
 CHEMICAL ENGINEERING TRANSACTIONS  
 

VOL. 81, 2020 

A publication of 

 

The Italian Association 
of Chemical Engineering 
Online at www.cetjournal.it 

Guest Editors: Petar S. Varbanov, Qiuwang Wang, Min Zeng, Panos Seferlis, Ting Ma, Jiří J. Klemeš 
Copyright © 2020, AIDIC Servizi S.r.l. 

ISBN 978-88-95608-79-2; ISSN 2283-9216 

Network Synthesis Including Detailed Packed Bed Column 

Designs in Python MExNetS - An Open-Source Package for 

Mass Exchanger  

Michael Shorta,*, Adeniyi J. Isafiadeb 

aDepartment of Chemical and Process Engineering, University of Surrey, Guildford, UK 
bDepartment of Chemical Engineering, University of Cape Town, South Africa 

 m.short@surrey.ac.uk 

Mass exchanger networks (MENs) are used to remove/recover contaminants from polluted streams through 

absorption with available process streams or external mass separating agents. Process Integration techniques 

such as Pinch Technology (PT) or mathematical optimisation can be used to synthesise optimal networks, 

however a lack of accessible software and difficulties in formulating the non-convex problem has stunted 

research. This article presents an open-source Python package for the synthesis of optimal MENs. The package 

uses the algebraic modelling language, Pyomo, and takes advantage of Python’s object-oriented nature to solve 

a series of optimisation problems, improving on the performance of previous approaches to the problem of 

incorporating detailed unit designs into MEN synthesis. The package uses automated initialisation strategies to 

first solve a superstructure-based mixed-integer nonlinear program (MINLP). Thereafter, a detailed optimisation 

model, formulating the packed column as a system of differential-algebraic equations, is used to design the 

columns. This detailed packed column design is used to update the MINLP through correction factors, driving 

the network solution towards the detailed unit optimisation solutions. The new software, called MExNetS, 

implements this strategy in a user-friendly package that is easily modified and well-documented. In addition to 

the new software implementation, novel strategies are employed to ensure feasibility at each iteration, which is 

a challenge in these non-convex optimisation formulations, and new binary cuts are generated and applied to 

the MINLP that can significantly speed up convergence compared to the previous study. The package also 

contains automatic superstructure generation based on user-inputted data, with the hope that this software can 

inspire further research in this area and be accessible to practitioners. 

1. Introduction 

One of the key modern challenges in the chemical and process industries is how to reduce harmful emissions 

into the environment. One way in which to do this is using Mass Integration (MI), where process streams or 

externally sourced mass separating agents (MSAs) are used to absorb pollutants present in waste streams 

before being discharged to the environment. MENs can be synthesised to optimally match potential MSAs or 

other process (lean) streams with polluted (rich) streams to design the network that has the lowest total annual 

cost (TAC) based on the purchase of external MSAs and column capital costs. Approaches to MEN synthesis 

(MENS) have typically been divided into sequential or simultaneous optimisation methods. In sequential 

approaches, thermodynamic targets for minimum external MSA usage and the minimum number of units are 

set a priori and then a network is designed to get as close as possible to these targets (El-Halwagi and 

Manousiouthakis, 1989). Oladosu et al. (2020) have recently extended these concepts by presenting a new 

algebraic tool, able to simultaneously target and design MENs. These approaches cannot account for multiple 

targets such as capital costing and operating costs simultaneously. In simultaneous methods, the system is 

represented as a mathematical program, which can then be solved using a mixed-integer nonlinear 

programming (MINLP) solver. This introduction will briefly summarise simultaneous approaches to MENS with 

a focus on detailed unit modelling aspects. For a more detailed review of MENS technology, readers are referred 

to Isafiade and Short (2019). 
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Papalexandri et al. (1994) first introduced simultaneous MINLP formulations for MENS through the introduction 

of a hyperstructure-based method. The formulation was highly non-convex and excluded certain network 

configurations. Hallale and Fraser (2000), using PT for MI, were the first to include capital cost targets and 

detailed column models into the network synthesis, however the approach cannot account for capital and MSA 

costs simultaneously. Other approaches to MENS have used superstructure methods based on the stagewise 

superstructure (SWS) approach of Yee and Grossmann (1990), originally used for heat exchanger network 

synthesis (HENS). The first to adopt this formulation to MENS was Chen and Hung (2005) with a highly non-

convex MINLP, dealing with multiple contaminants and staged columns. Szitkai et al. (2006) presented an 

