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This work presents a method for the accurate evaluation of the footprint of chemical pollutants on a global scale. 

An extension of the standard pollution propagation models is proposed to calculate the chemical footprint 

efficiently. The proposed improvements overcome the current modelling and enable the evaluation of the 

directed transport of chemicals with water or air flows. The current research introduces several model 

modifications to account for the directed pollutant transport with global water flows and selects the Jacobi 

solution method for the resulting large-scale system of mass transfer equations. The model was combined with 

geographic information system data to account for the geographical propagation of the pollutants. The proposed 

method is implemented in Microsoft Excel using the built-in Visual Basic for Applications programming language. 

The method is tested on the example of evaluating the Global Mercury Footprint. As a result of the work, a tool 

was obtained that allows estimating the chemical load for the entire World, taking into account the transfer of 

chemicals with water flows. In the future, this tool can also be used to support regulatory decisions, for example, 

to assess the effect of mercury immobilization in solid waste on the mercury footprint. 

1. Introduction

Prediction of the environmental impact of anthropogenic chemicals is a critical component of decision-making 

when choosing chemicals for use in production and everyday life. This is especially important when assessing 

the potential risks to human health and the environment when introducing new products/substances. Chemical 

load modelling is one of the main forecasting tools. In particular, an acute example of a chemical component in 

need of a global and accurate evaluation is mercury. This has been widely recognized by the scientific 

community, as can be witnessed by the review of mercury emissions from energy generation (Charvát et al., 

2020). This is a global pollutant (Tauqeer et al., 2015). By 2020, according to the provisions of the Minamata 

Convention on Mercury (IPEN, 2018), the countries that have ratified the Convention, must phase out mercury-

containing products: batteries, switches and relays, mercury lamps, thermometers etc. It should be noted that 

according to Tarasova et al. (2018), such products and their waste are among the most significant sources of 

mercury pollution (UN Environment, 2017). Takaoka (2015) confirms this for the case of Japan. Mercury can 

also be released from the incineration of mercury-containing household waste, such as e-waste, medical waste, 

and consumer products (compact fluorescent lamps, cosmetics, switches, thermometers) (IPEN, 2018). It has 

been estimated that up to 10 % of the current anthropogenic mercury emissions are released by open burning 

of such waste materials (Wiedinmyer et al., 2014). The global inventory of atmospheric mercury emissions from 

anthropogenic sources amounts to 2,000 - 3,000 t/y. Mercury emissions associated with the disposal of mercury-

added product waste is 7 % of this (UN Environment, 2019). 

Models describing the behavior (including transformation) of chemicals and their propagation into various natural 

media have been developed. Such are the models CalTOX (2020) – updated but not actively developed, BETR 

(2020) – partitioning the World map into 15 ° cells, USEtox (2020) – referred to as the “scientific consensus 
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model”, with its implementation (MacLeon et al., 2005). Of these, the USEtox model has several advantages. 

One is the database containing information on the ecotoxicological characteristics of approximately 2,500 

chemicals – including mercury and other heavy metals (Rosenbaum et al., 2008). In the standard USEtox model, 

natural media are represented as compartments that contain a pollutant. 

The environment is described in the USEtox model (Figure 1) in the form of a 2-tier system comprising regional 

and global levels, each of which includes compartments describing atmospheric air (urban and rural), 

agricultural soil, and soils of other types, freshwater, and coastal seawater or ocean. Depending on the 

processes taking place in a compartment, the pollutant may remain within the chamber where it was initially 

released, may be transformed into other chemicals via, e.g., hydrolysis or oxidation, or may migrate to another 

compartment (Fantke et al., 2017). 

Figure 1: The model of mass transfer between cells (S - sources of hazardous chemicals, k - rate constants for 

the transfer/degradation/removed of chemicals) 

Another model is Pangea (2020), developed by Australian scientists in 2017. It has been designed to estimate 

the content of chemicals in water, soil, and air, taking into account their propagation with water flows (Wannaz 

et al., 2018). The environmental process models in Pangea are currently based on the IMPACT (Pennington et 

al., 2005) and USEtox models, adapted for taking spatial data into account, aided by the use of Geographic 

Information Systems. The mode is of hierarchical nature, containing several levels. It lumps cells with similar 

properties into more massive clusters. This modelling technique greatly simplifies the solution but also leads to 

loss of accuracy and fidelity due to the lumping the measurement errors. 

