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A machine learning approach to predict university attributes that influence graduate employability is presented 

in this work. The machine learning technique used here is the hyperbox model, which is based on the principle 

of generating if / then rules to predict outcomes. The rule-based hyperbox model can be generated from 

empirical data using a mixed integer linear programming model. This machine learning approach is applied to 

the problem of predicting employability of chemical engineering graduates based on institutional attributes. The 

analysis shows that research intensity and quality do not necessarily result in high employability.  

1. Introduction

Artificial intelligence (AI) and machine learning (ML) have become commonplace tools in the modern world. 

Different AI/ML techniques have been developed for use in many practical applications (Jordan and Mitchell, 

2015). These techniques offer the prospect of improved decision-making in industry (Makridakis, 2017) and 

government (Sharma et al., 2020). AI/ML tools such as artificial neural networks (ANN), support vector machines 

(SVM), and Bayesian networks (BN) are powerful alternatives to classical statistical techniques. There is an 

emerging body of literature on the use of AI/ML for the analysis of education data. Recent work has been 

reported for both basic education (Abad and Chaparro Caso López, 2017) and higher education (Alyahyan and 

Düştegör, 2020). Institutional attributes such as research intensity and research quality may indirectly influence 

graduate employability, which is an important measure of higher education effectiveness (Gyenes, 2019). 

However, a search of the Scopus database indicates that research on the use of AI/ML to analyse the 

effectiveness of chemical engineering education is rare. Application of AI/ML can lead to new insights to improve 

educational outcomes and career prospects. 

In ML, prediction models are calibrated to fit a set of training data. The training procedure uses a second model 

to optimize fit. This process is analogous to using least squares optimization to generate a regression equation. 

Mathematical Programming (MP) models can be developed for training in ML. Mixed-integer linear programming 

(MILP) models are a useful class of models for this purpose. The use of continuous and integer variables allows 

MILP models to explore optimal and near-optimal solutions during supervised training (Voll et al., 2015). Notable 

examples of the use of MILP in ML have been reported. Iannarilli and Rubin (2003) developed an MILP-based 

feature selection technique for multiclass discrimination. Kim and Ryoo (2007) proposed an MILP model for 

non-linear data separation, while Bal and Örkcü (2011) developed a multi-class classification approach based 

on MILP. Xu et al. (2011) proposed a 0-1 programming model for attribute reduction. Yan and Ryoo (2017) also 

proposed a 0-1 multi-linear programming approach for pattern recognition. Rudin and Ertekin (2018) used an 

MILP approach for optimal rule generation, while Corrêa et al. (2019) proposed an approach for binary single-

group classification. MILP models have also been combined with other ML techniques such as rough sets 

(Chang et al., 2019) and SVM (Labbé et al., 2019). 
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Xu and Papageorgiou (2009) developed a hyperbox-based ML approach for classification problems. Compared 

to many black-box ML techniques, this approach has the advantage of generating transparent results (Yang et 

al., 2015a), since the hyperboxes can be interpreted as if/then rules (Tan et al., 2020). The original algorithm 

required repeated re-optimization of MILP models for a satisfactory fit. Maskooki (2013) proposed an improved 

training algorithm with a reduced number of steps. An improved version of the hyperbox-based ML approach 

was also developed to account for Type I (false positive) and Type II (false negative) prediction errors (Yang et 

al., 2015a). Applications of hyperbox-based ML include business performance prediction (Xu and Papageorgiou, 

2009), disease diagnosis (Yang et al., 2015b), and geological reservoir classification for CO2 storage (Tan et 

al., 2020). The latter work improved the hyperbox-based ML approach for binary classification by (a) using 

concentric hyperboxes to separate positive and negative samples, and (b) enabling both rule simplification and 

attribute reduction. 

In this paper, the hyperbox-based ML technique developed by Tan et al. (2020) is applied to the problem of 

predicting graduate employability based on high-level university attributes. The rest of this paper is organized 

as follows. Section 2 discusses the hyperbox concept. Section 3 gives the formulation of the MILP model for 

generating the hyperbox decision model. Section 4 applies the methodology to predicting employability of 

chemical engineering graduates in the UK. Section 5 gives the conclusions and prospects for future work. 

