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Unsteady state startup of chemical processes has such characters as nonlinearity, large variation of parameters, 

multiple abnormal states, etc., which failures may cause serious damage to the atmospheric environment due 

to uncontrolled pollutant emissions. Fault diagnosis facilitates early detection of abnormal symptoms and timely 

determination of abnormal reasons during startup procedure. This paper proposed a hybrid fault diagnosis 

strategy based on dynamic simulation and dynamic time warping (DTW) to probe transient degradation of 

startup performance. It calculates serial residuals between dynamic simulation values and online measured 

ones using DTW method to represent process development trend. The residual vector under normal conditions 

is used to develop principal component analysis (PCA) model. Measurements in startup process pretreated by 

DTW are input into the PCA model to perform fault detection and isolation work at last. The proposed method 

was applied to a penicillin fermentation simulator to verify its feasibility in unit operations. Case studies 

demonstrate that the fault diagnosis strategy allows a fast and effective supervision of abnormal state during 

chemical process startups. 

1. Introduction 

Startup is one complex and important step in chemical plant operations. Unlike steady-state production process, 

startup process usually involves a wide range of operator intervention and manual control, so its operating 

conditions and variables will fluctuate greatly when facing external disturbances. The startup failures of chemical 

plant may result in hazardous environmental concerns (Meddeb et al., 2017). A regional air pollutant like VOCs, 

NOx, and partially oxygenated hydrocarbons (Ge et al., 2019), might be formed during abnormal chemical plant 

startup due to process vessel depressurization, purging and venting (Ge et al., 2016). Fault diagnosis is of great 

importance in guaranteeing safe startups and minimising possible adverse air-quality impacts. 

At present, fault diagnosis study for chemical process startup is mainly focused on multivariate statistical 

methods such as partial least square (PLS) regression (Mei et al., 2018), principal component analysis (PCA) 

(Deng and Tian, 2013), etc. These methods use Euclidean distance to calculate dissimilarity between PCA 

model and measurement. But these two sets of data for one same variable may be different in length during 

startup, leading to a misleading dissimilarity for really similar data sequence. With local transfer, compression 

and expansion means, dynamic time warping method (DTW), however, can give correct dissimilarity without 

calculation error caused by unequal lengths (Srinivasan et al., 2005). For example, combining with variable 

moving windows, a dissimilarity analysis method for batch process was given with contribution plots of 

dissimilarity index to identify the variables contributing significantly to the out-of-control state (Zhao et al., 2007). 

These methods mainly focus on the target attributes analysis, excelling in quickness and simplicity instead of 

analytical depth and accuracy. As a priori knowledge of chemical processes would facilitate an effective mapping 

from the measurement space to the discriminating fault feature space, quantitative model-based diagnosis 

method has been developed to improve the analytical depth and accuracy of fault diagnosis through state 
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identification, parameter estimation and parity relation (Bhagwat et al., 2003). Motivated by the definite 

presentation of faults in process model (Sun et al., 2020), a dynamic simulation and DTW based fault diagnosis 

method for chemical process startups was proposed in this work, in which the residual between simulation and 

measured values is calculated by DTW and PCA model for fault detection and isolation purposes. 

The purpose of this work is to evaluate the feasibility of dynamic simulation integration into fault diagnosis for 

transient startup process. In the following sections, the proposal is described in detail at first. Then its 

implementation is illustrated using a fed-batch penicillin production benchmark process simulator. The major 

conclusions reached from analysis of the application results are given at last. 

