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Near-infrared (NIR) spectroscopy has been widely used to predict the gasoline properties that are difficult to 

measure online during gasoline blending. NIR models should be prepared in advance to apply this technique 

successfully. Obtaining a high-accuracy NIR model in practice is hard because abundant labelled samples are 

difficult to acquire. A new modelling method on the basis of Wasserstein generative adversarial network is 

proposed in this study to overcome this weakness. Abundant artificial labelled samples are generated firstly 

using the proposed method, and sample selection is performed to select the appropriate artificial samples. 

Real and selected artificial samples from the selection results are combined to train the NIR model that could 

be established efficiently when labelled samples are scarce. An actual dataset obtained during gasoline 

blending is provided to validate the effectiveness of the proposed method, and several traditional methods are 

adopted for comparison. 

1. Introduction

Gasoline is the main power fuel of vehicle, which plays an important role in today’s global economy. The 

production of high-grade clean gasoline fuel has received widespread attention because of the increasingly 

strict environmental protection requirements imposed by many governments worldwide (Klemeš et al., 2019). 

Gasoline that is directly produced by the fractionation and distillation of crude oil has a low octane number, 

and its yield fails to meet market demands (Li et al., 2010). To cope with this issue, in refinery, low-octane 

component oils, such as catalytic gasoline, nonaromatic gasoline and naphtha, are blended with high-octane 

components in certain proportions to produce products that satisfy quality specifications. This step is gasoline 

blending, which is the last operation before the delivery of gasoline products. Generally, blending is controlled 

by an optimisation controller to save petroleum resources and produce high-quality clean gasoline. This 

controller provides the optimal blending recipe and adjusts the proportion of component oils in real time (He et 

al., 2017). The essence of blending optimisation is quality feedback control. Its implementation relies heavily 

on the real-time analysis of the properties of blended gasoline. Given that the octane number indicates 

gasoline quality, the rapid detection of this property during gasoline blending is necessary. In the past 2 

decades, this task has been mainly realised by using near-infrared (NIR) spectroscopic methods combined 

with appropriate quantitative analysis models (NIR models) (Mabood et al., 2017). Multivariate statistical 

methods, such as principal component regression, partial least squares regression (PLS), independent 

component analysis and their extended versions, have been widely used to establish NIR models. Wang et al. 

(2016) explained the application of these common multivariate statistical methods in NIR analysis. Many 

machine learning methods, such as support vector machine regression (SVR) and artificial neural networks, 

have been successfully used to build NIR models (Balabin, et al., 2007). A sufficient number of labelled 

samples are necessary to develop an excellent NIR model. Standard laboratory testing fails to provide an 

adequate number of samples in a short time because of the complicated instrumentation and long analysis 

time required (Bohács et al., 1998). Studies performed to address the lack of labelled samples are limited 

despite the wealth of research on modelling algorithms (Li and Chu, 2018). Recently, the generative 
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adversarial network (GAN) has been widely used to generate labelled samples to address the lack of data. For 

examples, Wang et al. (2019) used GAN to generate samples for minority fault class to cope with imbalanced 

fault diagnosis. Li et al. (2019) established a deep GAN model to generate cross-domain samples, which 

achieves good performance in fault diagnosis of rolling element bearings. Most of the recent studies focused 

on the application in fault detection, and those using GAN in soft sensor were limited. In the present study, we 

adopt the Wasserstein generative adversarial network (WGAN) to produce fake labelled samples for NIR 

models. Selection is performed to eliminate inappropriate generated samples. The remaining samples and the 

real ones constitute an initial training dataset. During the online application, the just-in-time learning (JIT) 

strategy is used to select local modelling data from the initial dataset for each query sample xq. Industry data 

from a real-world gasoline blending process are provided to validate the performance of the proposed method, 

and several traditional modelling methods are used for comparison. 