2. Problem statement

The formal problem can be stated as follows: 

● Given an information system with a set of criteria (I), which can be further divided into a set of condition

attributes (A) and a binary decision set (D);

● Given a set of samples (J) which have known performance levels relative to the set of condition attributes

(A) and final classification in the decision set (D);

● Given a predefined limit on the rate of false negatives;

● Given the minimum margin of separation between positive and negative samples for each given criterion;

The objective is to determine the boundaries of the hyperbox which will minimize the number of false positive 

results based on the training data set. The concept of hyperbox-based ML for binary classification is illustrated 

in Figure 1 for a problem with two criteria. The hyperboxes should enclose the positive samples while excluding 

the negative samples. Each hyperbox has an error margin; any sample that falls within this margin is considered 

as misclassified. It can be seen that one positive sample is misclassified, because it does not fall within any of 

the hyperboxes. One of the negative samples is also misclassified, since it is enclosed in the error margin of 

hyperbox 2. 

The hyperboxes can also be interpreted as if/then rules (Tan et al., 2020). Hyperbox 1 can be specified using 

two-sided inequalities in both dimensions. Hyperbox 2 can be specified using one-sided inequalities (upper 

bounds only), and is said to be semi-infinite in both dimensions. Dimension reduction is illustrated by hyperbox 

3, which can be projected to a one-dimensional space along x to make y irrelevant. The next section describes 

the MILP model (Tan et al., 2020) to generate the hyperboxes. 

Figure 1: Illustration of hyperbox concept (adapted from Tan et al., 2020) 
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3. MILP for generating Hyperbox Decision Model

The objective of the optimization model is to minimize , as shown in Eq(1), where  is the ratio of the total 

number of false positives (∑   
𝑗 𝐹𝑃𝑗) to the total number of negative samples in the training data. Eq(2) indicates

that the ratio of false negatives (∑   
𝑗 𝐹𝑁𝑗) to the total number of positive samples in the training data () should

be less than a predefined threshold . Eq(3) and Eq(4) define  and . A sample j is counted as a false positive 

if the hyperbox model classifies it as positive (𝑐𝑗 = 1) when its true classification is negative (𝐶𝑗
∗ = 0), as

indicated in Eq(5). The reverse is true for false negatives, as shown in Eq(6).  

𝛼 (1) 

𝛽 ≤ 𝜀 (2) 

𝛼 =
∑   

𝑗 𝐹𝑃𝑗

𝑇𝑁
(3) 

𝛽 =
∑   

𝑗 𝐹𝑁𝑗

𝑇𝑃
(4) 

𝐹𝑃𝑗 ≥ 𝑐𝑗
 − 𝐶𝑗

∗ ∀ 𝑗 (5) 

𝐹𝑁𝑗 ≥ 𝐶𝑗
∗ − 𝑐𝑗

  ∀ 𝑗 (6) 

Eq(7) and Eq(8) are meant to determine the outer boundaries of the hyperboxes, while Eq(9) and Eq(10) are 

meant to determine the inner boundaries. 𝑋𝑗𝑖 is the performance of training data point j in criterion I; 𝑥𝑖𝑘
𝐿  and 𝑥𝑖𝑘

𝑈

are the lower and upper boundaries of hyperbox k for criterion I;  is the distance between the inner and outer 

limits of the hyperbox; 𝑏𝑗𝑘 is a binary variable which indicates if sample j is enclosed within hyperbox k; and M 

is an arbitrary large number. 

𝑋𝑗𝑖 > 𝑥𝑖𝑘
𝐿 − ∆ − 𝑀(1 − 𝑏𝑗𝑘) ∀ 𝑗, 𝑖 (7) 

𝑋𝑗𝑖 < 𝑥𝑖𝑘
𝑈 + ∆ + 𝑀(1 − 𝑏𝑗𝑘) ∀ 𝑗, 𝑖 (8) 

𝑋𝑗𝑖 > 𝑥𝑖𝑘
𝐿 − 𝑀(1 − 𝑏𝑗𝑘) ∀ 𝑗, 𝑖 (9) 

𝑋𝑗𝑖 < 𝑥𝑖𝑘
𝑈 + 𝑀(1 − 𝑏𝑗𝑘) ∀ 𝑗, 𝑖 (10) 

Eq(11) and Eq(12) account for the possibility that boundaries may not exist for criterion i in hyperbox k. 𝑍𝑖𝑘
𝐿  and

𝑍𝑖𝑘
𝑈  approximate −∞ and +∞ (or very large negative and positive values); 𝑏𝑖𝑘

𝐿  and 𝑏𝑖𝑘
𝑈  are binary variables which

indicate whether the lower boundary (𝑏𝑖𝑘
𝐿 = 1) or upper boundary (𝑏𝑖𝑘

𝑈 = 1) for criterion i in hyperbox k

disappears. Eq(13) and Eq(14) account for samples that lie outside of the outer boundaries of the hyperbox k; 