2. Description of dynamic simulation and DTW based fault diagnosis scheme 

Figure 1a depicts fault diagnosis scheme using dynamic simulation and DTW. A set of sample in normal working 

conditions are employed for modeling. In chemical processes, noise usually exists in monitoring data due to 

instrument measurement error, data transmission delay or chemical reaction fluctuations. If a process was 

modeled correctly, dynamic simulation result minus collected data will leave noises only. However, the 

simulation data and measured data are often not same in length, so DTW is more suitable to represent the 

residual than Euclidean distance. The obtained residuals are input into PCA model for fault diagnosis purposes. 
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Figure 1: Fault diagnosis scheme and application case with dynamic simulation, DTW and PCA 

The main diagnostic steps are as follows: 

(1) Build mechanistic model and then obtain simulation results for measured variables using dynamic simulation; 

(2) DTW is used to calculate the residual between simulation data and distributed control system (DCS) data; 

(3) Use the residual data obtained under normal operating conditions to develop PCA model; 

(4) Calculate online T2 and squared prediction error (SPE) by PCA model for fault detection; 

(5) Calculate the contribution of process variables to monitored statistics to analyse the root cause of failure. 

The fault diagnosis scheme depicted in Figure 1a is composed of three components. Dynamic simulation utilises 

the time-varying mechanistic relationship between control, state and output variables to simulate the dynamic 

startup process. DTW uses dynamic programming to nonlinearly dislocate two trajectories of dynamic simulation 

and real data to obtain their minimum difference degree. PCA constructs statistics to monitor process state 

based on the linearly independent principal components or hidden variables extracted from multivariate data. 

Generally, PCA establishes T2 statistic in the principal subspace and SPE statistic in the residual subspace for 

statistical test. If any statistic exceeds the control limit, a fault or exception is indicated in the process. By 

analysing the contribution of each process variable to the statistic, the process variable that causes the process 

change or failure can be determined. In a word, the contribution of the proposed scheme lies in the 

transformation of the DTW processed difference to develop PCA linear variables for fault diagnosis, reducing 

the modeling difficulty and improving the speed and accuracy of diagnosis. 

3. Case studies 

The proposed dynamic simulation and DTW based fault diagnosis scheme is applied to a batch penicillin 

process simulator to test its feasibility. 
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3.1 Description of penicillin process 

The case study is carried out based on penicillin simulator (PenSim) (Birol et al., 2002). PenSim was specially 

designed for the penicillin fermentation process and can easily implement a series of penicillin fermentation 

simulations (Birol et al., 2002). 

Figure 1b shows the process flow diagram of PenSim process. Penicillin fermentation is a process of penicillin 

production about bacteria growth and synthesis of antibiotics with appropriate medium, pH, temperature, air flow 

rate, and stirring speed. It can be generally divided into two steps. The first step is the substrate consumption 

and rapid biomass growth process. The second step is the synthetic phase of penicillin during which 

fermentation process tends to be stable. In the whole process, some conditions are requisite to promote the 

production of penicillin, such as continuous air flow and stirring, pH control using acid and alkaline, a certain 

temperature and pressure, continuous or intermittent addition of ammonium salt and glucose. PenSim simulator 

gives a nonlinear and unsteady state process and is suitable for fault diagnosis study on startup process. 

Variables in PenSim are composed of input variables like air flow, stirring power, substrate feed rate, etc. and 

output variables like the substrate concentration, bacterium concentration, CO2 concentration, dissolved O2 

concentration, reaction volume, etc. PenSim can simulate not only normal penicillin fermentation process but 

also three abnormal states about air flow, stirring power and bottom stream rate. Fault can be set with step and 

ramp type, disturbance amplitude, start time and end time. The variable importance in PenSim was 

comprehensively evaluated by the complex network theory to find the key variables using basic centrality data 

obtained from the adjacency matrix and topology structure of the process network (Cui et al., 2018). In this work, 

ten key variables were selected to carry out fault diagnosis, as shown in Table 1. 