The rest of this paper is organised as follows: The current problem in NIR modelling is described in Section 2, 

the basic idea of WGAN and the proposed method are also elaborated in this section. The research results 

and discussion are presented in Section 3. Finally, conclusions are provided in Section 4. 

2. Theory and algorithm

In this section, the motivation of this work is presented, and the WGAN model is illustrated. The details of the 

proposed modelling method are also presented. 

2.1 Problem statement 

Currently, the online analysis of the key properties (research octane number [RON] and motor octane number) 

of gasoline mainly depends on a near-infrared analyser. The basis and premise of using this technology are to 

establish a NIR model. The NIR model with superior predictive performance and stability is urgently needed. 

Similar to other data-driven models, a sufficient number of labelled samples are needed to achieve these 

goals. Obtaining an adequate amount of labelled data in a short time, specifically for new blending batches, is 

difficult, which is the key limitation in using NIR techniques and optimising blending control in practice (He et 

al., 2020). Proposing effective approach to generate new labelled samples for NIR modelling is necessary. 

Recently, GAN has been applied in various data supplementation tasks and achieved good application results. 

Inspired by this, this work intends to develop an effective data generation model that can produce labelled NIR 

samples for data augmentation. This study has significance in improving the efficiency of establishing and 

maintaining NIR models. 

2.2 Wasserstein GAN 

Goodfellow et al. (2014) initially proposed the GAN which has been widely used in the field of image 

recognition. GAN includes a generation network (G) and a discrimination network (D). During training, the G 

network generates fake samples via the multilevel mapping of the noise variable ~ ( )zx P z , the D network 

attempts to distinguish generated data ~ gx P  from actual ones ~ rx P . The generator G and discriminator D 

are trained to compete with each other alternatively until Nash equilibrium is reached. This process can be 

described as a min–max two-player game with the following objective function: 

~ ~Pmin max ( , ) [log ( )] [log(1 ( ( )))]
r gx P y

G D
V D G E D x E D G y= + −  (1) 

where rP  and gP  are the real data distribution and the generated data distribution. 

The original GAN is unstable because it could produce an unstable gradient when training the G network. To 

cope with the gradient vanish problem, the Wasserstein distance (as shown in Eq. (2)) is proposed and used 

to describe the minimum cost to converge the model distribution gP  to the real distribution rP . 

( , )~[ ]
( , )

( , ) inf
r g

r g x y x y
P P

W P P E


−


= (2) 

where, ( , )r gP P  is the set of all joint distributions ( , )x y  whose marginals are rP  and gP . On the basis of 

the Kantorovich Rubinstein duality (Villani, 2008), WGAN loss can be constructed as follows: 

~ ~min max [ ( ) [ ( )]]
r gx P y P

G D
E D x E D y


−

¡
 (3) 

where ¡  is the set of 1-Lipschitz functions. In WGAN, weight clipping is used to enforce the weights of 

discrimination into a compact space [−c, c]. The detailed algorithm of WGAN can be found in Arjovsky et al. 

(2017) and is not presented in this study due to space limitations. 
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2.3 Proposed method 

During gasoline blending, NIR spectra can be obtained using an online NIR analyser, the properties of 

gasoline can only be tested by CFR octane testing instrument. Obtaining a sufficient number of labelled 

samples in a short time is difficult. A novel modelling method is proposed in the present work to cope with this 

issue. The WGAN is used to produce new labelled samples, and sample selection is performed to select 

appropriate data to construct a training dataset. When the training dataset is determined, JIT is used to select 

local modelling samples for each query sample xq, and the PLS algorithm is used to establish a local NIR 

model. The details of our proposed method are summarised as follows: 

Step 1: Collect a number of labelled samples from target blending conditions, including NIR spectra x  and the 

corresponding properties y , denoted as 1 1 2 2( , ) {( , ),( , ),...,( , )}r n nD x y x y x y x y= , 

Step 2: Normalise the dataset ( , )rD x y  and divide ( , )rD x y  into K subsets , ( , )r kD x y  , 1,2,...,k K=  randomly, 

Step 3: Establish K WGAN models and train these WGAN models with , ( , )r kD x y . After training, K generated 

datasets could be obtained, and these subsets are combined into a dataset 1 1( , ) {( , ),...,( , )}g N ND x y x y x y= . 