𝑞𝑖𝑗𝑘
𝐿  and 𝑞𝑖𝑗𝑘

𝑈  are binary variables indicating that the performance of sample i in criterion j is less than the lower

limit (𝑞𝑖𝑗𝑘
𝐿 = 1) or more than the upper limit (𝑞𝑖𝑗𝑘

𝑈 = 1) set for hyperbox k. Eq(15) and Eq(16) define when a

sample is enclosed in hyperbox k; 𝑏𝑗𝑘 is a binary variable which takes a value of 1 when sample j is enclosed 

within hyperbox k and 0 otherwise. Eq(17) considers a sample to belong in the positive decision set (𝑐𝑗 = 1) if 

it is enclosed by at least one hyperbox. Eq(18) defines all the binary variables in the model. 

𝑍𝑖𝑘
𝐿 − 𝑀(1 − 𝑏𝑖𝑘

𝐿 ) ≤ 𝑥𝑖𝑘
𝐿 ≤ 𝑍𝑖𝑘

𝐿 + 𝑀𝑏𝑖𝑘
𝐿 ∀ 𝑖, 𝑘 (11) 

𝑍𝑖𝑘
𝑈 − 𝑀𝑏𝑖𝑘

𝑈 ≤ 𝑥𝑖𝑘
𝑈 ≤ 𝑍𝑖𝑘

𝑈 + 𝑀(1 − 𝑏𝑖𝑘
𝑈 ) ∀ 𝑖, 𝑘 (12) 

𝑋𝑗𝑖 ≤ 𝑥𝑖𝑘
𝐿 − ∆ + 𝑀(1 − 𝑞𝑖𝑗𝑘

𝐿 ) ∀ 𝑗, 𝑖 (13) 

𝑋𝑗𝑖 ≥ 𝑥𝑖𝑘
𝑈 + ∆ − 𝑀(1 − 𝑞𝑖𝑗𝑘

𝑈 ) ∀ 𝑗, 𝑖 (14) 

∑   
𝑖 (𝑞𝑖𝑗𝑘

𝐿 + 𝑞𝑖𝑗𝑘
𝑈 ) ≤ 𝑀(1 − 𝑏𝑗𝑘) ∀ 𝑗, 𝑘 (15) 

∑   
𝑖 (𝑞𝑖𝑗𝑘

𝐿 + 𝑞𝑖𝑗𝑘
𝑈 ) ≥ (1 − 𝑏𝑗𝑘) ∀ 𝑗, 𝑘 (16) 

∑   
𝑘 𝑏𝑗𝑘 ≤ 𝑀𝑐𝑗

  ∀ 𝑗, 𝑘 (17) 
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𝑏𝑗𝑘 , 𝑏𝑖𝑘
𝑈 , 𝑏𝑖𝑘

𝐿 , 𝑄𝑖𝑗𝑘
𝑈 , 𝑄𝑖𝑗𝑘

𝐿 , 𝐶𝑗 ∈ {0,1} (18) 

There are two phases in the developed methodology. The first phase is to split the data set into the training and 

validation sets. The training data set is then used to generate the hyperboxes. The second phase tests the 

resulting bianary classifier on the validation data set.  

4. Case study: Predicting employability

This case study analyzes the employability of chemical engineering graduates of different UK universities. 

Industry expections are an important measure of educational outcomes (Gyenes, 2019). The data used were 

reported by Gonzalez-Garay et al. (2019). Five university attributes are considered: (1) entry standards, (2) 

research intensity, (3) staff to student ratio, (4) budget per student, and (5) research quality. The decision 

attribute is employability, which is transformed into binary form using a threshold value of 80 %. The total number 

of samples was 25. From this data set, 15 samples were used as training data (Table 1), while the other 10 

samples were used as validation data (Table 2).  

The hyperbox-based ML approach was used to derive empirical if/then rules from Table 1. Supervised training 

was done by solving the MILP using the optimization software LINGO. Predictive performance was gauged 

using the validation data in Table 2. Different classifiers can also be generated by using integer cuts. Expert 

knowledge can be used to determine if the model produces genuine insights, or merely detects spurious 

patterns. These alternative classifiers are not shown here due to space constraints. 

