlessly become parallel instructions.

However, because one should be able to indicate precisely which pieces of straight-line code should be

parallelized, the overloading, and consequently the parallelization, takes place only for instructions involving

variables of some predefined type. This bottom-up approach where, progressively, sequential instructions

become instructions which subparts are executed in parallel, should improve the computing performance

continuously.

3.3 Technical requirements

In order to obtain the aforementioned benefits, the programming language used for simulation should support

both, a shared memory-programming model and overloading facilities. For the time being, we make the choice

to parallelize only codes written with the FORTRAN language. Starting with its 90 version, FORTRAN comes

with assignment and operator overloading facilities, and provides shared-memory features through the

OpenMP directives, data types, environment variables and functions. Another choice could have been to deal

with codes written in C++, because this language comes also with overloading and OpenMP. Our choice of

FORTRAN, rather than C++, is justified by the language of the underlying library providing the parallel

facilities: eXMSL, the computer algebra system introduced in Alloula et al. (2009). eXMSL is written in

FORTRAN 95, so it can be naturally interfaced with codes written in the same programming language.

However, the main principles of our approach could be implemented with codes written in C++ if the parallel

evaluation process, the overloaded functions and the overloaded operators were coded in this language.

In the functional programming context of a computer algebra system, the OpenMP TASK feature provides the

means for seamlessly distributing sub expressions evaluations over the execution cores. Because eXMSL is

in charge of the whole evaluation process, nearly all the task mechanism is hidden from the chemical engineer

who programs models. Only one set of OpenMP directives appears at the beginning of the program, and is

closed at the end of the program as illustrated in Figure 1. Initially, a parallel region is created using the

PARALLEL directive. This directive starts a team of threads, which will be in charge of parallel executions.

However, the SINGLE directive specifies that only one thread in the team executes the enclosed code. This

single thread executes one task: calling the procedures Validate_Abs, Validate_And, … enclosed within

the TASK directive. Therefore, from the point of view of the chemical engineer the whole execution flow seems

to be sequential!

!$OMP PARALLEL
!$OMP SINGLE
!$OMP TASK
 CALL Validate_Abs
 CALL Validate_And
 CALL Validate_Append
 CALL Validate_Apply
 CALL Validate_ArcCos
 CALL Validate_ArcCosh
 CALL Validate_ArcSin

!$OMP END TASK
!$OMP END SINGLE
!$OMP END PARALLEL

Figure 1: OpenMP directives to be placed in the end user code.

Of course, this is not the case. Behind the scene, hidden to the end user, other OpenMP directives appear

inside the eXMSL library. These directives will take advantage of the threads created initially by the PARALLEL

directive for executing simultaneously several tasks, that is to say blocks of instructions together with their

associated data. Figure 2 shows some of the OpenMP directives included in the eXMSL library, just to give a

flavor of the asynchronous execution mechanism based on tasks. TASK directives create as many tasks as

the number of parts in the expression to be evaluated: one task for the expression head, and one task for

each subexpression. Those tasks become available for further execution by the pool of threads. The

TASKWAIT directive insures that all the expression parts are evaluated before returning the evaluation result.

Notice that the number of tasks, i.e. the expression length plus one, and the number of threads are

independent.

IF (traverse_heads) THEN
!$OMP TASK DEFAULT(SHARED)

CALL setHead(transformedExpression, depthFirstTraversalLeaves1(factory,
getHead_(expr), traverse_heads, transform))
!$OMP END TASK
ELSE

CALL setHead(transformedExpression, getHead_(expr))
END IF
DO index = 1, length
!$OMP TASK DEFAULT(SHARED) FIRSTPRIVATE(index)

CALL setSubExpression(transformedExpression, index,
depthFirstTraversalLeaves1(factory, getSubExpression_(expr, index), traverse_heads,
transform))
!$OMP END TASK
END DO
!$OMP TASKWAIT

Figure 2: OpenMP directives driving the parallel execution in the eXMSL library.