MINLP formulation that used mostly linear constraints by assuming iso-compositional mixing, packed columns 

and single contaminants, with a non-convex formulation also presented for multiple contaminants. Isafiade and 

Fraser (2008) presented a different superstructure formulation that used compositions of supply and target 

compositions of streams to define superstructure boundaries, which was later extended by Azeez et al. (2012) 

to define interval boundaries by supply compositions only. These different restructurings of the superstructure 

allow for more efficient problem boundaries and initialisations, while also decreasing binary variables, which 

tend to make the problem more difficult to solve. 

Noting that network synthesis techniques assumed that column diameters were fixed, Isafiade and Short (2016) 

directly embedded more detailed aspects of column design in the MINLP. This model included diameter as an 

optimisation variable, resulting in additional variables for fluid velocities and mass transfer coefficients, with 

column flooding also considered. Including these details directly in the MINLP results in an increasingly non-

convex model formulation that requires multi-starting procedures to obtain initialisations that result in reasonable 

feasible solutions and result in low chances of finding global solutions.  

Short et al. (2018) considered the impact of including detailed column models into the network optimisation. 

Their work used correction factors in the MINLP to avoid increasing non-convexity of the formulation to include 

detailed model information, based on an algorithm developed for HENS (Short et al., 2016). The technique 

ensures that both detailed unit models and the network were locally optimal, however long solution times and 

high non-convexity made automation challenging, with repeated starts common due to poor initialisation 

strategies. This method is described in more detail in Section 2, as it forms the basis of the current study.  

In terms of software, there are few tools available for MI, and fewer still that incorporate simultaneous 

mathematical optimisation and open-source implementation. El-Halwagi’s (1997) book included a PT-based MI 

tool called MEN, written in the LINGO optimisation language. There are several packages for MI via water 

networks and hydrogen networks available from The University of Manchester’s Centre for Process Integration, 

but these are not available freely, are based on PT, and do not include both network and detailed packed column 

simultaneous optimisation. Ng et al. (2014) released RCNet for the optimisation of resource conservation 

networks, which deals with several recovery problems, however it is implemented within Microsoft Excel and is 

unsuitable to nonlinear optimisation. 

To address the lack of open-source and non-PT-based MENS tools online, this paper introduces a software 

package, made freely available online, that implements an enhanced and modified version of the algorithm from 

Short et al. (2018). The package, called MExNetS, allows users to input their own data, use a variety of solvers, 

and test and experiment with settings and individual unit models. The package enhances the previous work by 

allowing for a variety of superstructure types to be chosen by the user and automatically implemented, as well 

as having an automated, rigorous initialisation procedure that removes manual user interference to ensure that 

the highly nonlinear models find feasible solutions at each iteration. The modular nature of an object-oriented 

programming language such as Python, also means that those with research interests in only the detailed NLP 

packed column exchanger optimisation models or the network optimisation MINLP model can easily access and 

modify these aspects. 

2. Methodology 

The new software package uses most of the algorithmic ideas and model formulations from the study of Short 

et al. (2018). In this method, an MINLP formulation is first solved with a set of initial fixed parameters for mass 

transfer coefficients, column diameters, packing costs, etc. This problem can be challenging to solve as the log 

mean composition difference (LMCD), as well as the costing functions, are all nonlinear. In the original method, 

much time was spent initialising and bounding the model and choosing appropriate MINLP solver options to 

obtain reasonable or feasible solutions. The new software approach presented here, automatically does this for 

the user by first solving an NLP problem, with all binary variables fixed to obtain a feasible solution to start the 

MINLP solver. The MINLP model formulation here is based on either the SBS (supply-based superstructure) or 

SWS superstructure approaches (the user decides, and the superstructure is automatically constructed). The 

model is the same as used by Short et al. (2018), which itself is an adaptation from Azeez et al. (2012), with 

additional correction factors and costing information relating to column internals. Correction factors are included 
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to ensure that solutions in the MINLP converge to the same results obtained in the detailed unit models. The 

objective function is shown below in Eq. 1 and all other model equations can be found in the original study. 