An alternative way of solving the large-scale matrix of mass balances is to use the original maps, avoiding data 

aggregation. The standard USEtox model was used as the basis for formulating the mass transfer equations, 

which is constitute the central part of the model for chemical footprint analysis. To take into account the transfer 

of chemicals with water flows, the USEtox model was adapted (Makarova et al., 2018). Instead of one local level 

as in the USEtox model, that work introduced a set of local levels (cells) (Figure 1). That allowed the model to 

take into account the interaction between the local levels, e.g., directed transfer of chemicals with water or air 

flows. The model was combined with GIS (Geographical Information System) data to solve this task, partitioning 

the studied area for the entire World on a 0.5 ° by 0.5 ° grid. In the model construction, the ocean and the 

atmospheric air above it remain at the global level. However, unlike the Pangea model, the cell scale was not 

enlarged. Instead, the model used the scale of the GIS data directly, avoiding additional interference to the initial 

data due to lumping. This chemical footprint model of the entire World results in a very large-scale underlying 

matrix of mass balance equations – of the size 1.5×106 (equations × variables) (Makarova et al., 2019).  

In summary, the two main approaches to modelling the transfer and propagation of chemicals for estimating 

their impacts and footprints, resort to either highly lumped models or to the use of a finer map mesh. The issue 

with the lumped models lies in the amplification of the inaccuracies of the processed data, to the point that the 

model may be no longer representative of the problem. On the other hand, the finer-grained models result in a 

very large-scale matrix of equations, which takes an extremely long time to solve or does not converge at all. 

The current paper presents an approach to solving the natural-scale system of equations in a reasonable time 
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and with the desired accuracy. The proposed method solves the equations of the USETox model in the variant 

of one global level and many local ones. The novel element is the introduction of additional degrees of freedom 

in the model, which allows accounting also for the mass transfer between the model compartments for air and 

ocean. The resulting system of equations is solved directly using the original GIS data on maps of 0.5 to 0.5 

degrees without introducing intermediate aggregated levels and, without averaging the original GIS data, and 

without the errors associated with this averaging. 

2. Evaluation method and computational results

The chemicals in the cell mainly come from stationary technogenic sources (Sp,n = const (kg/s)). Assuming 

steady-state conditions, the following system of equations is obtained for the cells n = (1, N): 

𝑆𝑝,𝑛 =∑∑𝑘𝑝,𝑛→𝑖,𝑗,𝑚𝑝,𝑛
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+ 𝑘𝑑𝑒𝑔,𝑝,𝑛𝑚𝑝,𝑛 + 𝑘𝑠𝑒𝑑,𝑝𝑚𝑝,𝑛, (1) 

Where: n, i = {a, as, ns, sw, ua, w} compartments in a cell denoting natural media; j,p = {1.. 259, 200}: cells on 

the map; Sp,n – chemical intake flow in the current compartment n in cell p (kg/s); mp,n – the mass of the chemical 

in the current compartment n in cell p (kg); mi,j – the mass of the chemical in the compartment i in cell j (kg). 

The model expressed in Eq(1) takes as specifications: 

• The migration rate kp,n→i,j (s-1) - between compartment n of the cell p and compartment i of the cell j, denoted

as ka-wj (s-1) in Figure 1 for the case of mass transfer from rural air of the cellj to the freshwater of the cellj;

• The degradation rate kdeg,p,n (s-1) compartment n of the cell p, - denoted as kdeg.wj (s-1) in Figure 1 for the case

of the chemical degradation in freshwater in cellj;

• The rate of removal ksed,n  (s-1) from cell p to sediment - denoted as kw-sed,j (s-1) in Figure 1 in case cellj.

In Eq(1), the terms have the following meaning: 

• kp,n→i,jmp,n – migration rate of the chemical from compartment n of cell p to compartment I, cell j (kg/s);

• ki,j→p,nmi,j – migration rate of the chemical from compartment i of cell j to compartment n of cell p (kg/s);

• kdeg,p,nmp,n – degradation rate of the chemical in the investigated compartment n of the cell p (kg/s);

• ksed,nmp,n – chemical removal rate in sediments in the investigated compartment n of the cell p (kg/s).

An additional modelling element proposed in this study, at the stage of compiling the matrix of transfer 

coefficients, is to take into account the mass exchanges between the compartments for global air and the ocean 

due to the chemicals transfer. In a previous work (Makarova et al., 2019), which did not account for mass 

contaminant transfer concerning the ocean and atmospheric air components, this system of linear equations 

could not be solved by iterative methods. 

Specifying more accurate values for the migration coefficients in global air and the ocean makes it possible to 

successfully use both direct and iterative methods for solving the system of contaminant mass balances.  

The following approaches (Saad, 2007) to solve the model have been tested: Bistabilized Gradient Method, 

Linear Solver restarted GMRES (Generalised Minimum RESidual) and the MINRES (MINimum RESidual) 

iteration methods, the Jacobi method, the LGMRES method with a preconditioner – all supplied with the Python 

library (SciPy, 2020), 

The first method evaluated for solving the model was the Bistabilized Gradient Method, in which initial guess mn 

= 0 kg/s was taken. This method showed low efficiency, and after more than 10,000 iterations (Figure 2), no 

convergence was achieved. The merging was estimated using the residual norm equal to the square root of the 

sum of the squared deviations. 

