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This work proposes a novel data-driven robust model predictive control (DDRMPC) framework for automatic 

control of greenhouse temperature and CO2 concentration level. The essential concept is to combine dynamic 

models of greenhouse temperature and CO2 concentration level with data-driven models that identify uncertainty 

in weather forecast error. By leveraging a machine learning approach, support vector clustering with weighted 

generalized intersection kernel, data-driven uncertainty sets for ambient temperature and solar radiation are 

constructed from historical weather data. A training-calibration procedure that tunes the size of uncertainty sets 

is implemented to ensure that data-driven uncertainty sets attain appropriate performance guarantee. In order 

to solve the optimization problem in DDRMPC, an affine disturbance feedback policy that provides tractable 

approximations of optimal control is utilized. A case study of controlling temperature and CO2 concentration 

level in a greenhouse is carried out. The results show that the proposed DDRMPC framework can prevent the 

greenhouse climate from becoming harmful to plant and fruit. DDRMPC approach ends up with 20 % less total 

economic cost than rule-based control strategy. The proposed DDRMPC approach also gives better control 

performance comparing to certainty equivalent MPC and robust MPC. 

1. Introduction 

Controlling greenhouse climate within a suitable range is an important task for ensuring plant and fruit growth 

(Cheng et al., 2018). Among several different environment conditions that should be considered such as 

temperature, lighting, CO2 concentration, and humidity, temperature is the most important factor that should be 

carefully controlled. Regulating temperature in an appropriate range can not only increase fruit production but 

also can prevent plants from heat stress or cold damage. However, to prevent temperature in controlled 

environment agriculture from dropping during winter season in northern regions requires heavy energy 

consumption which leads to expensive total production cost (Ahamed et al., 2019). 

Among various approaches, model predictive control (MPC) is an effective strategy that utilizes prediction of 

disturbances to optimize future system behavior under certain constraints (Garcia et al., 1989). At each time 

step, the controller solves an optimization problem based on a model that shows the relationship between 

system states, control inputs, and disturbances. Only the first control input is implemented while the rest is 

discarded. This process repeats for all time steps to derive control trajectories. MPC is an ideal framework for 

building control because building dynamics are slow and the system model incorporates disturbances and 

constraints can be derived from first principles models (Serale et al., 2018). Another advantage of MPC on 

greenhouse climate control is that a greenhouse can usually be considered as a large room (Chu et al., 2015). 

In this way, the model is easier to be obtained in contrast to a building with multiple rooms which involve number 

of system states is large. The benefits of MPC on building control have been demonstrated in comparison to 

conventional methods such as rule-based control (RBC). Numerous studies on greenhouse climate control that 

adopt the MPC have been investigated. There are different approaches such as one based on Volterra series 

model (Gruber et al., 2011) or one solved by particle swarm optimization (Zou et al., 2010). 

Despite the various advantages of MPC on greenhouse control, it is impossible to perfectly predict weather, 

which is the major disturbance in greenhouse control problems. For example, weather prediction of ambient 

temperature may deviate from the true measurement. The uncertainty of disturbances might cause system 
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states to violate specified constraints and damage crop production. In order to cope with uncertainties, robust 

MPC (RMPC) can be adopted (Ning et al., 2019). When uncertainty is bounded, RMPC could ensure that system 

states would not violate the constraints even when the worst-case scenario occurs. The control inputs may be 

more expensive to compensate for robustness. RMPC are implemented on greenhouse in some studies (Chen 

et al., 2018). RMPC may lead to over-conservative results, which is not favorable. Although it is guaranteed that 

constraints in RMPC would not be violated in the worst-case scenario, the probability of such scenario to happen 

could be excessively low. To prevent extreme cases, more expensive control inputs are required, which would 

lead to a waste. In this work, a data-driven RMPC (DDRMPC) framework for greenhouse temperature model is 

proposed to reduce the conservatism. Firstly, the state-space model of the greenhouse is generated based on 

building elements construction. Secondly, historical weather forecast data and historical weather measurement 

data are gathered. These two sets of data could generate uncertain forecast errors. High-density region of the 

uncertain prediction errors is captured by a machine learning technique, support vector clustering (SVC) (Shang 

et al., 2019). The historical data information can then be incorporated into RMPC, and conservatism is reduced. 