𝑚𝑖𝑛

{
  
 

  
 
[𝐴𝐹 {∑∑∑(

[𝐶𝐶. (𝐷𝑐𝑜𝑟𝑟,𝑙,𝑘 . 𝐷𝑟,𝑙,𝑘)
𝐶𝐸
. 1,15.𝐻𝑐𝑜𝑟𝑟,𝑙,𝑘 . 𝐻𝑟,𝑙,𝑘] +

[𝑃𝑎𝑐𝑘𝐶𝑜𝑠𝑡𝑟,𝑙,𝑘 .
𝜋

4
. (𝐷𝑐𝑜𝑟𝑟,𝑙,𝑘 . 𝐷𝑟,𝑙,𝑘)

2. 𝐻𝑐𝑜𝑟𝑟,𝑙,𝑘 . 𝐻𝑟,𝑙,𝑘]
)

𝑘𝜖𝐾𝑙𝜖𝑆𝑟𝜖𝑅

}] +

𝐹𝐶 (∑∑∑(𝑧𝑟,𝑙,𝑘)

𝑘𝜖𝐾𝑙𝜖𝑆𝑟𝜖𝑅

) + [∑𝐴𝐶𝑙
𝑙 𝜖 𝑆

. 𝐿𝑙]
}
  
 

  
 

   (1) 

In this equation 𝐴𝐹 is an annualisation factor, 𝐷𝑟,𝑙,𝑘 is diameter of packed column associated with rich stream 𝑟, 

lean stream 𝑙, in interval 𝑘, with associated correction parameter 𝐷𝑐𝑜𝑟𝑟,𝑙,𝑘.  𝐻𝑟,𝑙,𝑘 is packed column height, with 

associated correction, 𝐻𝑐𝑜𝑟𝑟,𝑙,𝑘. The 𝑃𝑎𝑐𝑘𝐶𝑜𝑠𝑡𝑟,𝑙,𝑘 is the cost of the packing within the mass exchanger, which 

is corrected at each iteration based on the packing size. 𝑧𝑟,𝑙,𝑘 is a binary variable, with 𝐹𝐶 as the fixed cost of a 

column.  𝐴𝐶𝑙 is the cost of the MSAs and 𝐿𝑙 is the MSA flowrate. A list of all correction factors used in this study 

are presented in Table 1. 𝐶𝐶 and 𝐶𝐸 are problem specific cost factors. 

Table 1: The code structure used within MExNetS 

Correction Factor Purpose 

𝑘𝑦𝐶𝑜𝑟𝑟,𝑙,𝑘 Correction for the overall mass transfer coefficient, 𝑘𝑦𝑟,𝑙,𝑘 

𝑎𝑖𝐶𝑜𝑟𝑟,𝑙,𝑘 Correction for the interfacial area of the packing, 𝑎𝑖𝑟,𝑙,𝑘 

𝐻𝑐𝑜𝑟𝑟,𝑙,𝑘 Correction to column height, 𝐻𝑟,𝑙,𝑘 

𝐷𝑐𝑜𝑟𝑟,𝑙,𝑘 Correction for column diameter, 𝐷𝑟,𝑙,𝑘 

𝑃𝑎𝑐𝑘𝐶𝑜𝑠𝑡𝑟,𝑙,𝑘 The updated packing cost obtained from the NLP step 

 

During solution of the MINLP, several solvers can potentially be called, should the current MINLP solver fail to 

obtain a feasible solution with reasonable optimality gap. Using the GAMS (GAMS Development Corporation) 

solver interface with Pyomo, several solvers can be used, with checks as to whether the optimal solution is 

found with each solve. Usually, an optimal MINLP solution is found within 2 CPUs to 300 CPUs depending on 

the size of the problem and the number of solvers used. It can be argued here that for this specific algorithm, 

which uses a multi-start procedure, that feasibility and reasonably good solutions are more important than 

provable global optimality. A further improvement upon the original study, implemented within MExNetS, is that 

after the MINLP is solved, a further NLP sub-optimisation is run, in which the iso-compositional mixing 

assumption is relaxed. In this NLP, binary variables are fixed, and additional mixing constraints are added to 

allow for split streams to mix at different compositions. 