Then, a new training set ( , )sD x y  is synthesised from the generated set ( , )gD x y  and the real set ( , )rD x y , 

Step 4: Establish a PCA model using ( , )rD x y , calculate the T2 statistics of each sample in the dataset 

( , )sD x y  and screen training samples on the basis of the threshold of the T2 statistic. The final selected 

modelling samples form a training set denoted as ( , )TD x y , 

Step 5: During the online application, the JIT strategy is adopted to select local modelling samples from 

( , )sD x y  in accordance with Eqs.(4–5), 

2

2
exp( )i

i

d

d



= −  (4) 

( ) ( )i q i q id x x x x= − −T
(5) 

where ix  is the ith sample in the training dataset ( , )sD x y , qx  is the query sample and d  is the localisation 

parameter. 

For each qx , the weight i  of each sample in ( , )sD x y  is calculated, and all the samples in ( , )sD x y  are 

sorted in descending order of weight value. Then, the first Kn samples are selected to form a local training set 

( , )lD x y . 

In this work, the maximum absolute error (MAE), the root-mean-square error (RMSE) and the coefficient of 

determination R2 are utilised to assess the performance of our proposed method. The model with the lowest 

RMSE and MAE and the highest R2 is considered the best model. 
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where n  is the number of samples included in the test set and iy  and iy
)

 are the RON measured by the CFR 

octane testing instrument and NIR methods. 

3. Experimental and results

In this section, industrial samples collected during online gasoline blending are used to validate the 

performance of the proposed method. PLS, SVR, JIT-PLS and JIT-SVR are adopted to establish NIR models 

909



using 
( , )rD x y

 and 
( , )sD x y

, and all experiments are completed by using MATLAB. The details of all the 

mentioned modelling algorithms are as follows: 

(1) PLS: A classic PLS algorithm is adopted to build the NIR model. The number of latent variables is 

determined as 6 by five-fold cross-validation (CV). PLS theory can be found in Geladi and Kowalski (1986). 

(2) SVR: SVR is implemented using the libsvm toolbox (Chang et al., 2011). In this study, the linear function 

( , ) T

i j i jk x x x x=
 was utilised as a kernel function, and the penalty parameter of SVR was optimised as 0.1 

through five-fold CV. 

(3) JIT-PLS and JIT-SVR: Local modelling samples are selected from 
( , )sD x y

 for each query sample in 

accordance with Eqs(4–5). Then, PLS and SVR are used to establish the NIR model. The number of local 

modelling samples is selected as 35 empirically. 

(4) PLS-GAN, SVR-GAN, JIT-PLS-GAN and JIT-SVR-GAN: These symbols denote the models established by 

PLS, SVR, JIT-PLS and JIT-SVR via the synthetic dataset 
( , )sD x y

. 

3.1 Results and discussion 

In this case, 240 standard samples of 93 octane gasoline were collected during gasoline blending. Among 

these samples, 40 were selected to form the dataset ( , )rD x y  artificially. The remaining 200 samples were 

adopted as a test set. The dimension of the gasoline NIR spectrum was 201, and the wavelength range was 

restricted to 1,100–1,300 nm. In addition, the corresponding RON of NIR samples were obtained through 

standard analytical methods. 

