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Highlights
· Zeolite supports enhance dehydration/condensation reactions
· The acidity features of the catalyst play a primary role in their performance
· The FeMoP/ZSM5 catalyst is the most selective towards aromatics

1. Introduction
In the recent years, bio-oil has been attracting great research attention given its potential as a sustainable source of fuels and platform chemicals [1]. When aiming for the production of chemicals (i.e., aromatics, phenolics), hydrodeoxygenation (HDO) has proven to be a versatile approach for achieving an efficient conversion of the most refractory bio-oil components [2]. In this context, phosphided catalysts are known to provide high HDO activities [3]. However, no studies with raw bio-oil are reported to date. 
2. Methods
The supported FeMoP catalysts (20 wt. %) were prepared by impregnation of three zeolites of different topology (i.e., HZSM-5, H and HY) with an aqueous citric acid solution in which were previously added Fe, Mo and P. A “bulk” FeMoP catalyst was also prepared as a reference. The catalysts were characterized by means of ICP-MS, N2 adsorption-desorption, NH3-TPD, and XRD. The bio-oil hydrodeoxygenation runs were carried out in a downflow fixed bed reactor described elsewhere [2] at 450 °C, 65 bar, space time, 0.15 gcat h g-1bio-oil; 90 ml min-1 H2; and time on stream, 0-8 h. Organic liquid products were assessed through two-dimensional Gas Chromatography coupled with Mass Spectrometry (GCxGC-MS).The water content in the aqueous product phase was quantified by Karl-Fischer titration.
3. Results and discussion
In contrast to the negligible specific surface of the bulk FeMoP, the FeMoP/ H and FeMoP/HZSM-5 catalysts showed a specific surface of 356-366 m2 g-1 (Table 1), with this value being significantly higher for the FeMoP/HY catalyst (750 m2 g-1) due to a much higher microporosity. The latter catalyst was also the most acidic (1.11 mmolNH3 g-1) and with a higher proportion of medium-strong acidic sites (66 %). The FeMoP/ H catalyst was the least acidic (0.27 mmolNH3 g-1) with a higher contribution of weak-medium acidic sites (35 %). 
Table 1- Physico-chemical properties of the fresh catalysts
	
	FeMoP/H
	FeMoP/HZSM-5
	FeMoP/HY
	Bulk FeMoP

	SBET (m2 g-1)
	365.9
	355.9
	750.3
	6.0

	Vmicropore (cm3 g-1)
	0.084
	0.082
	0.207
	0.002

	Total acidity (mmolNH3 g-1)
	0.27
	0.57
	1.11
	0.24

	Weak-medium (%)
	65
	47
	34
	48

	Medium-strong (%)
	35
	53
	66
	52


In Figure 1a, an increase was observed in carbon products upon incorporating the zeolite support (22.8-27.0 wt%) in contrast to the bulk FeMoP phase (16.5 wt%), due to the enhancement of dehydration/condensation reactions performed by the zeolites. The highest total acidity and stronger nature of the acidic sites of the FeMoP/HY zeolite enhanced HDO reactions (higher amount of water being formed), leading to lower carbon product yields. On the other hand, the highest carbon product yields were attained with the FeMoP/HZSM-5 catalyst, likely due to a compromise between total acidity and a moderate content of stronger acidic sites. Moreover, FeMoP/HZSM-5 catalyst is also the most selective towards phenol and phenolic compounds (Figure 1b, 12.6 wt% total phenolics), as well as aromatics (13.5 wt% total aromatics).


Figure 1. a) Total product yields (in a wet basis) and b) carbon product lump yields (in a dry basis) obtained with the different zeolite-supported catalysts and bulk FeMoP at TOS = 8 h.
4. Conclusions
The total acidity of the catalyst and an equilibrium between weak-medium and medium-strong acidic sites are the dominant catalyst property on the HDO of a raw bio-oil towards hydrocarbons, with shape selectivity playing a secondary role. The FeMoP/HZSM-5 catalyst was the most suitable, providing the highest yield of total carbon products, and also the most selective towards the formation of aromatics, phenol and phenolic components.
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