Once a solution to the MINLP is obtained, the resulting mass balances, and inlet and outlet conditions to the 

columns, are taken as boundary conditions to the detailed design optimisation models. These models include 

variables for mass transfer coefficients, column diameters, packing sizes, and flooding equations. The 

differential equations in the system are discretised along the height of the column via orthogonal collocation on 

finite elements (FEs) using Radau polynomials and the entire system of columns is solved simultaneously. Note 

that in the MINLP, linear phase equilibrium relations are assumed, but in the detailed NLP models any smooth 

phase equilibrium relationship could be used, and this method could be used in many diverse separation 

applications. In the original paper from Short et al. (2018) all columns within the network were solved 

simultaneously with 200 FEs. To solve this large NLP problem (upwards of 30,000 variables), a series of 

initialisation stages were required that often required manual user intervention. Within MExNetS, the columns 

are solved separately, allowing for a smaller number of FEs and no specialised initialisation scheme for most 

columns. When a column model fails to find to a feasible solution, the algorithm automatically increases the 

discretisation and calls upon an initialisation routine whereby progressively more complex problems with 

increasing numbers of variables are solved. This increases the robustness of the algorithm and reduces the 

need for manual interference from users. 

Once the optimal detailed column designs are obtained for the network, a set of correction factors are calculated 

to update the parameters (in Table 1) in the MINLP model, forcing the MINLP towards the solution of the detailed 

exchangers. The MINLP model is then re-run to obtain a new network based on the updated values. This is run 

until convergence is reached (NLP and MINLP objective functions are within tolerance), or until a maximum 

number of iterations is reached. The power of this method is that the non-convex MINLP is multi-started with 

perturbed initial conditions repeatedly, increasing the chances of finding a globally optimal solution. The detailed 

column network is solved to an optimal point at each iteration, ensuring that the results are validated, and 
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unrealistic solutions resulting from the shortcut models in the MINLP are updated towards feasible networks. 

The algorithmic details and code structure of the package are shown in Figure 1. 

 

 

Figure 1: The code structure used within MExNetS 

The algorithm is as follows: 

1. User input and problem set-up. Read data and input user-selected options such as whether to store binary 

cuts or not, which superstructure to select, tolerances, etc. Correction factors are set to 1 and parameters 

take initial values. Set iteration counter, k = 1, allow all binary combinations to be selected. 

2. MENS_MINLP: In this section, we build all the necessary constraints for the MINLP model formulation with 

iso-compositional mixing, selected superstructure, and current values for correction factors.  

a. First solve an initialisation NLP that fixes all binary variables to 1. 

b. Attempt to solve with BARON (Tawarmalani and Sahinidis, 2005) and current Big-M value – if solved 

successfully move to Step 3. 

c. Attempt to solve with DICOPT/GAMS and current Big-M value – if solved successfully move to Step 3. 

d. Relax optimality gap (0.05) and solve with BARON – if solved successfully move to Step 3. 

e. Relax optimality gap (0.05) and solve with DICOPT/GAMS– if solved successfully move to Step 3. 

f. Solve with a spatial branch and bound solver – if solved successfully move to Step 3. 

g. Change Big-M values and return to Step 2a. 

3. Solve the non-isocompositional mixing sub-optimisation NLP: 

a. Use IPOPT (Wachter and Biegler, 2006) with different settings until feasible solution is found. 

b. If no feasible solution is found, use the MINLP solution with isocompositional mixing to derive unit 

models. 

4. MassExchanger: Mass balances from NLP network sub-optimisation are taken to set the boundary values 

for the detailed packed bed mass exchanger models. Set fe = 20. For each exchanger run the following: 

a. Solve full model exchanger model using fe FEs with IPOPT and CONOPT – if feasible then go to Step 

5.  

b. Solve sequence of simplified NLP models, increasing in complexity, to find feasible initial points to the 

full model of fe FEs. If full model is solved after initialisations, then go to Step 5. 

c. Increase fe and go to Step 4a. 

5. Derive correction factors based on the differences between the simplified network level solutions and the 

detailed optimisation models. Check whether current solution of the detailed network is better than current 

best TAC. If better, store solution as current best. If user selected option to include cuts then derive binary 

cuts based on current topology and save to MINLP model. 

6. Check if the correction factors have changed (within tolerance) between iteration k-1 and iteration k. If within 

tolerance or k = maximum iterations (set by user), terminate the algorithm and return current best solution 

(detailed unit models and mass loads). Else, return to step 2 with new correction factors and binary cuts. 