Table 1: Training data (adapted from Gonzalez-Garay et al., 2019) 

Entry 

Standards 

Research 

Intensity 

Staff/Student Budget per 

student 

Research 

Quality 

Employability 

Portsmouth 134 0.580 0.052 3 2.46 1 

Surrey 152 0.800 0.065 4 2.98 0 

Teesside 113 0.260 0.061 4 2.63 0 

Herriot Watt 165 0.860 0.065 5 3.30 1 

Sheffield 157 0.880 0.045 5 3.06 1 

Bath 203 0.880 0.052 4 3.08 0 

Imperial College 233 0.990 0.057 9 3.34 1 

Edinburgh 197 0.910 0.067 8 3.30 0 

Swansea 141 0.830 0.053 4 3.29 1 

Queens Belfast 154 1.000 0.063 5 2.99 1 

Leeds 189 0.830 0.078 5 2.97 1 

West of Scotland 161 0.450 0.056 4 2.48 0 

Lancaster 157 1.000 0.082 7 3.08 1 

Cambridge 235 1.000 0.089 10 3.38 1 

Hull 111 0.530 0.058 2 2.82 1 

Using the training data, several scenarios were considered by varying the value of  from 1.0 to 0.0 in 

increments of 0.2, with  = 0.05 and using three hyperboxes. The resulting rules were then tested on the 

validation data. The resulting values for  and  both for the training and validation data are summarized in 

Table 3.  

The three hyperboxes shown in Table 4 can be translated into three rules as follows: 

● Rule 1: IF (140.2 ≤ Entry Standards ≤ 189.0) AND (0.49 ≤ Research Intensity) AND (4.4 ≤ Budget per

Student ≤  7.6) THEN (Employability = 1)

● Rule 2: IF (0.09 ≤ Staff/Student Ratio) AND (Research Quality ≤ 2.58) THEN (Employability = 1)

● Rule 3: IF (Entry Standards ≤ 134.0) AND (Staff/Student Ratio ≤ 0.06) AND (Research Quality ≤ 3.24)

THEN (Employability = 1)

These rules are disjunctive. Since there are three hyperboxes, a sample is classified as Employability = 1 if it 

satisfies at least one of the rules indicated above. This set of rules gives good prediction performance, with 78 % 

balanced accuracy, 56 % sensitivity, and 100 % specificity. One key finding is that high employability does not 

necessarily result from high research intensity or quality. A possible reason for this surprising result is that the 

benefits of university research accrue more to postgraduate rather than undergraduate programs. This result 

needs to be examined further in future work. 
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Table 2: Validation data (adapted from Gonzalez-Garay et al., 2019) 

Entry 

Standards 

Research 

Intensity 

Staff/Student Budget per 

student 

Research 

Quality 

Employability 

Strathclyde 225 0.870 0.040 3 3.03 1 

Nottingham 174 0.860 0.064 7 3.16 1 

Loughborough 160 0.930 0.067 4 3.08 0 

Birmingham 190 1.000 0.056 9 3.14 1 

Newcastle 162 0.740 0.059 5 3.02 1 

UCL 187 0.980 0.066 9 3.12 1 

Bradford 124 0.280 0.078 2 2.69 1 

London South Bank 108 0.910 0.037 2 2.59 1 

Aston 127 0.610 0.053 5 2.83 1 

Manchester 186 0.970 0.047 5 3.20 1 

Table 3: Performance of model for training and validation data sets with varying   

 Training Data Validation Data 

    

1.0 0.0 1.0 0.0 1.0 

0.8 0.0 0.80 0.0 0.89 

0.6 0.0 0.50 0.0 0.78 

0.4 0.0 0.30 0.0 0.44 

0.2 0.0 0.10 0.0 0.89 

0.0 0.0 0.0 0.0 0.67 

The best validation performance occurs at  = 0.4. The dimensions of the different hyperboxes are summarized 

in Table 4. 

Table 4: Lower and upper bounds for criteria 

Box 1 Box 2 Box 3 

LL UL LL UL LL UL 

Entry Standards 140.2 189.0 134.0 

Research Intensity 0.49 

Staff/Student 0.09 0.06 

Budget per student 4.4 7.6 

Research Quality 2.58 3.24 

5. Conclusions

This paper has applied hyperbox-based ML for predicting the employability of chemical engineering graduates 

based on UK university rankings. The rules generated had satisfactory predictive ability, as characterized by 

78 % balanced accuracy, 56 % sensitivity, and 100 % specificity. Results show that research intensity and 

quality do not necessarily result in high employability. The application highlights the capability of this approach 

to generate classification rules which offer better insights than conventional black-box ML approaches. In the 

future, the geographic scope can be broadened to larger regions, or even to a global scale, using public data 

on world university rankings. Future work also can focus on the use of the same approach for other applications. 