The parallel execution is possible only because the eXMSL library handles a data structure mapping the

instructions in the end user code. A parallel evaluation process of the data structure replaces the sequential

evaluation of the original instructions. In order to build this data structure by means of the assignment and

operator overloading, the declaration part of the end user code has to be modified: for a given set of

instructions to be parallelized, all the numerical variables, previously declared as integers, reals or complexes,

become symbols declared with the eXMSL-defined type Expression. Figure 3 details how the variable

declarations are modified. The first instruction USE Exmsl_ imports the eXMSL library features in the user

code, the most important feature being the derived type Expression. R and xs variables, declared with the

FORTRAN predefined types REAL or DOUBLE PRECISION in the original sequential code, are now declared as

references to Expression data. x variable, declared as a real array in the original sequential code, is now

declared as a reference to an Expression array. Initially, R, xs and x are null references. The link

instructions attach them to expressions. Here, those expressions are symbols. From those symbols, thanks to

overloading mechanisms, composite expressions are built automatically. For example, from x(1)+x(4) ==

3.0D0, eXMSL builds a composite expression made of two symbols x(1) and x(4), one real number 3.0D0,

and two operators + and ==. The built-in FORTRAN + operator has been overloaded to produce an

Expression reference x(1)+x(4) from the two Expression arguments x(1) and x(4). The built-in ==

operator has been overloaded to produce an Expression reference x(1)+x(4) == 3.0D0 from the

Expression argument x(1)+x(4) and the REAL argument 3.0D0. Several equality expressions are built

the same way and are referenced by the different elements of an explicit array. Then, the FindRoot eXMSL

function takes three array arguments and builds a new Expression which head is the predefined FindRoot

symbol and which parts are respectively the system of nonlinear equations, the unknown variables and the

initial conditions. Finally, the reference to the FindRoot composite expression is transmitted to

evaluationStep, the main eXMSL evaluation function, in charge of the parallel process explained before.

To summarize, from Figure 3 one can notice that the modifications to the original sequential code occur in the

declaration part. In the instruction part, syntax remains unchanged but, thanks to the overloading

mechanisms, the semantics is enriched:

 Expression parts are evaluated in parallel.

 Mathematical models are formulated in a more user-friendly manner. For example, to solve a system

of nonlinear equations, one can directly write a list of equality expressions instead of a residual

function.

 In addition to the numerical evaluation features coming by default with the FORTRAN language, the

end user can take also advantage of the several computer algebra facilities coming with the eXMSL

library like differentiation, operations on sets, replacements and so on.

PROGRAM CombustionOfPropaneInAir

USE Exmsl_

IMPLICIT NONE

TYPE(Expression), POINTER :: R => NULL(), xs => NULL()
TYPE(Expression), DIMENSION(:), POINTER :: x => NULL()

CALL prolog
!$OMP PARALLEL
!$OMP SINGLE
!$OMP TASK
CALL link(R, Symbol('R'))
CALL link(x, Symbol('x', 10))
CALL link(xs, Symbol('xs'))
CALL evaluationStep(&
 FindRoot(&
 (/ &
 x(1)+x(4) == 3.0D0, &
 2*x(1)+x(2)+x(4)+x(7)+x(8)+x(9)+2*x(10) == R, &
 2*x(2)+2*x(5)+x(6)+x(7) == 8, &
 2*x(3)+x(5) == 4*R, &
 x(1)*x(5) == 0.193D0*x(2)*x(4), &
 x(6)*SQRT(x(2)) == 0.002597D0*SQRT(x(2)*x(4)*xs), &
 x(7)*SQRT(x(4)) == 0.003448D0*SQRT(x(1)*x(4)*xs), &
 x(8)*x(4) == 1.799D-5*x(2)*xs, &
 x(9)*x(4) == 2.155D-4*x(1)*SQRT(x(3)*xs), &
 x(10)*x(4)**2 == 3.846D-5*xs*x(4)**2, &
 R == 40.0D0, &
 xs == SUM(x) &
 /), &
 (/ R, x, xs /), &
 (/ 0.0D0, 3.0D0, 4.0D0, 80.0D0, 0.002364502112718679D0,
0.0006D0, 0.0013D0, 0.06D0, 3.5D0, 26.4D0, 0.004D0, 100.0D0 /) &
) &
)
CALL unlink(R)
CALL unlink(x)
CALL unlink(xs)
!$OMP END TASK
!$OMP END SINGLE
!$OMP END PARALLEL
CALL epilog

END PROGRAM CombustionOfPropaneInAir

Figure 3: Modifying variable declarations to take advantage of the eXMSL library facilities.

3.4 Pitfalls and drawbacks

From the previous presentation, our approach seems to be seductive because when applied to an original

code the modifications are few and furthermore they are located in the declaration parts only. However, as

usual, pitfalls and drawbacks appear when entering into the details.

The presented approach suggests to do parallel computing at the expression level so, by default, at the

instruction level. This kind of “fine-grained parallelism” is implemented using OpenMP tasks. Consequently,

our approach can result in a too finely grained task parallelism. As detailed in Schmidl et al. (2012), “if the

execution time of a task is very small, this overhead can consume more CPU cycles than the task’s

actual execution. In this case, it would be more efficient to execute the task’s body immediately without

separating it into a task”. Our answer to this pitfall is to make our instructions bigger by grouping several

independent instructions into one list of expressions, which is executed in parallel.

