

2019.Sep. 16th – ECCE-12 / ECAB-5, Florence, Italy

Perspectives for CO₂ Utilization

Flavio Manenti CMIC Dept. "Giulio Natta", Centre for Sustainable Process Engineering Research (**SuPER**)

CO₂ reuse – Motivation

Anthropogenic CO₂ emissions: about 33 Gt/y^[1]

CO₂ as feedstock, *today* Where and how much?

^[1] Le Quéré et al., Earth System Science Data Discussions, 2012, 2015, 2018.

POLITECNICO MILANO 1863

Urea plant

Main use: fertilizer

POLITECNICO MILANO 1863

Plant: large size, downstream the ammonia plant Toyo, Casale, Uhde, Stamicarbon, Eni...

Ref.: https://www.mhi-global.com/products/expand/km-cdr_application_03.html

Methanol plant

Other technologies

Dry reforming

- Pilot-scale
- Synthesis ^[1]
 - $CH_4 + CO_2 \rightarrow 2 CO + 2 H_2$

Sabatier process

- Pilot-sc
- Peak-to
- Synthe
 - CO

Current worldwide CO₂ reuse is negligible e in chemistry 1912 to emistry or catalysis? 19, 162-171, 2013

- GTL
 - Demo-scale, few large-scale
 - Synthesis [3]
 - CO + 2 H₂ \rightarrow -[CH₂]- + H₂O
 - Water Gas Shift (WGS)

^[3] Pirola, C. et al., Fischer–Tropsch synthesis: EXAFS study of Ru and Pt bimetallic Co based catalysts, Fuel, 132 (2018) 62–70

^[1] Pakhare, D., Spivey, J. (2014), A review of

dry (CO2) reforming of methane over noble metal catalysts, Chemical Society Reviews,

43(22), 7813-7837

$H_2, CH_4, CH_3OH, NH_3, H_2O...$

\dots and H₂S?

A natural and synthetic compound

POLITECNICO MILANO 1863

H₂S processing *today*

New: Acid gas to Syngas technology

Manenti, Pierucci, Molinari, WO 2015/015457 A1

New technology (Regenerative Thermal Reactor)

- Overall reaction: $2 H_2 S + CO_2 \rightarrow CO + H_2 + S_2 + H_2O$
- 3 moles of emissions into 2 moles of syngas
- Energy self-sustainability (minor O₂ injection)

AG2S

Regenerative Thermal Reactor (RTR)

^[1] **Manenti et al.**, Syngas from H₂S and CO₂: an Alternative, Pioneering Synthesis Route?, Hydrocarbon Processing, 38-41, June 2016

AG2S[™] complete layout

Complete conversion of H₂S (as per Claus process)

Cut of CO₂ emissions

Reduced use of air or O₂

Pilot-scale plant at team/network facilities

POLITECNICO MILANO 1863

Coal gasification^[1]

Use: syngas production

fuel gasification: Cutting H2S and CO2 emissions by improving syngas production, Applied Energy, 2016, doi:10.1016/j.apenergy.2016.06.040

Tools & pilots

Pilots at Sotacarbo facilities GasDS suite^[1] & AspenHysys-PRO/II GasDS suite

- Chemical kinetics
 - Torrefaction, pyrolysis, gasification, combustion
- Reactor configurations
 - Updraft, Downdraft, Traveling grate, Fluidized, ...
- Design & operational purposes
 - Support, Optimization, Validation, Dynamics
 - Monitoring, Prediction, Control, Start-up assistant

^[1] Ranzi, E., Faravelli, T., Manenti, F., Pyrolysis, Gasification, and Combustion of Solid Fuels, Advances in Chemical Engineering, Elsevier, ISSN 0065-2377, 1-94, 2016.