This technique can be useful for classification problems where transparent, interpretable rule-based models are 

needed. 

References 

Abad F.M., Chaparro Caso López A.A., 2017, Data-mining techniques in detecting factors linked to academic 

achievement, School Effectiveness and School Improvement, 28, 39-55. 

Alyahyan E., Düştegör D., 2020, Predicting academic success in higher education: Literature review and best 

practices, International Journal of Educational Technology in Higher Education, 17, Article 3, 1-21.  

Bal H., Örkcü H.H., 2011, A new mathematical programming approach to multi-group classification problems, 

Computers & Operations Research, 38, 105-111. 

683



Chang W., Yuan X., Wu Y., Zhou S., Lei J., Xiao Y., 2019, Decision-making method based on mixed integer 

linear programming and rough set: A case study of diesel engine quality and assembly clearance data, 

Sustainability, 11, Article 620, 1-21. 

Corrêa R.C., Blaum M., Marenco J., Koch I., Mydlarz M., 2019, An integer programming approach for the 2-

class single-group classification problem, Electronic Notes in Theoretical Computer Science, 346, 321-331. 

Gonzalez-Garay A., Pozo C., Galan-Martin A., Brechtelsbauer C., Chachuat B., Chadha D., Hale C., Hellgardt 

K., Kogelbauer A., Matar O.K., McDowell N., Shah N., Guillen-Gosalbez G., 2019, Assessing the 

performance of UK universities in the field of chemical engineering using data envelopment analysis, 

Education for Chemical Engineers, 29, 29-41.   

Gyenes Z., 2019, Improve process safety in undergraduate education, Chemical Engineering Transactions, 77, 

397-502. 

Iannarilli F.J., Rubin P.A., 2003, Feature selection for multiclass discrimination via mixed-integer linear 

programming, IEEE Transactions on Pattern Analysis & Machine Intelligence, 25, 779-783. 

Jordan M.I., Mitchell T.M., 2015, Machine learning: Trends, perspectives, and prospects, Science, 349, 255-

260. 

Kim K., Ryoo H.S., 2007, Nonlinear separation of data via mixed 0-1 integer and linear programming, Applied 

Mathematics and Computation, 193, 183-196. 

Labbé M., Martínez-Merino L.I., Rodríguez-Chía A.M., 2019, Mixed integer linear programming for feature 

selection in support vector machine, Discrete Applied Mathematics, 261, 276-304. 

Makridakis S., 2017, The forthcoming Artificial Intelligence (AI) revolution: Its impact on society and firms, 

Futures, 90, 46-60. 

Maskooki A., 2013, Improving the efficiency of a mixed integer linear programming based approach for multi-

class classification problem, Computers & Industrial Engineering, 66, 383-388. 

Rudin C., Ertekin Ş., 2018, Learning customized and optimized lists of rules with mathematical programming, 

Mathematical Programming Computation, 10, 659-702. 

Sharma G.D., Yadav A., Chopra R., 2020, Artificial intelligence and effective governance: A review, critique and 

research agenda, Sustainable Futures, 2, Article 100004, 1-6.  

Tan R.R., Aviso K.B., Janairo J.B., Promentilla M.A.B., 2020, A hyperbox classifier model for identifying secure 

carbon dioxide reservoirs, Journal of Cleaner Production (in press). 

Voll P., Jennings M., Hennen M., Shah N., Bardow A, 2015, The optimum is not enough: A near-optimal solution 

paradigm for energy systems synthesis, Energy, 82, 446-456. 

Xu G., Papageorgiou L.G., 2009, A mixed integer optimisation model for data classification, Computers & 

Industrial Engineering, 56, 1205-1215. 

Xu Y., Wang L., Zhang R., 2011, A dynamic attribute reduction algorithm based on 0-1 integer programming, 

Knowledge-Based Systems, 24, 1341-1347. 

Yan K., Ryoo H.S., 2017, 0-1 multilinear programming as a unifying theory for LAD pattern generation, Discrete 

Applied Mathematics, 218, 21-39. 

Yang L., Liu S., Tsoka S., Papageorgiou L.G., 2015a, Sample re-weighting hyper box classifier for multi-class 

data classification, Computers & Industrial Engineering, 85, 44-56. 

Yang L., Ainali C., Kittas A., Nestle F.O., Papageorgiou L.G., Tsoka S., 2015b, Pathway-level disease data 

mining through hyper-box principles, Mathematical Biosciences, 260, 25-34. 

684




