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In the era of Big Data, the utilization of data-driven analytics for process engineering systems is rising 

exponentially. The abundance of data from industrial sensors and various documentation logs have served as 

a strong basis for such analysis. Nevertheless, there are some critical data in an industry that simply rare and 

uncommon due to certain processing constraints or confidentiality. Such constraints may include economic 

costs for data acquisition, the complexity for data collection, the needs for qualified personnel and many other 

unforeseeable problems. Due to conventional data-driven approach requiring a large volume of data, such rare 

but critical data cannot be properly utilized. For this aspect, we proposed a one-shot learning framework to 

model process systems. The novel framework utilizes prior knowledge from multi-sourced data to learn the 

conditional relationships of critical variables within the process. By utilizing prior generic knowledge of the 

system, one-shot learning can provide a better representation of the prediction space when acting as a data-

driven black-box model. A combined heat and power (CHP) system is used as the case study for one-shot 

learning modelling which a mean squared error of 0.00616 was achieved. The efficient use of data within this 

framework is expected to be beneficial when modelling under high-priority and low data availability. 

1. Introduction

In advancing sustainable and efficient processing and manufacturing, the needs of data-driven engineering 

analytics is essential for the transition into the Industry 4.0. The data acquisition, modelling, simulation and 

optimization of processing systems within small and medium (SME) industries (Máša et al., 2018) are essential 

for companies to move towards a digitalized future. The use of data for industrial, manufacturing and business 

analytics has been consolidated to provide data-enabled growth (Ritter and Pedersen, 2020). Brynjolfsson and 

McElheran (2016) discussed that US manufacturing is transitioning towards a data-driven paradigm for gain 

productivity in managerial decision-making, tracking performance and communicating of the production process. 

The concept of data-driven smart manufacturing (Tao et al., 2018) has accelerated the global transition of 

manufacturing lifecycles towards an age of big data high, giving potential to improve manufacturing 

performances, process understanding and industrial management. Computational intelligence and process 

optimization have high potential in improving product quality and efficiency (Yin et al., 2020). 

The challenge of implementing data-driven analytics in the industry is on the difficulty of obtaining reliable data 

sources (Máša et al., 2018). The identification and collection of reliable data within manufacturing systems is a 

great challenge for the actual implementation of process simulation models within manufacturing industries. 

Based on the author’s industrial experience, carrying out optimization on such simulation models are often tricky 

in which there is a great dilemma on whether to: (i) optimize the model to be more accurate or (ii) optimize the 

solution to give better objectives under a controlled number of samples. In some aspect, this concept is related 

to the well-known exploration-exploitation dilemma (Berger-Tal et al., 2014) in machine learning and 

optimization. In such sample-critical cases, Bayesian methods are often used to improve sampling efficiency 

(Baheri and Vermillion, 2017) for “expensive-to-evaluate” problems. The sampling efficiency in such methods is 

improved by relying on both prior and posterior, gaining statistical significance from prior data (Ghosh and 
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Dunson, 2009). Deep learning approaches can also be used to effectively process important industrial data for 

modelling and optimization (Teng et al., 2019c). 

Despite efficient sample utilization, many manufacturing facilities face data collection difficulties related to 

organisation authority, machine design, information transfer methods, analytical instruments, and cost of 

measurement. For example, obtaining new operational data for an oil refinery was expensive and difficult (Teng 

et al., 2019a). Industries such as co-generation plants (Leong et al., 2019) have many organisational and data 

confidentiality challenges in providing real-time data. While other energy management systems for SME 

generally has inadequate data-acquisition systems (Máša et al., 2016). Yong et al. (2016) also demonstrated 

that data reconciliation is essential for successful total site integration projects. While installing new data 

acquisition systems such as microcontrollers (Zhang and Chen, 2008) and carrying out carefully designed 

experiments in laboratories (Teng et al., 2019b) can provide high-quality data, it is generally expensive to do as 

such. Some processing equipment requires measurement devices that are expensive to operate (Hamacher et 

al., 2003) and manufacturing companies often turn them on only when required. This situation gives rise to many 

SME companies with only one or a few critical operational data, making process modelling difficult.  