Techno-economic study

Input:

- Coal with 5%w sulfur
- Coal gasifier: 77 t/h

Revamp

- Gas/gas heat exchanger
 - 49700 kg, 727 k\$
- Burner
 - 165 k\$
- Amine washing
 - New unit (in spare)
 - 30 m3/h, 6.16 M\$

Payback: 1.63y

- Accounting for syngas only
 - Not considered: CO₂ certificates, sulfur, sulfur-rich resources

Manenti, G., Molinari, L., Manenti, F., Syngas from H₂S and CO₂: an Alternative, Pioneering Synthesis Route?, *Hydrocarbon Processing*, 6, **2016**

Potential application areas

Coal

Coal gasification Coke oven gas Shale

Shale oil

Shale gas

Oil&gas

Natural gas Crude oil

Heavy oil

Renewables

Biomass/biogas

Geothermal

Hydrogen Power generation Hydrotreating Gasification **Reforming** Fuel

Syngas Ami

AmmoniaSultSynthetic fuels (GTL)ClaMethanol/DMEHydAcetic acidSuperior alcohols/ethers/acids

CO

Formylation Carbonylation Metals Metal carbonyls Acetic acid Superconductors Sulfur Sulfuric acid Claus Hydrodesulfurization

Natural gas field

Natural gas field

Oil shale

Oil refining – HDS/Reforming

Oil refining – HDS/Reforming

CO₂-free coal-to-methanol process

CO₂-free coal-to-methanol process

Geothermal power generation Greener and greener...

Geothermal power is considered to be a sustainable, renewablesource of energyTomasini-Montenegro C. et al., 2017, Life cycle assessment of geothermal power generation
technologies: An updated review, Applied Thermal Engineering, 114, 1119-1136.The greenhouse gas emissions $\rightarrow 45$ gCO2/kWh
Geothermal electricity \rightarrow use in more than 24 countriesHolm A., Blodgett L.,
Jennejohn D., Gawell K.,
2010, Geothermal energy:
international market update,
Geothermal heating \rightarrow use in more than 70 countriesHolm A., Blodgett L.,
Jennejohn D., Gawell K.,
2010, Geothermal energy:
international market update,
Geothermal energy
association, 7.

In 2015, the worldwide geothermal power capacity amounts to 12.8GW

Global geothermal power capacity is expected to reach 14.5–17.6GW by 2020

Ruggero B. (Ed.), 2017, Perspectives for Geothermal Energy in Europe, World Scientific.

Case studies (Iceland)

Case I: Nesjavellir power station

- Produce 290 MWth and 120 MWe
- > Annual emission of H_2S was around 11300 tons
- Annual emission of CO₂ in was around 18600 tons

Case II: Hellisheiði power station

- Produce 303 MWth and 133 MWe
- > Annual emission of H_2S was around 16900 tons
- Annual emission of CO₂ in was around 43200 tons

Composition of geothermal gas emitted from the two power station

	CO ₂	H_2S	H ₂	CH ₄
Nesjavellir	43.0%	33.9%	23.0%	0.2%
Hellisheiði	58.1%	29.4%	12.3%	0.2%

Existing (Traditional) Geothermal Power Plant

Existing (Traditional) Geothermal Power Plant: Case I

AG2S[™] Geothermal Power Plant: Case I

AG2S[™] Geothermal Power Plant: Case II

Conclusions

We are preventing CO₂ formation

Thanks to renewables

We are capturing CO₂

by pre-/post-combustion CCS technologies

We definitely are **not yet reusing CO₂** as in our possibilities

Just less than 1% is currently reused

Demonstration of **AG2S[™]** technology potential and its application areas

Better exploitation of (fossil and renewable) sources

Thanks for the kind attention

Flavio Manenti

Professor of Chemical Plants (Milano, IT)

Charity Trustee at the European Federation of Chemical Engineering (**EFCE**) President-elect of the Computer Aided Process Engineering (**CAPE**), EFCE's Working Party UEFA-licensed & Federal Soccer Coach (**U13, SGS Italia**) Executive Board Member of EFCE, AIDIC, AIAC, CAPE-WP

> POLITECNICO DI MILANO Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta" Centre for Sustainable Process Engineering Research (*SuPER*) Piazza Leonardo da Vinci, 32 - I-20133 Milano, ITALY

> > (Mobile) +39.338.5665817 (Phone) +39.(0)2.2399.3273 - +49.(0)30.314.23418 (Email) <u>flavio.manenti@polimi.it</u> **WELCOME...** - (Web) <u>https://super.chem.polimi.it</u>

Flavio Manenti, flavio.manenti@polimi.it

m

apres :

The