Because parallelization is achieved at the expression level, our approach works seamlessly with the control

structures, loops or conditions, present in the original sequential code. However, in order to make instructions

bigger, the end user can take advantage of the control structure overloading provided by eXMSL, which allows

converting control structures in expressions too.

4. Application to the MTBE synthesis

4.1 Presentation

The case study consists in simulating a reactive Rayleigh distillation model, which couples kinetics and

thermodynamics. Thermodynamic data and chemical constants are taken from Chen F. at al. (2002). Alloula

et al. (2013) details an index reduction method, transforming this index two differential algebraic system to an

index one system. The simulation times obtained during this previous work, where any computation was

sequential, are compared with a parallel version of the simulation code.

4.2 Main results

The most important result for this case study is that the speed-up, associated to the shared memory

parallelism introduced before, is almost linear for a number of cores up to twenty-four. Such an improvement

was made possible because the mathematical expressions involved in such a problem were big enough, and

because we finely tuned the task granularity, avoiding unnecessarily nested tasks. In the general case, when

the proposed parallelization is applied as introduced in section 3, a value of the expected speed-up cannot be

guessed before runtime. However, as a rule of thumb, we can state that the bigger the mathematical

expressions in the original code, the higher the speed-up obtained with the parallelized code.

5. Conclusions

An innovative approach to exploit an intra-node parallelism in CAPE software has been detailed. While

successfully implemented into a legacy calculation system, where everything is an expression made of sub

expressions, it requires some extra work to deal with most of the existing simulators coded using procedural or

object-oriented languages. Fortunately, this extra work needs not to be achieved in one shot: first, one can

move only the lowest levels (mathematical expressions, thermodynamic models …) to a parallel

implementation, and then tackle the top levels (unit operations and flow sheet).

From the case study, a promising result has been obtained: the overhead generated by the OpenMP library,

and by some of the specific features of our calculation system (garbage collection, common sub-expression

sharing and cache mechanism), remains small when compared to the speed-up coming from the parallel

evaluations of expressions parts. Furthermore, this intra-node parallelization can be efficiently combined with

an inter-node parallelization at the flow sheet level, leading to a hybrid model of programming CAPE codes.

Reference

Alloula K., Monfreda F., Théry Hétreux R., Belaud J.-P., 2013, Converting DAE model to ODE models:

application to reactive Rayleigh distillation, Chemical Engineering Transactions, 32, 1315-1320, DOI:

10.3303/CET1332220

Alloula K., Belaud J.-P., Le Lann J.-M., 2009, A co-operative model combining computer algebra and

numerical calculation for simulation, Computer-Aided Chemical Engineering, 26, 889-894.

Chen F., Huss R. S., Doherty M. F., Malone M. F., 2002, Multiple steady states in reactive distillation: kinetic

effects, Computers & Chemical Engineering, 26, 81-93.

Chen Z., Chen X., Shao Z., Yao Z., Biegler L. T., 2013, Parallel calculation methods for molecular weight

distribution of batch free radical polymerization, Computers & Chemical Engineering, 48, 175-186.

Gautier T., Hamidi H.-R., 2007, Re-scheduling invocations of services for RPC grids, Computer Languages,

Systems & Structures, 33, Issues 3–4, 168-178.

Laganier F. S., Le Lann J.-M., Joulia X., Koehret B., Morari M., 1993, Simultaneous modular dynamic

simulation: Application to interconnected distillation columns, Computers & Chemical Engineering, 17,

Supplement 1, S287-S297.

Papadopoulos A. I., Linke P., 2009, A decision support grid for integrated molecular solvent design and

chemical process selection, Computers & Chemical Engineering, 33, Issue 1, 72-87.

Preisig H.A., Lobo S.C., 2013, The role of couplers in chemical model-based engineering, Chemical

Engineering Transactions, 32, 1405-1410, DOI: 10.3303/CET1332235

Schmidl D., Philippen P., Lorenz D., Rossel C., Geimer M., an Mey D., Mohr B., Wolf F., 2012, Performance

analysis techniques for task-based OpenMP applications, IWOMP'12 Proceedings of the 8th international

conference on OpenMP in a Heterogeneous World, 196-209, DOI: 10.1007/978-3-642-30961-8_15

	A Bottom-up Approach for Parallelizing CAPE Software