One-shot learning is a field of machine learning which uses one or a few samples (sometimes known as few-

shot learning) to carry out inference instead of using hundreds or thousands of samples. This concept already 

existed in the 1990s (Yip and Sussman, 1997), while works from Fei-Fei et al. (2006) and Miller et al. (2000) 

popularized the use for object detection in images. Throughout the years, the applications of one-shot learning 

have shown successes for face verification (Guo et al., 2011), representing human gesture (Yang Yang et al., 

2013), and other mobile authentication applications. One of the most successful implementations of by using a 

twin neural network, which is commonly called Siamese neural network to learn the similarity of data within the 

prior dataset (Koch et al., 2015). The strategy of using a Siamese neural network was particularly successful 

even for difficult tasks such as dynamic object tracking (Guo et al., 2017) and sentence plagiarism checking 

(Mueller and Thyagarajan, 2016). 

As such, conceptually even one or a few samples can be effectively used to model process systems by one-

shot learning techniques. This work presents a novel framework to model a process system with data acquisition 

problems using only one or a few samples via one-shot learning techniques. The novelty of this work is that the 

one-shot learning technique is adapted for process manufacturing and industrial data as an alternative to the 

conventional field of image and sequence classification.  

2. Method and conceptual framework

The concept of one-shot learning framework is to learn the representation of the process model from its 

performance database (see Figure 1). This performance database can be obtained from multiple manufacturers 

that provide a similar type of unit or even similar operating units from other facilities. The most important 

constraint is that the sampled unit must have the same functionality as all the units in the database, but units in 

the database can be of a different design model. This preserves the representation of the unit functionality. The 

expected result from this framework is to obtain a relatively accurate data-driven model of the desired 

performance of the sampled unit by lending knowledge from the aforementioned database. 

Figure 1: Conceptual diagram of one-shot learning for process modelling 
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Referring to Figure 2., the first step to start the one-shot learning workflow is to confirm that a data-driven 

modelling approach is required. It is required to verify if the use of one-shot learning is suitable by evaluating 

data availability. If there is flexibility for data sampling or data quantity, the use of an alternative data-driven 

method such as principal component analysis statistical process optimization (Teng et al., 2019a), Monte-Carlo 

simulation (Ngan et al., 2020), or adaptive analytical approaches (Leong et al., 2019) can be deployed. For the 

next step, it is required to identify the process unit functionality and obtain one or a few samples (which includes 

the performance variable of interest). Based on this unit functionality, prior data from other process units with 

similar functionality should be obtained from sources such as multiple manufacturer’s databases, other facilities, 

and commercial software. As an example regarding “similar functionality”, during the modelling of a 1,2-pass 

heat exchanger, one could use the data from a 2,2,-pass heat exchanger in similar conditions as prior data due 

to its similar functionality within the process. This means that the data from units of a different design but fulfils 

the same processing purpose can be used as a knowledge basis for this one-shot learning framework. The 

knowledge basis should have a statistically significant amount of data to give a good representation of the unit 

functionality. 

Figure 2: Workflow of the novel one-shot learning framework for process system modelling 

From this prior data, a Siamese network is used to learn the similarity function between the previous grouped 

data. In this paper, the contrastive loss (Hadsell et al., 2006) is used as the similarity function (see Figure 3). 