Figure 2: The residual norm for the Bistabilised Gradient Method 
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The next to solve this system were the iterative methods LGMRES (Linear Solver restarted GMRES), MINRES 

(MINimum RESidual iteration) and LSMR (Iterative solver for least-squares problems) (SciPy, 2020) from the 

linear algebra module for sparse matrices (scipy.sparse.linalg) in Python Figure 3a shows the dependence of 

the residual norm for the LGMRES method. The residual norm starts from 137 (1) and stabilises at 55.7 (1). 

When solving using the MINRES method (Figure 3b), the residual norm also starts from 137 (1). and then 

stabilises at 20.4 (1). These results are better, but the achieved convergence was poor. 

Figure 3: The residual norm in linear scale: a) for the LGMRES method, b) for the MINRES method 

The Jacobi method, which previously worked only on a partitioned matrix, after the proposed model changes, 

converges relatively quickly for 394 (1) to a solution with an accuracy of 9.8×10-10 (1), demonstrating excellent 

final convergence. The graph of the error in the usual and logarithmic coordinates is presented in Figure 4. 

Figure 4: The residual norm for the Jacobi method in logarithmic and linear scale 

The solution of the System of Linear Algebraic Equations using the LGMRES method with a preconditioner was 

also considered. The preconditioner was obtained using the scipy.sparse.linalg.spilu function (based on the 

Supernodal sparse direct solver). This resulted in a significant convergence acceleration. The sufficiently low 

residual norm at 6×10-10
 (1) was already at the 3-rd iteration (Figure 5). 

Figure 5: The residual norm for the LGMRES method with a preconditioner in logarithmic scale 

For all considered iterative methods, a vector consisting of only 0 was taken as the initial approximation of the 

solution. Using the direct solution method spsolve from the scipy.sparse.linalg module (based on the 

UMFPACK package), it was possible to obtain a solution with a residual norm of 6.48×10-10 (1). 

For quantifying the Global Mercury Footprint, the proposed model uses data on mercury emissions from 

anthropogenic sources. They were taken from the Arctic Monitoring and Assessment Program (AMAP/UNEP, 

2013), which provides datasets on a 0.5 ° x 0.5 ° grid. These include emissions in kg/”grid cell”, and the grid cell 
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area (km2). The 2010 global mercury intake flows (Sp,n in Eq(1)) into the atmosphere, coming from anthropogenic 

sources, were determined for:(a) Stationary combustion sources: power plants, distributed heating, and energy 

use (excluding industry); (b) Industrial sources; (c) Sectors related to intentional use and product waste. 

3. Analysis and discussion

The case study model has been solved using the Jacobi method as the best-performing one. This method, as 

also the LGMRES method with a precondition, allows us to quickly find a solution (Figure 4) tor the created 

matrix. However, the Jacobi method, unlike the LGMRES method with a precondition, is much simpler to 

implement and does not require additional software. The Jacobi method produced six maps of Global Mercury 

Footprint by environmental compartments – urban air, rural air, freshwater, seawater, agricultural soil, other soil. 

Figure 6 shows the Mercury Footprint for freshwater bodies calculated by the proposed model. The green color 

indicates areas in which the mercury concentration lower than the maximum permissible for the fishery. Yellow 

denotes areas where the maximum concentration limit for drinking water is exceeded (moderate heath risk), 

and red indicates extremely high levels posing a very serious danger to humans and biota. The map clearly 

shows the spread of mercury contamination in highly populated regions or regions of sourcing food, indicating 

the high level of threat to human health. These results correlate very much with the measured data of mercury 

concentrations in aquatic species (Evers et al., 2018), as well as with a map of global mercury-related worker 

disability (Steckling et al., 2017). 

Figure 6: Mercury footprint for freshwater bodies calculated by the proposed model 

4. Conclusions

The current work presents a model extension and a solution method for the evaluation of Global Chemical 

Footprints. Its efficiency and achievable accuracy have been demonstrated on the example of Global Mercury 

Footprint evaluation. The Jacobi method proved as the most efficient in obtaining the solution in several hundred 

iterations, compared with the slow convergence or the lack of that in previous chemical footprint evaluation 

models. The achieved convergence can be characterised quantitatively by the reduction of the residual norm 

from the order of 103 down to 10-10. The results confirm the ability of the proposed model to evaluate the chemical 

footprints of any pollutants subject to data availability. The produced maps of Global Mercury Footprint provide 

better accuracy than the general maps lumping deceases by countries. The current model can be further 

extended to include a modelling component accounting for atmospheric transport of the pollutants, which 

presents an excellent avenue for future research. 
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