Table 1: Key variable list for fault diagnosis 

No.  Variable No. Variable 

1 Air flow rate 6 Cooling water flow 

2 Dissolved O2 concentration 7 Bacterium concentration 

3 CO2 concentration 8 Heat 

4 Reaction volume 9 Stirring power 

5 pH 10 Bottom stream rate 

3.2 Dynamic simulation of penicillin fermentation process 

First principles model of penicillin fermentation process plays an important role in guaranteeing the accuracy of 

dynamic simulation and DTW based startup fault diagnosis method. A number of mechanistic models have 

appeared in the penicillin fermentation study. Bajpai model is a typical non-structural model that can 

comprehensively describe the actual process of penicillin fermentation (Birol et al., 2002). It includes not only 

the effect of pH, temperature, air flow, stirring power, bottom stream rate, etc. on penicillin production, but also 

other factors such as the cell growth, carbon dioxide, penicillin production, substrate consumption, the heat of 

reaction, etc. The dynamic equations in it are shown in Eqs(1) - (6). 

(1) Cell growth equation: 

dX x dV
X

dt V dt
= −  (1) 

(2) Penicillin metabolites growth equation: 

pp

dp p dV
X KP

dt V dt
= − −  (2) 

The variable μpp in Eq(2) denotes the penicillin product-specific production rate which can be expressed as: 

pp p 2

S
=

p

L

p

p i OP L

C

K S S K K X C
 

+ + +
 (3) 

(3) Substrate consumption equation: 

pp

X

X S P S

dS S dV
X X F

dT Y Y V dt


= − − + −  (4) 

(4) Dissolved O2 concentration equation: 

( )*

1

ppL L
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X O P O
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= − − − + − −  
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(5) CO2 production equation: 

2
1 2 3

dCO dX
X

dt dt
  = + +  (6) 

The boundary values and kinetic parameters of Eqs(1) - (6) are listed in Tables 2 and 3 (Birol et al., 2002). 

Table 2: The boundary values of penicillin fermentation model 

Variable  Boundary 

value 

Unit Variable  Boundary 

value 

Unit 

Bacterium concentration (variable 7) 15 L Fermenter temperature 298 K 

Biomass concentration 0.1 g/L pH (variable 5) 5  

Dissolved O2 concentration (variable 2) 1.16 g/L Air flow rate (variable 1) 8.6 L/h 

Penicillin concentration 0 g/L Stirring power (variable 9) 29.9 W 

Reaction volume (variable 4) 100 L Bottom stream rate (variable 10) 0.0426 L/h 

CO2 concentration (variable 3) 0.5 g/L    

Table 3: The kinetic parameters of penicillin fermentation model 

Parameter Value Unit Parameter Value Unit 

Inhibition constant, Kp 0 g/L Yield constant of cell to O2, YX/O 0.04 g(biomass)/g(O2) 

Inhibition constant for product 

formation, Ki 

0.1 g/L Yield constant of product to O2, 

YP/O 

0.2 g(penicillin)/ 

g(O2) 

Oxygen limitation constant, KOP 5×10-4  Maintenance coefficient on O2, 

μO 

0.47 1/h 

Yield constant of bacterial to 

substrate, YX/S 

0.45 g(biomass)/ 

g(glucose) 

Constant relating CO2 to 

growth, α1 

0.14 mmole(CO2)/ 

g(biomass) 

Yield constant of product to 

substrate, YP/S 

0.9 g(penicillin)/ 

g(glucose) 

Constant relating CO2 to 

maintenance energy, α2 

4×10-7 mmole(CO2)/ 

[g(biomass).h] 

Maintenance coefficient on 

substrate, μX 

0.01 1/h Constant relating CO2 to 

penicillin production, α3 

10-4 mmole(CO2)/ 

(L.h) 

 

To verify the model accuracy of penicillin fermentation process for fault diagnosis, a dynamic simulation at 

normal state was performed based on Eqs(1) - (6) with data listed in Tables 2 and 3 to check its coincidence 

with actual data obtained from PenSim simulator, using fourth-order Runge-Kutta method as the integration 

algorithm. In this procedure, the model was elaborately calibrated to guarantee the later detected anomaly 

coming from a fault occurring in the process other than an error of the model. Figure 2 compares simulated data 

with actual data (obtained from PenSim) using the beginning three variables in Table 1 as examples. 