To solve the optimization problem in DDRMPC, affine disturbance feedback (ADF) policy is utilized for tractable 

approximations. The optimization problem is solved by off-the-shelf solvers after the robust counterpart is 

derived. The contributions of this paper are summarized below: 

• A novel data-driven robust model predictive control framework to control greenhouse temperature; 

• A simulation of greenhouse temperature control based on real weather data demonstrates better 

control performance of DDRMPC comparing to other conventional methods. 

2. Model formulation 

2.1 Greenhouse model formulation 

In greenhouse MPC, a model is required for predicting greenhouse climate (e.g. temperature,) as a function of 

control inputs (e.g. heating power) and disturbances (e.g. ambient temperature), so that the climate can be 

constrained in a satisfied range. The cost function and constraints of control inputs are also required to model. 

 

 

Figure 1: Greenhouse structure model 

The BRCM MATLAB toolbox uses first-principles models to derive building models which are specially designed 

for MPC. The main approach of BRCM toolbox is thermal resistance-capacitance modeling. Building elements 

are served as resistances and capacitances so the model is an analogy to electrical circuit modeling where 

temperature corresponds to voltage, heat flux to current, thermal capacitance to electrical capacitance, and 

thermal resistance to electrical resistance. Hence, the model is described by linear ordinary differential 

equations. To control greenhouse CO2 concentration, a model to calculate net uptake rate of CO2 by crops per 

unit greenhouse area is required, and it can be estimated by an empirical model of net photosynthesis (Kläring 

et al., 2007). The dynamic greenhouse climate model in this work combines the temperature model generated 

by BRCM model. It can be expressed as the following discrete-time linear time-invariant system 

1+ = + + +k k u k v k w kx Ax B u B v B w
 (1) 

where 𝑥𝑘 ∈ ℝ
𝑛 is the state, 𝑢𝑘 ∈ ℝ

𝑚 is the control input, and 𝑣𝑘 ∈ ℝ
𝑝 is the weather disturbance at time step k, 

respectively. The matrices A, Bu, Bv, and Bw are of appropriate sizes. As prediction error is unavoidable in 

weather forecast, wk is implemented to represent prediction error.  
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In this work, the states we consider are greenhouse temperature, floor temperature, ceiling temperature, wall 

temperature, and greenhouse CO2 concentration. The control input is the heating power and CO2 enrichment. 

The disturbances are solar radiation, ambient temperature, and ground temperature. We assume ground 

temperature is perfectly known so prediction errors are only for solar radiation and ambient temperature. The 

structure of greenhouse model including input and disturbances is shown in Figure 1. 

2.2 Uncertainty Set Formulation 

Before constructing an uncertainty set for ambient temperature prediction error wtemp, pairs of historical forecast 

data and historical measurement are required (Ning et al., 2019). Samples of temperature prediction errors can 

then be calculated from ˆ
temp temp tempw v v= −  where 

tempv  is the historical measurement for ambient temperature, 

and 
t̂empv is the historical forecast. To obtain the uncertainty set from these N samples, machine learning 

methods can be utilized to develop data-driven uncertainty sets (Shang et al., 2019). Notable data-driven 

uncertainty sets include principal component analysis and kernel smoothing based sets (Ning et al., 2019), 

dirichlet process mixture model based disjunctive sets (Ning et al., 2016), among others. In this work, we adopt 

SVC (Ben-Hur et al., 2002), which tries to find the radius of the minimal sphere that can capture data without 

considering outliers. Weighted generalized intersection kernel (WGIK) is implemented when solving the dual 

form of SVC optimization problem (Shang et al., 2017). Unlike some common kernels (e.g. radial basis function, 

polynomial) which would cause a burden when solving robust optimization, WGIK is especially suited for robust 

optimization due to its linearity. The data-driven uncertainty set is shown as 

( )

temp temp temp temp temp 1
( ) 



 
 = −  

 
 i

i

i SV

w D w w wQ

 