The similar groups with regards to the one/few samples (group encoding is represented as C) are then selected 

using the equation: 

𝐶 = 𝑦(𝑎𝑟𝑔𝑚𝑖𝑛 𝑓𝑐(𝑥, 𝑥𝑠))         ∀𝑥 ∈ 𝑋   (1)

Where x is the single data from the prior, X is the full prior dataset, xs is the one-shot sample, and y is the group 

classification of the data. Other data with a different group than the similar group are all separated into a non-

similar group. Next, we propose the use of a multi-layer perceptron (MLP) with distinct losses for transfer 

learning. During the pre-train, the non-similar group are split at an 80:10:10 training, validation and testing ratio 

with a modified Pearson’s correlation coefficient as the loss to learn the general shape of the performance 

space. Next, the similar group which contains the one/few samples are used to finetune the features of the pre-

trained neural network by using a few extension layers. The loss function for the fine-tuning step is set to be the 

mean squared error function to give an aggressive fine-tuning result, giving high accuracy. The performance 

characteristics of the processing unit can be predicted by the transfer learned network with the knowledge 

represented from the space of prior data of process unit models of similar functionality. 
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Figure 3: Siamese network and transfer learned MLP for one-shot learning in process system modelling 

3. Case study problem

The modelling of a combined heat and power (CHP) unit (ECOMAX 44 NGS 1.1 HW model) is studied. CHP 

units commonly operate at a fix steady-state point, and changing the operational point is generally costly in 

terms of process economics. One sample data was collected from this CHP model. Prior data were prepared 

using an in-house collection of CHP performance database consisting of 613 datasets from 64 units. The 

sampled unit is also cross-checked with the database, and the database does not contain data from the specific 

CHP unit model. For learning the similarity function, all possible 15 variables were input, such as total efficiency, 

carbon emission, and power generation. Due to modelling requirement, the performance characteristics only 

require three inputs to predict the CHP’s thermal efficiency and overall efficiency. These three variables are 

power utilization percentage, temperature and fuel consumption. Finally, for validation purposes, an extra 7 data 

samples were obtained from the studied CHP from its operational history. 

4. Results

Using the single data from the studied CHP unit, the Siamese network was able to learn the similarity function 

and allowed for a transfer learning MLP network learn the representation of unit functionality and fine-tuned on 

similar data groups. By comparing the predicted output using the one-shot learning framework and the seven 

ground truth data (as well as the 1 data sample), it is possible to achieve a very promising mean absolute error 

(MAE) of 0.02, mean squared error (MSE) of 0.000616 and R2 of 0.9992. These results demonstrate that the 

framework was able to model the CHP unit only with 1 sample with acceptable error (See Figure 4). 

Figure 4: Predicted against the actual plot of test samples and one-shot sample with their overall error. 

For further analysis, the surface plot of the generated performance model was plotted in Figure 5. It is identified 

that power utilization in percentage was the main factor of the efficiencies in the CHP model. Fuel consumption 

and temperature also slightly affects CHP efficiencies. It is also observed that increase in power utilization gives 

a steep increase in thermal efficiency, however creates a plateau for the overall efficiency. This implies that at 

over 80 % power utilization, the total energy output is approximately the same. The ratio of power and heat 
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energy gradually increases when further increasing the power utilization. The temperature and fuel flowrate are 

providing small effects on the thermal and overall efficiencies.  

Figure 5: Surface plot of (a) Power utilization (PU), temperature (T) and thermal efficiency (TE) (b) PU,T, 

Overall Efficiency (OE) (c) PU, Fuel, TE, (d) PU, Fuel, OE 

5. Conclusions

This paper proposes the use of novel one-shot learning for the application of modelling process systems under 

low data availability problems. A novel two-step approach is proposed. First, a Siamese network is introduced 

to learn the similarity function within prior datasets that are from different units but share the same functionality 

with the studied unit. Next, these datasets are categorized as a non-similar group and similar groups to be 

sequentially transferred learn by a multi-layer perceptron (MLP) neural network. Using a few extra samples of 

the studied system that were never shown to the networks, the model was tested. A convincing mean squared 

error of 0.00616 was achieved only from the original one sample from the studied combined heat and power 

(CHP) unit. A smooth prediction space was observed from the surface plot, showing smooth continuity in the 

model. This demonstrates that this approach is stable and able to model process units with high accuracy and 

only a single sample similarly. Additionally, the one-shot learning framework can be applied to any other units. 

Our future work will focus on the multi-objective optimization of a one-shot learned process model unit. 
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