 

 

Figure 2: Dynamic simulation data comparison with actual data 

It can be seen from Figure 2 that bacterial fermentation consumes large amounts of O2 at the early reaction 

stage, leading to a striking decline in dissolved O2 and rise in CO2. Thereafter, all variables gradually stabilise. 

The unsteady characteristics of these variable curves induce the difficulty of fault diagnosis significantly. As it 

can be seen from the comparison result of key variables, simulated data and actual data coincide with each 

other. So the dynamic simulation approach can provide standard sample data for fault diagnosis. 
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3.3 Fault diagnosis process and result discussion 

A series of batch fermentation simulation experiments under normal conditions were executed based on PenSim 

simulator to give offline normal sample data. Fermentation time and sampling interval were set as 400 h and 

0.25 h. So the total number of samples is 1,600. In this process, two typical faults, as shown in Table 4, were 

introduced independently. 

Table 4: Fault sample settings in penicillin fermentation 

Type Fault 1: Agitator power Fault 2: Substrate feed rate 

Ramp +5 % -5 % 

Introduction Time, h 150 90 

Termination Time, h 400 400 

 

First, DTW method was used to calculate the residual of normal sample data between dynamic simulation and 

PenSim output with moving window length of 10. Figure 3 shows the residual curve after DTW processing, using 

the first 3 variables listed in Table 1 as examples. It can be seen that residuals fluctuate within a small range 

(relative error is less than 20 %), indicating an overall stable trend for normal data. 

 

 

Figure 3: Residual variation after DTW processing 

Second, PCA model was established based on the residual matrix. The monitoring statistics and their control 

limits were calculated using the normal sample with a size of 1,600 as well. After DTW treatment, the test sample 

data including fault signals were input into PCA model to construct T2 and SPE statistics for fault detection. 

Figure 4 shows the diagnosis result for the stirring power fault. A disturbance was introduced into the system at 

150 h (the 600th sample), causing the stirring power increased by 5 %. As it can be seen from Figure 4a, T2 

statistic runs smoothly before the 600th sample, with only small-scale fluctuations within threshold. So stirring 

power in penicillin fermentation process is controllable within the normal range in spite of certain bias. After 700 

samples (175 h), T2 gradually increases and exceeds its threshold. SPE in Figure 4b has a similar tendency. In 

this way, the fault was detected and variable 9 (stirring power) was identified as the root variable from the 

maximum contribution plot given in Figure 4c. 

 

   

Figure 4: Diagnosis result in case of stirring power fault 

Figure 5 shows the diagnosis result of bottoms stream fault. Step disturbance is added on the bottoms stream 

at 90 h with -5 % amplitude. It can be seen from Figure 5b that SPE statistic suddenly increases and quickly 

exceeds its threshold after the first 400 samples (100 h). Subsequently, T2 statistic exceeds its threshold in 
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Figure 5a. The fault was detected and its root cause variable 10 (bottom stream rate) was identified by 

contribution plot in Figure 5c. 

 

  

Figure 5: Diagnosis result in case of bottoms stream rate fault 

4. Conclusions 

In this study, a dynamic simulation and dynamic time warping based fault diagnosis method for unsteady state 

startup processes were proposed. The following are the conclusions based on the results. 

The method has been successfully applied in troubleshooting of penicillin fermentation process. In normal 

conditions, the relative error of dynamic simulation result processed by DTW from real measurements is lower 

than 20 %. In abnormal situation of stirring power, the T2 and SPE statistics derived from above relative errors 

run out of their thresholds after 175 h, 25 h lagging behind the actual fault injection time. At this time point, the 

ninth variable, that is, stirring power was correctly identified as the variable that mostly contributes to the fault. 

Similar situation goes for the bottoms stream fault but its lagging time is 10 h. So the case studies prove that 

this fault diagnosis strategy can well recognise abnormal symptom and effectively identify the root cause 

variable. 

However, the method does not consider fault magnitude which plays an important effect on accurate fault 

diagnosis and is still limited to single fault occasion. This work will take into consideration the quantitative fault 

diagnosis problem for multiple faults in the future research. 
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