(2) 

where Q is a weighting matrix that can be obtained from the covariance matrix of wtemp. Model parameters i

and uncertainty set parameters θ are determined after solving the dual form of SVC using WGIK. It is basically 

the same procedure for constructing solar radiation uncertainty set as temperature uncertainty set. Solar 

radiation prediction errors are calculated from ˆ
sol sol solw v v= − where solv  is the historical measurement for solar 

radiation, and ˆsolv is the historical forecast for solar radiation. The SVC-based uncertainty set is then given as, 
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sol sol sol sol sol 1
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(3) 

which is in the same form as the SVC-based ambient temperature uncertainty set. 

3. Control strategies 

In this work, different control strategies are simulated to compare their control performances. These are RBC, 

certainty equivalence MPC (CEMPC), RMPC, and the proposed DDRMPC. 

3.1 Robust model predictive control 

RMPC guarantees constraint satisfaction for the worst case of the bounded disturbances (Bemporad and Morari, 

1999). In order to ensure the tractability of the RMPC problem, ADF policy is adopted, and control input ut is 

parameterized according to the past disturbances as follows (Goulart et al., 2006) 

1
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(4) 

It also can be written in a compact form as 

= +u h Mw  (5) 
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(6) 

become decision variables that should be solved to determine the control inputs. 
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We assume the uncertainty set for RMPC to be L1-norm-based as follows 

 
1

 = Ww w w
 

(7) 

where Ω is the budget parameter that can adjust the conservatism. When Ω is larger, the uncertainty set 

becomes bigger. The RMPC problem can now be solved easily after the ADF policy is adopted. 

3.2 Data-Driven robust model predictive control 

DDRMPC adopts SVC to construct uncertainty sets that could tackle outliers. Furthermore, the performance 

guarantee is ensured after tuning uncertainty sets by the calibration data set. The approach to solving the 

optimization problem in DDRMPC also uses ADF policy shown as 
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(8) 

where x0 is the initial state, and Eq(8) is a convex optimization problem that can be solved effectively. 

4. Case study 

4.1 Problem description 

In this work, a greenhouse located at Brooklyn, NY, USA is simulated for closed-loop temperature and CO2 

concentration control under different control strategies. The dimension of the greenhouse is 40 m × 13 m × 4 

m. The material for roof and walls is 10 mm twin-wall polycarbonate which provides good insulation against 

heat. The floor is made of concrete. The disturbances considered are solar radiation, ambient temperature, and 

ground temperature. To control the greenhouse air temperature and CO2 concentration, heater and CO2 

enrichment are implemented. Historical weather forecast data and historical weather measurement data from 

January 2018 to June 2018 are collected from Meteogram Generator (Iowa State University, 2018). 

The climate control is for tomatoes to grow in the greenhouse. Therefore, the control goal for daytime and 

nighttime is treated differently (Mesquita et al., 2019). However, the required temperature setpoints would also 

change because of different periods of tomato growth. The setpoints are obtained by maximizing the profit of 

tomato crop. From 6 am to 10 pm, the greenhouse temperature should be between 22-24 ℃ according to 

different growing period, and in the rest of time, the greenhouse temperature should be above 18 ℃. Ground 

temperature is assumed to be a constant at 18 ℃. The maximum heating power for heating system is 300,000 

W. For RBC, constant heating power is set as 60,000 W, and the threshold to turn on heater is 15 ℃. For 

CEMPC, RMPC, and DDRMPC, the prediction horizon H is 5 intervals, and the sampling interval is 1 hour. For 

RMPC, budget parameter Ω ranges from 0 to 8 to reveal different levels of conservatism. For DDRMPC, another 

set of historical weather data from January to June 2017 is obtained for constructing data-driven uncertainty set. 

The maximal violation probability and confidence level are set as 0.05=ò=  and 0.10 = , leading to Ncalib = 45 

samples.  