The parameters of WGAN were set as follows: The maximum training epoch of WGAN was 1,000. The 

number of discriminator iterations for each generation iteration was 10. G and D were constructed by 

multilayer perceptron neural networks, and the structures were 9-9-202 and 9-9-1. The minibatch sizes of the 

stochastic gradient descent method, the learning rates of G and D and the gradient penalty coefficient were 

15, 0.01, 0.02 and 1. The dataset ( , )rD x y  was not divided into K subsets in this case because only 40 

samples were available in ( , )rD x y . WGAN was trained K (K = 10) times independently with all the data in 

( , )rD x y , and 50 samples were generated each time, totalling to 500 fake samples. In accordance with Step 4 

as described in Section 2.3, sample selection on the basis of PCA was performed. 

Table 1: Performance comparison in terms of RMSE, R2 and MAE 

Real training dataset Synthetic training dataset 

Method RMSE R2 MAE RMSE R2 MAE 

PLS 0.394 0.844 2.136 0.270 0.927 0.995 

JIT-PLS 0.257 0.933 0.937 0.247 0.938 0.849 

SVR 0.327 0.892 1.538 0.282 0.920 0.892 

JIT-SVR 0.270 0.926 1.179 0.261 0.931 0.871 

Figure 1: Sample selection results (the shaded part represents the real samples) 

The number of principal components was determined to be 9 given that the cumulative variance contribution 

exceeded 0.99. The threshold value of the T2 statistic was 20.8523 in accordance with the confidence degree 

of 0.9. Using the T2 statistic, 288 samples were selected from ( , )sD x y . Figure 1 shows the selection results. 
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Table 1 shows the performance of different models in terms of R2, RMSE and MAE. The performances of all 

the methods improved with the synthetic training dataset. The results also indicated that the supplementary 

generated samples helped improve the generalisation of NIR models. The JIT method did not use all 

generated samples but only selected the most suitable ones when used for modelling. The selected local 

training samples are capable of representing the current working conditions. JIT-based methods (i.e. JIT-PLS, 

JIT-PLS-GAN, JIT-SVR and JIT-SVR-GAN) perform better than the static methods (i.e. PLS, PLS-GAN, SVR 

and SVR-GAN) as evidenced by their MAE. 

Figure 2: Schematic diagram of JIT-PLS, JIT-PLS-GAN, JIT-SVR and JIT-SVR-GAN 

Figure 3: Prediction error curve of RON by JIT-PLS, JIT-PLS-GAN, JIT-SVR and JIT-SVR-GAN 

Figure 2 shows the regression curves of the four JIT-based methods. The fitted curves of JIT-based methods 

are closer to the ideal curve in the area (−1, 1), where data were highly concentrated, and the deviation was 

larger in the area (1, −3). Given this characteristic, the model will prioritise prediction accuracy within the 

range of normal working conditions to meet the needs of industrial production. As presented in Table 1 and 

Figure 3, JIT-PLS-GAN performed slightly better than JIT-SVR-GAN mainly because SVR has numerous 

model parameters that are difficult to tune online. The prediction model should be established online when the 

JIT strategy is adopted. We had to select a modelling algorithm with low computational complexity. In this 

scenario, PLS was more suitable than SVR because PLS has few parameters and fast modelling speed. In 

the prediction of octane number, PLS is the preferred method for online applications. To summarise, the 

prediction error, R2, RMSE, MAE and other details indicate that the performance of NIR models could be 

improved by using fake labelled samples generated by the proposed method. In addition, the JIT strategy 

combined with PLS is highly suitable for building NIR models. 
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4. Conclusions

This study presents the application of WGAN for the prediction of octane number by NIR spectroscopy. In this 

methodology, WGAN together with a sample selection method was used to generate fake training data to 

construct a new modelling set, and PLS, SVR, JIT-PLS and JIT-SVR were used to build NIR models on the 

basis of real and synthetic modelling sets. When labelled data are insufficient during gasoline blending, the 

proposed method can help to establish an initial NIR model quickly. The statistical results show that the 

performance of NIR models could be improved through combination with generated data. The effectiveness of 

our method would be affected by the variation in online data. In future studies, we will focus on exploiting a 

self-adaptive generation method to cope with dynamic operating characteristics. 
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