This algorithm ensures the code is robust to the many different initial conditions that the algorithm may develop 

throughout the iterations and removes user involvement. Outputs are generated in the form of a detailed log file 

with all the iterations as well as various csv files of summarised output. In future versions of the code we hope 

to include graphical output as well as the incorporation of staged columns, regeneration networks, and HENs. 

3. Case studies 

To demonstrate the package, we briefly show results from two examples solved using MExNetS. These are 

available on the Github repository in the examples folder. 
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3.1 Case study 1 

In this case study, H2S is removed from two gas streams, one (R1) is coke-oven gas, while the other (R2) is tail 

gas from a Claus unit (Hallale and Fraser, 2000). The problem data is presented in the original paper. To solve 

this problem in MExNetS, the user needs to decide on a maximum number of iterations, a termination tolerance, 

a superstructure approach (whether to choose SWS or SBS), and whether to include binary cuts. 

Upon running the example with SBS, a tolerance of 0.1 % difference between iterations, and without binary cuts, 

a solution of $ 483,691 is found, with termination at iteration 30 in 267 CPUs (including all NLP solves, MINLP 

solves, and model building/writing and saving) on an Intel Core i7-4700MQ 2.4 GHz PC with 16 GB RAM. The 

solution is shown in Figure 2a and Table 2. This solution is found in significantly less time than the previous 

method in Short et al. (2018), and finds a reduction in TAC of 1,582 $/y. This compares favourably with other 

best solutions that did not include fixed costs or detailed models as well ($ 363,691). 

 

 

                        (a)                                                                                (b) 

Figure 2: (a) The optimal network for case study 1, (b) Optimal network for case study 2 

3.2 Case study 2 

This problem, from Short et al. (2018) and adapted from Hallale (1998), involves ammonia removal from five 

gaseous streams that are predominantly air by two process and one external MSA. The problem data is omitted 

due to space restrictions. This larger problem takes more time to solve and is more difficult to converge to 

optimality, and cuts are employed. MExNetS terminates after 42 iterations with an optimal solution found for the 

detailed MEN found in iteration 26 to be $ 298,798, 2.8 % lower than the solution found in Short et al. (2018). 

Table 2: The optimal packed column designs for the case studies 

 Case study 1 Case study 2 

 E1 E2 E3 E4 E1 E2 E3 E4 E5 E6 E7 E8 

Height (m) 5.78 1.88 2.06 1.41 4.26 1.84 1.32 0.49 1.19 3.0 2.73 1.96 

Diameter 

(m) 

0.72 0.37 0.71 0.32 1.31 0.74 0.59 0.98 0.60 1.39 1.31 0.98 

Mass duty 

(kg/s) 

0.06 5×10-4 6×10-4 9×10-5 0.02 5×10-3 3×10-3 10-3 3×10-3 0.01 0.01 0.01 

𝑘𝑦 (kg/s/m3) 0.05 0.03 0.05 0.032 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.04 

Packing size 

(mm) 

36 18 35 16 66 37 30 72 40 70 65 85 

Packing 

cost ($/m3) 

950 1,519 971 1,610 570 930 1,129 579 947 571 570 696 

𝑎𝑖 (m2/m3) 129 250 131 285 72.0 126 156 65.5 128 68 72.2 55.8 

ΔP (kPa/m) 2.62 5.53 2.69 6.40 1.37 2.56 3.26 1.23 2.61 1.3 1.35 1.03 
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4. Conclusions 

This paper presents an open-source package for optimal simultaneous MENS in Python. To the knowledge of 

the authors, this is the first open-source non-Pinch Technology-based software package for MENS. The strength 

of the package lies in its robust initialisation schemes, ease of scripting, integration with detailed models, and 

ability to overcome local minima and infeasibilities through automatically utilising several optimisation 

algorithms. MExNetS automatically generates different superstructures based on user choices and can be 

employed with or without binary cuts to speed solution times. The new package allows for ease of testing and 

experimentation with the methods employed, as opposed to previous versions of the method that included 

several manual initialisation and data porting aspects. The new package is shown to provide solutions as good, 

or better than other methods in several problems, with no user interference. The package is made available on 

Github for free download and will be extended to include combined heat and mass exchanger networks, 

regeneration networks, multi-contaminants, and different exchanger types in the future. The authors hope that, 

through the introduction of such tools and with the transparency of open-source deployment, that the package 

may stimulate future development in MENS technology. 
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