4.2 Results and discussions 

The results of different control strategies throughout 60 days are simulated, and Figure 2 is an example that 

presents the temperature profile of January. The profile has a diurnal cycle, with higher temperature during 

daytime. Most of the time, DDRMPC leaves some margin from the temperature constraints to ensure weather 

forecast error to happen. Therefore, due to the margin saved for prediction error, temperature constraint would 

not be violated, or at most only very minor violation when extreme cases strike. Similar to DDRMPC, RMPC 

also leaves some margin for the temperature constraints. However, the margin left by RMPC is usually larger 

than DDRMPC’s case, which clearly demonstrates the ability of DDRMPC to reduce conservatism. On the other 

hand, CEMPC violates the constraints frequently and severely. The reason of the violation is that CEMPC does 

not consider prediction error when optimization problem is being solved at each step. CEMPC shows the least 

conservative control profile. Although CEMPC consumes the least heating power shown in Table 2, it ends up 

with the most constraint violations in Table 1. Assuming prediction as true value makes CEMPC violate 

constraints. Whenever the weather is colder than predicted, CEMPC would violate the constraint. Some 

violations are so severe that the greenhouse air temperature drops to 15℃. This is undesirable in a greenhouse 

because crops are usually sensitive to temperature. Even a 2-3 ℃ difference may cause serious damages to 

crop. RMPC is tuned according to the budget parameter Ω. When Ω = 0, RMPC is the same as CEMPC which 
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does not consider uncertainty. When Ω = 8, RMPC results in nearly no more constraint violation. To achieve 

this result, RMPC requires more heating power than CEMPC and DDRMPC. However, DDRMPC also results 

in nearly zero constraint violation.  

Table 3 shows the trade-off between violation and control effort. Control cost comparison of different control 

strategies are on the same basis of perfect bound (PB) result. It reveals that although CEMPC induces the least 

control cost, it violates constraints frequently. RBC results in more control cost and constraint violation 

percentage than RMPC and DDRMPC, which shows that it performs worse than those two approaches. While 

DDRMPC violates constraints slightly, it uses the least control cost and has the lower violation percentage. The 

violation percentage only tells how frequent a control strategy violates constraints but does not show how serious 

the violation is. In the third row, another indicator is added to compare how serious the violation is for different 

control strategies. Violation amount calculates the area below the violation, and it has similar results to violation 

percentage, which CEMPC violates a great amount, and RBC performs worse in this case as well. Although 

DDRMPC violates 0.72 ℃∙h in total, it does not affect much given the time horizon of 1,440 h. 

 

Figure 2: Greenhouse temperature profile in January 2018 

Table 1: Constraint violation percentage in each month  

 Jan. Feb. Average. 

RBC (%) 13.84 4.76 9.30 

CEMPC (%) 82.80 81.25 82.02 

RMPC (%) 0.00 0.89 0.45 

DDRMPC (%) 0.67 0.00 0.34 

Table 2: Cost of controlling temperature and CO2 concentration in Each Month 

 Jan. Feb. Total 

PB (USD) 5,939 4,177 10,115 

RBC (USD) 8,808 7,968 16,776 

CEMPC (USD) 5,887 4,197 10,084 

RMPC (USD) 7,705 5,892 13,597 

DDRMPC (USD) 7,423 5,886 13,310 

Table 3: Trade-off between control effort and violation indicators 

 RBC CEMPC RMPC DDRMPC 

Control cost* (%) 66 0 34 32 

Violation percentage (%) 9.3 82 0.45 0.34 

Violation amount (℃∙h) 193 1,631 2.94 0.72 

* Additional control cost in % of PB 

5. Conclusions 

In this paper, a data-driven robust model predictive control framework for greenhouse climate control was 

developed. To prevent greenhouse climate from becoming harmful to plant and fruit due to inherent error lying 

in weather forecast, uncertainty sets for temperature and solar radiation were constructed by adopting the SVC 

approach on historical weather data. A case study of controlling simultaneously the temperature and CO2 
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concentration of a greenhouse is demonstrated. DDRMPC reduces 21 % and 2.1 % controlling cost comparing 

to RBC and RMPC, while only 0.34 % of time violates temperature constraint throughout 1,440 h. The results 

showed that DDRMPC had better control performance compared to RBC, CEMPC, and RMPC. 
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